

TECHNICAL MEMORANDUM: DRAFT HYDROLOGIC STUDY AND HYDRAULIC ANALYSIS REPORT

Prepared for:

Prepared by:

July 2023

TABLE OF CONTENTS

1.0 Introduction1-1
1.1 Project Description1-1
1.2 Design Criteria1-1
1.3 Existing Watersheds1-3
1.4 FEMA Flood Hazard Zone1-4
1.5 Water Quality Considerations1-4
1.6 Proposed Stormwater Management1-5
1.7 Sediment and Erosion Control1-6
2.0 Project Maps2-1
3.0 Hydrology
3.1 SCS Method
3.2 Rational Method3-38
4.0 Water Quality Information4-1
5.0 Culvert Data
5.0 Culvert Data 5-1 5.1 Analysis of Existing Culverts 5-1
5.0 Culvert Data 5-1 5.1 Analysis of Existing Culverts 5-1 5.1.1 Culvert 1 – L-2523 Sta. 15+75 – 10'x5' RCBC 5-2
5.0 Culvert Data
5.0 Culvert Data
5.0 Culvert Data 5-1 5.1 Analysis of Existing Culverts 5-1 5.1.1 Culvert 1 – L-2523 Sta. 15+75 – 10'x5' RCBC 5-2 5.1.2 Culvert 2 – I-526 Sta. 1399+75 – 9'x5' RCBC 5-10 5.1.3 Culvert 4 – I-526 Sta. 1355+60 – 24" RCP 5-18 5.1.4 Culvert 5 – I-526 Sta. 1378+35 – 24" RCP 5-26 6.0 Existing Storm Drain System Items 6-1
5.0 Culvert Data 5-1 5.1 Analysis of Existing Culverts 5-1 5.1.1 Culvert 1 – L-2523 Sta. 15+75 – 10'x5' RCBC 5-2 5.1.2 Culvert 2 – I-526 Sta. 1399+75 – 9'x5' RCBC 5-10 5.1.3 Culvert 4 – I-526 Sta. 1355+60 – 24" RCP 5-18 5.1.4 Culvert 5 – I-526 Sta. 1378+35 – 24" RCP 5-26 6.0 Existing Storm Drain System Items 6-1 7.0 Half-Line Pipe Assessment 7-1
5.0 Culvert Data 5-1 5.1 Analysis of Existing Culverts 5-1 5.1.1 Culvert 1 – L-2523 Sta. 15+75 – 10'x5' RCBC 5-2 5.1.2 Culvert 2 – I-526 Sta. 1399+75 – 9'x5' RCBC 5-10 5.1.3 Culvert 4 – I-526 Sta. 1355+60 – 24" RCP 5-18 5.1.4 Culvert 5 – I-526 Sta. 1378+35 – 24" RCP 5-26 6.0 Existing Storm Drain System Items 6-1 7.0 Half-Line Pipe Assessment 7-1 8.0 Outfall Analysis 8-1
5.0 Culvert Data 5-1 5.1 Analysis of Existing Culverts 5-1 5.1.1 Culvert 1 – L-2523 Sta. 15+75 – 10'x5' RCBC 5-2 5.1.2 Culvert 2 – I-526 Sta. 1399+75 – 9'x5' RCBC 5-10 5.1.3 Culvert 4 – I-526 Sta. 1355+60 – 24" RCP 5-18 5.1.4 Culvert 5 – I-526 Sta. 1378+35 – 24" RCP 5-26 6.0 Existing Storm Drain System Items 6-1 7.0 Half-Line Pipe Assessment 7-1 8.0 Outfall Analysis 8-1 9.0 Sediment and Erosion Control Measures 9-1
5.0 Culvert Data 5-1 5.1 Analysis of Existing Culverts 5-1 5.1.1 Culvert 1 – L-2523 Sta. 15+75 – 10'x5' RCBC 5-2 5.1.2 Culvert 2 – I-526 Sta. 1399+75 – 9'x5' RCBC 5-10 5.1.3 Culvert 4 – I-526 Sta. 1355+60 – 24" RCP 5-18 5.1.4 Culvert 5 – I-526 Sta. 1378+35 – 24" RCP 5-26 6.0 Existing Storm Drain System Items 6-1 7.0 Half-Line Pipe Assessment 7-1 8.0 Outfall Analysis 8-1 9.0 Sediment and Erosion Control Measures 9-1 Appendix A – Project Maps A-1
5.0 Culvert Data 5-1 5.1 Analysis of Existing Culverts 5-1 5.1.1 Culvert 1 – L-2523 Sta. 15+75 – 10'x5' RCBC 5-2 5.1.2 Culvert 2 – I-526 Sta. 1399+75 – 9'x5' RCBC 5-10 5.1.3 Culvert 4 – I-526 Sta. 1355+60 – 24" RCP 5-18 5.1.4 Culvert 5 – I-526 Sta. 1378+35 – 24" RCP 5-26 6.0 Existing Storm Drain System Items 6-1 7.0 Half-Line Pipe Assessment 7-1 8.0 Outfall Analysis 8-1 9.0 Sediment and Erosion Control Measures 9-1 Appendix A – Project Maps A-1 Appendix B – Pre/Post – Development Calculations B-1
5.0 Culvert Data 5-1 5.1 Analysis of Existing Culverts 5-1 5.1.1 Culvert 1 – L-2523 Sta. 15+75 – 10'x5' RCBC 5-2 5.1.2 Culvert 2 – I-526 Sta. 1399+75 – 9'x5' RCBC 5-10 5.1.3 Culvert 4 – I-526 Sta. 1399+75 – 9'x5' RCBC 5-18 5.1.4 Culvert 5 – I-526 Sta. 1378+35 – 24" RCP 5-26 6.0 Existing Storm Drain System Items 6-1 7.0 Half-Line Pipe Assessment 7-1 8.0 Outfall Analysis 8-1 9.0 Sediment and Erosion Control Measures 9-1 Appendix A – Project Maps A-1 Appendix B – Pre/Post – Development Calculations B-1 Appendix C – Culvert, Cross-Line, and Half-Line Summaries C-1

LIST OF TABLES

Table 1-1: Location and Description of Existing I-526/Long Point Road Culverts	.1-4
Table 1-2: Pre-Development Discharges	.1-6
Table 1-3: Post-Development Discharges	.1-6

LIST OF FIGURES

Figure 1-1: I-526 Essential Fish Habitat denoting Shellfish Harvesting Waters	1-5
Figure 3-1: Rational Method Calculations for Existing Pipes	3-38
Figure 3-2: Time of Concentration for Existing Rational Method Calculations	3-38
Figure 3-3: Rational Method Calculations for Proposed Pipes	3-39
Figure 3-4: Time of Concentration for Proposed Rational Method Calculations	3-39

1.0 INTRODUCTION

1.1 PROJECT DESCRIPTION

This Hydraulic Report was prepared to document the hydrologic and hydraulic analysis for the proposed I-526 and S-97 (Long Point Road) Interchange improvements (I-526 Exit 28). These improvements are to address operational deficiencies and improve the safety of the current interchange configuration. The scope of work includes field surveys, pipe and box culvert inspections, and the preliminary hydraulic design of stormwater systems (pipe culverts, ditches, and closed systems).

The proposed interchange improvements will address merge and weave movements and are expected to include ramp realignment, as well as a new flyover bridge. Since Long Point Road (LPR) is the only point of access for the South Carolina Port Authority (SCPA) Wando Welch Terminal (WWT), operational conflicts between growing automobile and truck traffic have increased in recent years. After a Planning and Environmental Linkages (PEL) study for the I-526 Lowcountry Corridor was conducted, the proposed I-526 and LPR interchange improvements were identified as a means of reducing traffic conflicts that could be completed independently from the planned I-526 widening. Currently, the interchange consists of two EB and WB lanes each 12' wide on I-526 and two NB and SB lanes of the same width on LPR. On and off-ramps in the interchange vary from 22' to 30' wide. The existing I-526 off-ramp to LPR also widens to 46' wide and encompasses three turn lanes.

It is assumed video inspection will occur during the design stage to assess the condition of the existing culverts and pipes draining from median drop inlets throughout the project site and determine if replacement is required.

1.2 DESIGN CRITERIA

- a) Freeboard for Road Subgrades.
 - 1. To protect the pavement, it is recommended that the bottom of roadway subgrades be a minimum of 1.0 foot above the design high-water level.
- b) Cross-Line Pipes.
 - 1. The design discharge for all cross-line pipes for primary routes (roads with US or SC designation) is the 50-year peak discharge. This shall apply for I-526.
 - For secondary roads, the design discharge for cross-line pipes is the 25-year peak discharge. This shall apply for S-97 (Long Point Road), S-2523 (Seacoast Parkway and Belle Hall Parkway), and all local roads, if needed.
 - 3. The designer should also analyze the 100-year or overtopping flood, whichever is less. Design of pipes 48" and greater will utilize HY-8.
 - 4. Per scope of work: All pertinent cross-line data for pre and post discharges, drainage areas, and headwater elevations for the 10, 25, 50, and 100-year storms are to be provided for NPDES and erosion control purposes.
 - 5. Minimum pipe size shall be 18" within the project limits.

- 6. Cross-line pipes under I-526 will be sized to accommodate future lane widening and paved shoulders.
- 7. Open ended cross-line pipes will utilize HY-8 (or HECRAS if needed) for the analysis.
- c) Storm Drains and Roadside Ditches.
 - 1. The design storm for storm drain systems and roadside ditches is the 10-year storm for drainage areas from 0 to 40 acres, the 25-year storm for drainage areas from 40 to 500 acres, and the 50-year storm for drainage areas greater than 500 acres.
 - 2. GEOPAK Drainage will be used to design closed systems.
 - i) Catch Basins Type 25 and Type 25 DBL shall be used within the paved median.
 - ii) Drop Inlets Type 112 (SCDOT Std. Drawing 719-112-01) shall be used within the grassed median. A minimum of 4' of pavement will be placed around all DI Type 112s and is incidental to their construction.
 - iii) Either Concrete Flumes (SCDOT Std. Drawings 805-325-75 and 805-325-76) or Catch Basins Type 16 (SCDOT Std. Drawing 719-016-01) shall be used to discharge bridge deck drainage.
 - iv) Per Pipe Culverts Smooth Wall RCP Details and Fill Height (SCDOT Std. Drawing 714-205-01), flexible pipes are prohibited from use on all interstates. As such, only RCPs will be used on I-526. Class section will be determined using the Allowable Fill Height Table on SCDOT Std. Drawing 714-205-01.
 - v) Storm drain networks will be sized to accommodate future widening.
 - 3. Hydraulic Toolbox will be used with HEC-15 guidelines to determine ditch lining material.
- d) Inlet Spacing and Spread Criteria
 - Recommended maximum inlet spacing is 900 feet and recommended minimum inlet spacing is 150 feet unless specified by the hydraulic design engineer. A 100-foot inlet spacing will be used at sag points to flank low points in the roadway. The minimum time of concentration is 5 minutes.
 - For interstate facilities >45 mph (I-526) and : 10-yr Design Frequency & Design Spread is contained within the shoulder for on-grade drainage. 50-yr Design Frequency & Design Spread is contained within the shoulder + 3 ft for sag points.
 - i) Spread will be analyzed for future widening and designed to be contained within the future shoulder.
 - 3. For secondary facilities < or equal to 45 mph: 10-yr Design Frequency and Design Spread is contained within the shoulder + 3 ft for on-grade drainage.
 - 4. Local streets < or equal to 45 mph: 10-yr Design Frequency & Design Spread is limited to ½ Travel Lane for both on-grade drainage AND sag points.
 - 5. Inlets in grassed medians will be spaced so that the 10-year stormwater level in the median will be below the edge of the shoulder. Maximum inlet spacing will be 750 feet.
 - 6. Temporary Drainage: Drainage design frequency shall be determined using the AASHTO Drainage Manual Chap. 17 Appendix 17A.
- e) Minimum Ditch and Pipe Grades.
 - Minimum grade on ditches, gutters, and pipes in a storm drainage system will be 0.3 percent where possible. The minimum velocity for the design discharge in a pipe will be 3.0 feet per second. The controlling factor is velocity rather than grade.
- f) Minimum Pipe Size.
 - 1. Minimum pipe size in storm drainage systems and for cross-lines is 18 inches. A 15-inch pipe may be used to connect yard drains to a storm drainage system and for driveway pipes.

- 2. Minimum cover requirements shall pass Load Case 2 (Minimum Cover Under Roadway) for RCPs in SCDOT Std. Drawing 714-205-01.
- g) Sediment and Erosion Control.
 - 1. This project must meet the requirements of the SCDOT NPDES MS4 permit and South Carolina Regulation 72-405, as applicable.
- h) Hydrologic Analysis
 - Rational Method shall be used for drainage areas up to 100 acres. NRCS TR-55 Method for Lower Coastal Plain Physiographic Region shall be used for drainage areas 100 to 640 acres, if needed. The standard Peak Rate Factor (484) will be used. USGS regression methodologies shall be used for drainage areas over 640 acres, if needed.
 - 2. Time of Concentration shall be calculated using the Velocity Approach Method and will consist of 3 segments (Sheet Flow, Shallow Concentrated Flow, Channelized Flow).
- i) Other Design Criteria to be applied to the hydraulic design of this project:
 - 1. Bridge Deck Drainage
 - i) Design of the bridge deck drainage shall comply with FHWA-SA-92-010 Design of Bridge Deck Drainage HEC 21, May 1993.
 - Per SCDOT Bridge Design Manual (June 2006): For Interstate Routes: 10-yr Design Frequency & Design Spread is contained within the shoulder for on-grade drainage. 50yr Design Frequency & Design Spread is contained within the shoulder + 3 ft for sag points.
 - iii) Per SCDOT Bridge Design Manual (June 2006): "Avoid locating scupper outlets over the traveled way portion of an underpassing highway, sidewalk, or unpaved embankment."
- j) Permitting and MS4 Considerations
 - The classification of the receiving water bodies and downstream impairments will be determined and additional water quality treatment where outfalls discharge to 303(d) listed, TMDL, and other sensitive waters will be provided if necessary.

1.3 EXISTING WATERSHEDS

Three small watersheds are present within the project area. The project area to the east of the interchange, encompassing 80 acres, drains to a tidally influenced tributary to Hobcaw Creek before exiting the project right of way (ROW). This tributary flows underneath a series of bridges that service both lanes and two on/off ramps of I-526, all positioned approximately 800 feet from the interchange. Hobcaw Creek itself drains into the Wando River. The project area to the southwest of the interchange, encompassing 190 acres, drains to a 9'x5' and subsequent 10'x5' culvert, the latter of which outlets into a tidally influenced tributary of the Wando River, called Rathall Creek. The western portion of the project site, located between the Wando River Bridge and the area drained by the culverts, encompasses 64 acres and exits the project ROW at another tidally influenced tributary to the Wando River, which flows underneath a bridge servicing both lanes of I-526. See **Appendix A** for an aerial map of the project site that displays the existing watersheds.

Existing land uses within the three drainage areas are predominantly commercial and impervious. Some forested areas exist between developed parcels. Several acres of grassed median and open space are present immediately surrounding the roadway and interchange. The topographic information utilized in watershed delineation was obtained from the NOAA Coastal LiDAR Viewer. All culverts and cross-lines within the project area are tabulated in Table 1.1 and hydraulic analysis is provided in **Section 3**

Hydrology. Model outputs are provided in **Section 5 Culvert Data**. Existing ditches impacted by proposed alternatives will need to be reconstructed to maintain current drainage patterns.

Culvert Number	Station	Alignment	Description	Drainage Area (Ac)
1	15+75	L-2523	10'x5' RC Box	229.0
2	1399+85	I-526	9'x5' RC Box	198.0
3	23+30	L-2118	(3) 36" RC Pipe	89.0
4	1355+60	I-526	24" RC Pipe	3.4
5	1378+35	I-526	24" RC Pipe	4.1

Table 1-1: Location and Description of Existing I-526/Long Point Road Culverts

1.4 FEMA FLOOD HAZARD ZONE

Appendix A "PROJECT MAPS" contains the Federal Emergency Management Agency (FEMA) effective flood hazard maps for the project area. The proposed improvements to the interchange site are located within flood hazard area Zone AE. Therefore, floodplain impacts are anticipated.

1.5 WATER QUALITY CONSIDERATIONS

The South Carolina Department of Health and Environmental Control (SCDHEC) Water Quality Monitoring Stations (WQMS) nearest to the proposed project location is 09B-18, which is located within a TMDL watershed for Fecal Coliform (FC). The project site drains into Rathall Creek, and ultimately drains into the Wando River, where WQMS 09B-18 is located 2 miles downstream of the project site. WQMS 09B-18 is not listed as an impaired water body per the latest version of the 303(D) list. However, it is listed on the 303(D) list as a TMDL watershed for FC. The water quality report for the site can be referenced in **Section 4 Water Quality Information**.

Even though the SCDHEC Water Quality report for the project site categorizes Rathall Creek and the Tributary to Rathall Creek as Shellfish Harvesting (SFH) waters, further investigation has determined that the SFH are downstream of the project area and anything upstream of I-526 should be considered as freshwater (see **Fig. 1.1**). Therefore, permanent water quality treatment is not required on the upstream side of I-526 since the project site ultimately outfalls to a stream on the current 303(d) list for Fecal Coliform and roadway construction is not expected to aggravate this issue. However, since the project is longitudinal in nature and the roadway typical section includes grassed shoulders and vegetated roadside ditches, sheet flow from the roadways will be filtered by the mildly sloped grassed shoulders and grass-lined ditches will serve to further filter suspended pollutants before stormwater reaches the outfall points. For outfalls draining directly downstream of I-526, primarily the I-526 westbound lanes, permanent water quality will be addressed by Mechanical Treatment Devices (MTDs) as appropriate.

Figure 1-1: I-526 Essential Fish Habitat denoting Shellfish Harvesting Waters

1.6 PROPOSED STORMWATER MANAGEMENT

The project site falls within three different drainage areas, a tributary to the Wando River, a tributary to Rathall Creek, and a tributary to Hobcaw Creek. At the point of interest where drainage exits the project ROW at the Wando River tributary (I-526 Sta. 1361+00), the total drainage area encompasses 0.100 sq mi (64 acres). Within the Rathall Creek tributary (L-2523 Sta. 15+75), the total drainage area at the point of interest encompasses 0.358 sq mi (229 acres). At the point of interest where drainage exits the project ROW within the tributary to Hobcaw Creek (I-526 Sta. 1444+00), the total drainage area encompasses 0.125 sq mi (80 acres).

Given the relatively small drainage area of these three watersheds, and that the proposed project is expected to increase impervious area, pre/post discharge calculations were conducted at the three points of interest and are displayed in **Appendix B**. Following the design criteria outlined in **Section 1.2**, the Rational Method was used to calculate discharges from the Hobcaw Creek tributary and the Wando River tributary, while the NCRS TR-55 Method was used to calculate the discharge from the tributary to Rathall Creek. For the latter, the program WinTR-55 was utilized. All calculations accounted for future widening and paved shoulders along I-526. Results are summarized in **Tables 1.2-1.3**. In all cases, drainage area sizes were unaffected by increases in pavement.

Point of Interest	Pre Development Drainage Area (AC)	Q 2 yr	Q 10 yr	Q 50 yr	Q 100 yr
Tributary to Wando River (I-526 STA. 1361+00)	64.0	54	79	131	154
Tributary to Rathall Creek (L-2523 STA. 15+75)	229.0	300	491	705	807
Tributary to Hobcaw Creek (I-526 STA 1444+00)	80.1	100	142	226	263

Table 1-2: Pre-Development Discharges

Table 1-3: Post-Development Discharges

Point of Interest	Post Development Drainage Area (AC)	Q 2 yr	Q 10 yr	Q 50 yr	Q 100 yr
Tributary to Wando River (I-526 STA. 1361+00)	64.0	55	81	133	157
Tributary to Rathall Creek (L-2523 STA. 15+75)	229.0	307	498	712	812
Tributary to Hobcaw Creek (I-526 STA 1444+00)	80.1	102	144	230	267

For the tributary to the Wando River (I-526 Sta. 1361+00), less than one acre of impervious area is proposed to be added to the watershed. This raised projected discharge values by 2 cfs on average. For the tributary to Hobcaw Creek (I-526 Sta.1444+00), approximately two acres of impervious area are proposed to be added to the watershed. This raised projected discharge values by 2 cfs on average.

For the tributary to Rathall Creek (L-2523 Sta. 15+75), approximately 23 acres of impervious surfaces will be added to the watershed. This increase accounts for the proposed LPR on/off ramps and realignment, truck flyover lane, and lane widening on I-526. Although this represents a significant increase in impervious area, the predominance of poorly drained D soils and existing impervious areas within the watershed means that no impact to peak discharges is expected.

Considering the comparatively insignificant rise in post-development peak discharge volumes at the three points of interest within the project area, stormwater management will not be required. However, should there be a need for stormwater management, the project site possesses available space within the interchange and surrounding grassy areas.

1.7 SEDIMENT AND EROSION CONTROL

A description of sediment and erosion control measures will be provided during final design by the design-build team.

2.0 PROJECT MAPS

All project maps are displayed in Appendix A. Included in this appendix :

- aerial imagery showing existing and proposed pavement and drainage areas,
- USGS topographic maps showing existing and proposed pavement and drainage areas, and
- FEMA Flood Insurance Rate Maps (FIRM) showing the project area.

Please note that as the project exists at the boundary of two topographic maps, both maps were overlaid in the same figure.

3.0 HYDROLOGY

3.1 SCS METHOD

The NRCS (SCS) TR-55 method was used to calculate the pre- and post-development discharge of existing Culvert 1, a 10'x5' reinforced concrete box culvert (RCBC) located at L-2523 Sta. 15+75, and Culvert 2, a 9'x5' RCBC located at I-526 Sta. 1399+75. Calculations were also run for Culvert 3, a proposed (3) 48" reinforced concrete pipe (RCP) located underneath the proposed new realignment of L-2118 Sta. 23+30. Culvert 3 is proposed to replace the existing (3) 36" RCP underneath the current L-2118 alignment. Because this existing (3) 36" RCP will be replaced, its pre-development peak discharges were not calculated.

See the Hydrology Studio report for Culverts 1-3 below for a detailed analysis of these calculations.

Table of Contents	ject Name:
Hydrology Studio v 3.0.0.27	06-23-2023
Basin Model Schematic	1
Hydrograph by Return Period	2
10 - Year	
Hydrograph Summary	3
Hydrograph Reports	
Hydrograph No. 1, NRCS Runoff, Proposed 3-48"	4
Hydrograph No. 2, NRCS Runoff, Post Dev 10x5	5
Hydrograph No. 3, NRCS Runoff, Post Dev 9x5	6
Hydrograph No. 4, NRCS Runoff, Existing 10x5	7
Hydrograph No. 5, NRCS Runoff, Existing 9x5	8
Design Storm Report - NRCS/SCS - Type III, 24-hr	9
25 - Year	
Hydrograph Summary	10
Hydrograph Reports	
Hydrograph No. 1, NRCS Runoff, Proposed 3-48"	11
Hydrograph No. 2, NRCS Runoff, Post Dev 10x5	12
Hydrograph No. 3, NRCS Runoff, Post Dev 9x5	13
Hydrograph No. 4, NRCS Runoff, Existing 10x5	14
Hydrograph No. 5, NRCS Runoff, Existing 9x5	15
Design Storm Report - NRCS/SCS - Type III, 24-hr	16
50 - Year	
Hydrograph Summary	17
Hydrograph Reports	
Hydrograph No. 1, NRCS Runoff, Proposed 3-48"	18
Hydrograph No. 2, NRCS Runoff, Post Dev 10x5	19
Hydrograph No. 3, NRCS Runoff, Post Dev 9x5	20
Hydrograph No. 4, NRCS Runoff, Existing 10x5	21
Hydrograph No. 5, NRCS Runoff, Existing 9x5	22
Design Storm Report - NRCS/SCS - Type III, 24-hr	23
100 - Year	
Hydrograph Summary	24
Hydrograph Reports	
Hydrograph No. 1, NRCS Runoff, Proposed 3-48"	25
Hydrograph No. 2, NRCS Runoff, Post Dev 10x5	26
Hydrograph No. 3, NRCS Runoff, Post Dev 9x5	27
Hydrograph No. 4, NRCS Runoff, Existing 10x5	28

Contents continued...

Hydrograph No. 5, NR	S Runoff, Existing 9x5 29	9
Design Storm	Report - NRCS/SCS - Type III, 24-hr)
IDF Report		I
Precipitation Report		2

Hydrograph by Return Period

Project Name:

Hyd.	Hydrograph	Hydrograph				Peak Out	flow (cfs)			
No.	Туре	Name	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
1	NRCS Runoff	Proposed 3-48"		83.45			140.3	176.1	204.9	236.2
2	NRCS Runoff	Post Dev 10x5		231.2			379.5	472.6	547.7	628.9
3	NRCS Runoff	Post Dev 9x5		187.5			307.7	383.2	444.0	509.9
4	NRCS Runoff	Existing 10x5		207.7			341.2	425.1	492.7	565.9
4 5	NRCS Runoff	Existing 9x5		207.7			341.2 288.7	425.1	492.7	565.9

2

Hydrograph 10-yr Summary

Project Name:

06-	23-	20	23

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	Proposed 3-48"	140.3	13.07	1,688,074			
2	NRCS Runoff	Post Dev 10x5	379.5	13.07	4,613,812			
3	NRCS Runoff	Post Dev 9x5	307.7	13.07	3,740,765			
4	NRCS Runoff	Existing 10x5	341.2	13.20	4,491,551			
5	NRCS Runoff	Existing 9x5	288.7	13.17	3,751,662			

3

Hydrology Studio v 3.0.0.27

Post Dev 10x5

Project Name:

06-23-2023

Hydrology Studio v 3.0.0.27

Existing 10x5

Project Name:

06-23-2023

Design Storm Report

Hydrology Studio v 3.0.0.27

Storm Distribution: NRCS/SCS - Type III, 24-hr

Storm	Total Rainfall Volume (in)								
Duration	1-yr	2-yr	3-yr	5-yr	✔ 10-yr	25-yr	50-yr	100-yr	
24 hrs	3.47	4.24	0.00	5.46	6.48	7.90	9.05	10.30	

Time (hrs)	Precip (in)								
11.00	0.015682	11.37	0.022723	11.73	0.066888	12.10	0.128303	12.47	0.03520
11.03	0.016099	11.40	0.023386	11.77	0.073224	12.13	0.098758	12.50	0.02887
11.07	0.016762	11.43	0.024048	11.80	0.079560	12.17	0.092232	12.53	0.02533
11.10	0.017424	11.47	0.024710	11.83	0.085896	12.20	0.085896	12.57	0.0247
1.13	0.018086	11.50	0.025373	11.87	0.092232	12.23	0.079560	12.60	0.02404
1.17	0.018749	11.53	0.028835	11.90	0.098568	12.27	0.073224	12.63	0.0233
11.20	0.019411	11.57	0.035208	11.93	0.128489	12.30	0.066888	12.67	0.02272
1.23	0.020074	11.60	0.041544	11.97	0.181441	12.33	0.060552	12.70	0.0220
1.27	0.020736	11.63	0.047880	12.00	0.234577	12.37	0.054216	12.73	0.0213
11.30	0.021398	11.67	0.054216	12.03	0.234278	12.40	0.047880	12.77	0.0207
1.33	0.022061	11.70	0.060552	12.07	0.181439	12.43	0.041544	12.80	0.0200
7									6
7									7 6 5 4 3
									7 6 5 4 3 2
									7 6 5 4 3 2 1

Custom Storm filename:

06-23-2023

Hydrograph 25-yr Summary

Project Name:

lyd. Io.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximun Storage (cuft)
1	NRCS Runoff	Proposed 3-48"	176.1	13.07	2,138,322	:		
2	NRCS Runoff	Post Dev 10x5	472.6	13.07	5,802,199			
3	NRCS Runoff	Post Dev 9x5	383.2	13.07	4,704,280			
4	NRCS Runoff	Existing 10x5	425.1	13.20	5,648,447			
5	NRCS Runoff	Existing 9x5	358.4	13.17	4,701,166	-		

10

Hydrology Studio v 3.0.0.27

Proposed 3-48"

Project Name:

06-23-2023

Hydrology Studio v 3.0.0.27

Post Dev 9x5

Project Name:

06-23-2023

Hydrology Studio v 3.0.0.27

Existing 9x5

Project Name:

06-23-2023

Design Storm Report

Custom Storm filename:

06-23-2023

Hydrology Studio v 3.0.0.27

Storm Distribution: NRCS/SCS - Type III, 24-hr

Storm				Total Rainfa	ll Volume (in)				
Duration	1-yr	2-yr	3-yr	5-yr	10-yr	✔ 25-yr	50-yr	100-yr	20 20
24 hrs	3.47	4.24	0.00	5.46	6.48	7.90	9.05	10.30	

									-
Time (hrs)	Precip (in)								
11.00	0.019118	11.37	0.027703	11.73	0.081545	12.10	0.156419	12.47	0.042923
11.03	0.019626	11.40	0.028510	11.77	0.089270	12.13	0.120400	12.50	0.035199
11.07	0.020435	11.43	0.029318	11.80	0.096994	12.17	0.112443	12.53	0.030889
11.10	0.021242	11.47	0.030125	11.83	0.104719	12.20	0.104719	12.57	0.030125
11.13	0.022050	11.50	0.030933	11.87	0.112443	12.23	0.096994	12.60	0.029318
11.17	0.022857	11.53	0.035154	11.90	0.120168	12.27	0.089270	12.63	0.028510
11.20	0.023665	11.57	0.042923	11.93	0.156646	12.30	0.081546	12.67	0.027703
11.23	0.024472	11.60	0.050648	11.97	0.221201	12.33	0.073821	12.70	0.026895
11.27	0.025280	11.63	0.058372	12.00	0.285981	12.37	0.066097	12.73	0.026088
11.30	0.026088	11.67	0.066097	12.03	0.285618	12.40	0.058373	12.77	0.025280
11.33	0.026895	11.70	0.073821	12.07	0.221199	12.43	0.050648	12.80	0.024472
8-									7
									8 7 6 5 4 3
									8 7 6 5 4 4 3
									8 7 6 5 4 3 2
									8 7 6 5 4 3 2 1
									8 7 6 5 4 2 1

Hydrograph 50-yr Summary

Project Name:

06-	23-	20	23

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	Proposed 3-48"	204.9	13.07	2,505,157			
2	NRCS Runoff	Post Dev 10x5	547.7	13.07	6,768,565			
3	NRCS Runoff	Post Dev 9x5	444.0	13.07	5,487,790			
4	NRCS Runoff	Existing 10x5	492.7	13.20	6,589,213			
5	NRCS Runoff	Existing 9x5	414.5	13.17	5,472,643			

17

Hydrology Studio v 3.0.0.27

Post Dev 10x5

Project Name:

06-23-2023

Hydrology Studio v 3.0.0.27

Existing 10x5

Project Name:

06-23-2023

Design Storm Report

Hydrology Studio v 3.0.0.27

Storm Distribution: NRCS/SCS - Type III, 24-hr

Storm				Total Rainfa	II Volume (in)				l l
Duration	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	✔ 50-yr	100-yr	
24 hrs	3.47	4.24	0.00	5.46	6.48	7.90	9.05	10.30	

ime hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)
1.00	0.021901	11.37	0.031735	11.73	0.093416	12.10	0.179189	12.47	0.04917
1.03	0.022483	11.40	0.032660	11.77	0.102265	12.13	0.137926	12.50	0.04032
1.07	0.023409	11.43	0.033586	11.80	0.111114	12.17	0.128812	12.53	0.03538
1.10	0.024334	11.47	0.034511	11.83	0.119963	12.20	0.119963	12.57	0.03451
1.13	0.025259	11.50	0.035436	11.87	0.128812	12.23	0.111115	12.60	0.03358
1.17	0.026185	11.53	0.040272	11.90	0.137660	12.27	0.102265	12.63	0.03266
1.20	0.027110	11.57	0.049171	11.93	0.179449	12.30	0.093416	12.67	0.03173
1.23	0.028035	11.60	0.058020	11.97	0.253401	12.33	0.084568	12.70	0.03081
1.27	0.028960	11.63	0.066869	12.00	0.327611	12.37	0.075718	12.73	0.02988
1.30	0.029885	11.67	0.075718	12.03	0.327195	12.40	0.066870	12.77	0.02896
1.33	0.030810	11.70	0.084567	12.07	0.253399	12.43	0.058021	12.80	0.02803
10 9									9
									10 9 8 7 6 5 4 3 3 2
									10 9 8 7 6 5 4 4 3 2 1

Custom Storm filename:

06-23-2023
Hydrograph 100-yr Summary

Project Name:

lyd. Io.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	Proposed 3-48"	236.2	13.07	2,905,365			
2	NRCS Runoff	Post Dev 10x5	628.9	13.03	7,821,603			
3	NRCS Runoff	Post Dev 9x5	509.9	13.03	6,341,573			
4	NRCS Runoff	Existing 10x5	565.9	13.20	7,614,341			
4 5	NRCS Runoff	Existing 10x5 Existing 9x5	565.9	13.20	7,614,341 6,312,880			

24

Hydrograph Report

Hydrology Studio v 3.0.0.27

Proposed 3-48"

Project Name:

06-23-2023

Hyd. No. 1

Hydrograph Report

Hydrology Studio v 3.0.0.27

Post Dev 9x5

Project Name:

06-23-2023

Hyd. No. 3

Hydrograph Report

Hydrology Studio v 3.0.0.27

Existing 9x5

Project Name:

06-23-2023

Hyd. No. 5

Design Storm Report

Custom Storm filename:

06-23-2023

Hydrology Studio v 3.0.0.27

Storm Distribution: NRCS/SCS - Type III, 24-hr

Storm		Total Rainfall Volume (in)												
Duration	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	✔ 100-yr						
24 hrs	3.47	4.24	0.00	5.46	6.48	7.90	9.05	10.30						

	1	2	T T		1 1				1
me rs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)
.00	0.024926	11.37	0.036119	11.73	0.106319	12.10	0.203939	12.47	0.05596
.03	0.025589	11.40	0.037172	11.77	0.116390	12.13	0.156977	12.50	0.04589
.07	0.026643	11.43	0.038224	11.80	0.126461	12.17	0.146604	12.53	0.04027
.10	0.027695	11.47	0.039278	11.83	0.136532	12.20	0.136532	12.57	0.03927
1.13	0.028749	11.50	0.040330	11.87	0.146603	12.23	0.126461	12.60	0.03822
1.17	0.029801	11.53	0.045834	11.90	0.156674	12.27	0.116390	12.63	0.03717
1.20	0.030854	11.57	0.055963	11.93	0.204235	12.30	0.106319	12.67	0.03611
.23	0.031907	11.60	0.066034	11.97	0.288401	12.33	0.096248	12.70	0.03506
1.27	0.032960	11.63	0.076105	12.00	0.372861	12.37	0.086177	12.73	0.03401
1.30	0.034013	11.67	0.086177	12.03	0.372387	12.40	0.076106	12.77	0.03296
1.33	0.035066	11.70	0.096247	12.07	0.288398	12.43	0.066035	12.80	0.03190
11									11
									11 10 9 8 7 6 5 4 3 2
									11 10 9 8 7 6 5 4 3 3 2
									11 10 9 8 7 6 5 4 3 2 1
									11 10 9 8 7 6 5 4 4 3 2 1 0 0

IDF Report Hydrology Studio v 3.0.0.27 IDF filename: SampleIDF.idf

06-23-2023

quation	Intensity = B / (Tc + D)^E (in/hr)												
oefficients	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr					
в	0.0000	58.1215	0.0000	57.1446	58.8780	63.5498	67.7965	72.2003					
D	0.0000	10.3000	0.0000	10.3000	10.3000	10.4000	10.5000	10.6000					
E	0.0000	0.8106	0.0000	0.7542	0.7303	0.7097	0.6986	0.6898					

Тс				Intensity V	alues (in/hr)			
(min)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Cf	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
5	0	6.37	0	7.30	8.03	9.13	9.99	10.85
10	0	5.06	0	5.90	6.53	7.48	8.22	8.96
15	0	4.24	0	5.00	5.56	6.40	7.06	7.71
20	0	3.66	0	4.36	4.88	5.63	6.23	6.82
25	0	3.23	0	3.89	4.36	5.06	5.60	6.14
30	0	2.90	0	3.52	3.96	4.60	5.11	5.61
35	0	2.64	0	3.22	3.64	4.24	4.71	5.18
40	0	2.43	0	2.98	3.37	3.94	4.38	4.82
45	0	2.25	0	2.77	3.14	3.68	4.10	4.52
50	0	2.10	0	2.60	2.95	3.46	3.86	4.26
55	0	1.96	0	2.44	2.78	3.27	3.65	4.03
60	0	1.85	0	2.31	2.64	3.10	3.47	3.83

Precipitation Report

Hydrology Studio v 3.0.0.27 (Rainfall totals in Inches)

	Active	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-у
Active			~			~	~	~	~
SCS Storms	> SCS Dim	ensionless S	Storms						
SCS 6hr		2.58	3.10	0	3.87	4.63	5.61	6.48	7.36
Type I, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.2
Type IA, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.2
Type II, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.2
Type II FL, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.2
Type III, 24-hr	~	3.47	4.24	0	5.46	6.48	7.90	9.05	10.3
Synthetic Storms	> IDF-Base	ed Synthetic	Storms						
1-hr		0	1.85	0	2.31	2.64	3.10	3.47	3.83
2-hr		0	2.24	0	2.90	3.36	4.01	4.51	5.01
3-hr		0	2.48	0	3.27	3.82	4.60	5.20	5.79
6-hr		0	2.89	0	3.96	4.70	5.73	6.53	7.32
12-hr		0	3.33	0	4.75	5.73	7.08	8.13	9.17
24-hr		0	3.82	0	5.66	6.94	8.70	10.07	11.4
Huff Distribution	> 1st Quar	tile (0 to 6 hr	s)						
1-hr		1.73	2.07	0	2.52	2.94	3.46	3.92	4.37
2-hr		2.04	2.46	0	3.06	3.63	4.33	4.93	5.51
3-hr		2.18	2.62	0	3.27	3.91	4.72	5.43	6.14
6-hr		2.58	3.10	0	3.87	4.63	5.61	6.48	7.36
Huff Distribution	> 2nd Qua	rtile (>6 to 12	hrs)						
8-hr		0	0	0	0	0	0	0	0
12-hr		3.00	3.60	0	4.53	5.45	6.64	7.72	8.82
Huff Distribution	> 3rd Quar	tile (>12 to 2	4 hrs)						
18-hr		0	0	0	0	0	0	0	0
24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.2
Custom Storms	> Custom	Storm Distrib	outions						
My Custom Storm 1		0	0	0	0	0	0	0	0
My Custom Storm 2		0	0	0	0	0	0	0	0
My Custom Storm 3		0	0	0	0	0	0	0	0
My Custom Storm 4		0	0	0	0	0	0	0	0
My Custom Storm 5		0	0	0	0	0	0	0	0
My Custom Storm 6		0	0	0	0	0	0	0	0
My Custom Storm 7		0	0	0	0	0	0	0	0
My Custom Storm 8		0	0	0	0	0	0	0	0
My Custom Storm 9		0	0	0	0	0	0	0	0
Ay Custom Storm 10		0	0	0	0	0	0	0	0

Precipitation Report Cont'd

Rainfall totals in Inches

	Active	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-y
Active			~			~	~	~	~
Huff Indiana	> Indianap	olis							
30-min		1.39	1.65	0	1.96	2.26	2.60	2.89	3.18
1-hr		1.73	2.07	0	2.52	2.94	3.46	3.92	4.37
2-hr		2.04	2.46	0	3.06	3.63	4.33	4.93	5.51
3-hr		2.18	2.62	0	3.27	3.91	4.72	5.43	6.14
6-hr		2.58	3.10	0	3.87	4.63	5.61	6.48	7.36
12-hr		3.00	3.60	0	4.53	5.45	6.64	7.72	8.82
24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.2
Huff Indiana	> Evansvil	le							
30-min		1.39	1.65	0	1.96	2.26	2.60	2.89	3.18
1-hr		1.73	2.07	0	2.52	2.94	3.46	3.92	4.37
2-hr		2.04	2.46	0	3.06	3.63	4.33	4.93	5.5
3-hr		2.18	2.62	0	3.27	3.91	4.72	5.43	6.14
6-hr		2.58	3.10	0	3.87	4.63	5.61	6.48	7.30
12-hr		3.00	3.60	0	4.53	5.45	6.64	7.72	8.82
24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.2
Huff Indiana	> Fort Way	ne							
30-min		1.39	1.65	0	1.96	2.26	2.60	2.89	3.18
1-hr		1.73	2.07	0	2.52	2.94	3.46	3.92	4.3
2-hr		2.04	2.46	0	3.06	3.63	4.33	4.93	5.5
3-hr		2.18	2.62	0	3.27	3.91	4.72	5.43	6.1
6-hr		2.58	3.10	0	3.87	4.63	5.61	6.48	7.3
12-hr		3.00	3.60	0	4.53	5.45	6.64	7.72	8.8
24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.2
Huff Indiana	> South Be	end							
30-min		1.39	1.65	0	1.96	2.26	2.60	2.89	3.18
1-hr		1.73	2.07	0	2.52	2.94	3.46	3.92	4.3
2-hr		2.04	2.46	0	3.06	3.63	4.33	4.93	5.5
3-hr		2.18	2.62	0	3.27	3.91	4.72	5.43	6.1
6-hr		2.58	3.10	0	3.87	4.63	5.61	6.48	7.3
12-hr		3.00	3.60	0	4.53	5.45	6.64	7.72	8.8
24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.2

Precipitation filename: SamplePrecip.pcp

33

Precipitation Report Cont'd

Rainfall totals in Inches

Active NRCS Storms NRCS MSE1, 24-hr									
NRCS Storms			~			~	~	~	~
NRCS MSE1, 24-hr	> NRCS Di	mensionless	Storms						
		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
NRCS MSE2, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
NRCS MSE3, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
NRCS MSE4, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
NRCS MSE5, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
NRCS MSE6, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
NOAA-A, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
NOAA-B, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
NOAA-C, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
NOAA-D, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
NRCC-A, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
NRCC-B, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
NRCC-C, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
NRCC-D, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
CA-1, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
CA-2, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
CA-3, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
CA-4, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
CA-5, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
CA-6, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
FDOT Storms	> Florida D	OT Storms							
FDOT, 1-hr		1.73	2.07	0	2.52	2.94	3.46	3.92	4.37
FDOT, 2-hr		2.04	2.46	0	3.06	3.63	4.33	4.93	5.51
FDOT, 4-hr		0	0	0	0	0	0	0	0
FDOT, 8-hr		0	0	0	0	0	0	0	0
FDOT, 24-hr		3.47	4.22	0	5.46	6.46	7.87	9.02	10.20
FDOT, 72-hr		0	0	0	0	0	0	0	0
SFWMD, 72-hr		0	0	0	0	0	0	0	0
Austin Storms	> Austin Fi	requency Sto	orms						
Austin Zone 1, 24-hr		0	0	0	0	0	0	0	0
Austin Zone 2, 24-hr		0	0	0	0	0	0	0	0

3.2 RATIONAL METHOD

The Rational Method was used to calculate the pre-development discharge reaching existing Culvert 4, a 24" RCP located at I-526 Sta. 1355+60, and Culvert 5, a 24" RCP located at I-526 Sta. 1378+35. See Fig. 3.1 for the Rational Method calculations of these existing culverts.

Figure 3-1: Rational Method Calculations for Existing Pipes

CDI Sn	M hith	CDM Smith 1441 Main S Columbia, S	treet, Suit	te 1000		JOB: SUBJECT: CALC'D BY: CHEK'D BY:	I- Rund CJP	526 at Lon off Dischar DATE: DATE:	g Point Roa ge Calcula 05-Ju	ad tions un-23
				Rational	Method					
Culvert	Culvert	Area	Тс	C _{value}	Q2	Q5	Q10	Q25	Q50	Q100
ID	Sta	Post	(min)		(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
4	1355+60	3.42	18.6	0.52	7.4	8.6	9.8	12.2	14.7	16.6
5	1378+35	4.07	30.0	0.52	6.7	7.9	9.1	11.5	13.9	15.9

Charleston, SC	i=a/(b+tc)^c		Q=C*I*A	*Cf		
Rainfall Intensity						
freq	а	b	С	i(tc=5)	i(tc=10)	factor Cf
2	72.69000	11.39000	0.83900	6.96	5.56	1
5	61.16000	9.84600	0.75730	7.93	6.36	1
10	55.13000	8.41200	0.69720	9.02	7.23	1
25	45.53000	6.25700	0.61790	10.20	8.13	1.1
50	42.68000	5.28000	0.57410	11.20	8.92	1.2
100	39.53000	4.29700	0.53090	12.10	9.63	1.25

Figure 3-2: Time of Concentration for Existing Rational Method Calculations

Col		CDM Smith 1441 Main Street, Suite 1000 Columbia, SC 29201 TIME OF CONCENTRATION											: 0 0	JOB: SUBJECT: ALC'D BY: HEK'D BY:	Tim CJP	I-526 IE Of CO DATE DATE	at Long ncentra	Point Road	ations						
										TIME	OF CO	NCENT	RATION												
WS			Sheet					S	ihallow Conc	entrated							Op	en Chan	nel					Time Of Conc.	Time Of Conc.
ID	Slope	E Length	Surface	n	P2	Time	Slope	Length	Land Cover	k	٧	Time	Elev	ation	Length	Slope	n	SS Lt	SS Rt	BW	Depth	V	Time	Tc (min)	Tc (min)
	ft/ft	ft				hr	ft/ft	ft			ft/s	hr	To	From	ft	ft/ft		z:1	z:1	ft.	ft.	ft/s	hr		>= 5 min
	0.010) 50	Bermuda grass	0.41	4.2	0.24	0.000	0	Grass	0.46	0.00	0.00	5.0	8.0	585	0.005	0.04	4.0	2.0	2.0	1.5	2.38	0.07	18.6	18.6
	0.010	0 100	Bermuda grass	0.41	4.2	0.42	0.001	60	Paved	0.62	0.65	0.03	5.0	8.3	470	0.007	0.04	4.0	2.0	0.0	1.5	2.46	0.05	30.0	30.0

Slope in ft/ft

Slope in trtt. Length in feet. n is TR55 method for Sheet and Shallow concentrated flow, Mannings method for open channel flow (P)aved refers to paved or unpaved velocity. V is velocity in fts. Tr is TR55 travel time in hours. Tc is TR55 time of concentration in minutes.

The Rational Method was then used to calculate the post-development discharge of Culvert 4 and Culvert 5, as additional impervious area is expected to raise the C-value at these culverts from 0.52 to 0.54. The discharge at proposed Culvert 6, a (3) 18" RCP to be located at I-526 Line 3 Sta. 1422+00, was also calculated. See Fig. 3.3 for the Rational Method calculations of these proposed culverts.

Figure 3-3: Rationa	I Method	Calculations	for Proposed	l Pipes
---------------------	----------	--------------	--------------	---------

CD Sn	M hith	CDM Smith 1441 Main S Columbia, S	JOB: SUBJECT: CALC'D BY: CHEK'D BY:	I-: Runc CJP	526 at Long off Discharg DATE: DATE:	g Point Roa ge Calcula 05-Ji	ad tions un-23							
	Rational Method													
Culvert	Culvert	Area	Тс	C _{value}	Q2	Q5	Q10	Q25	Q50	Q100				
ID	Sta	Post	(min)		(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)				
4	1355+60	3.42	18.6	0.54	7.8	9.0	10.3	12.8	15.4	17.4				
5	1378+40	4.07	30.0	0.64	8.4	9.8	11.3	14.2	17.3	19.8				
6	1422+00	10.96	71.1	0.41	8.1	10.0	11.8	15.5	19.3	22.6				

Charleston, SC Rainfall Intensity	i=a/(b+tc)^c		Q=C*I*A	*Cf		
freq	а	b	С	i(tc=5)	i(tc=10)	factor Cf
2	72.69000	11.39000	0.83900	6.96	5.56	1
5	61.16000	9.84600	0.75730	7.93	6.36	1
10	55.13000	8.41200	0.69720	9.02	7.23	1
25	45.53000	6.25700	0.61790	10.20	8.13	1.1
50	42.68000	5.28000	0.57410	11.20	8.92	1.2
100	39.53000	4.29700	0.53090	12.10	9.63	1.25

Figure 3-4: Time of Concentration for Proposed Rational Method Calculations

C		it	h			CDM Sn 1441 Mi Columb	nith ain Street via, SC 2	t, Suite 9201	1000										5 C/ CF	JOB: SUBJECT: ALC'D BY: IEK'D BY:	Tim CJP	I-526 a ne of Cor DATE: DATE:	at Long ncentra	Point Road	d lations
	TIME OF CONCENTRATION																								
WS			Sheet					S	hallow Conc	entrated							Op	en Chanr	nel				Time Of Conc.	Time Of Conc.	
ID	Slope	Length	Surface	n	P2	Time	Slope	Length	Land Cover	k	V	Time	Elev	ation	Length	Slope	n	SS Lt	SS Rt	BW	Depth	V	Time	Tc (min)	Tc (min)
	ft/ft	ft				hr	ft/ft	ft			ft/s	hr	То	From	ft	ft/ft		z:1	z:1	ft.	ft.	ft/s	hr		>= 5 min
	0.010	50	Bermuda grass	0.41	4.2	0.24	0.000	0	Grass	0.46	0.00	0.00	5.0	8.0	585	0.005	0.04	4.0	2.0	2.0	1.5	2.38	0.07	18.6	18.6
	0.010	100	Bermuda grass	0.41	4.2	0.42	0.001	60	Paved	0.62	0.65	0.03	5.0	8.3	470	0.007	0.04	4.0	2.0	0.0	1.5	2.46	0.05	30.0	30.0
	0.001	100	Bermuda grass	0.41	4.2	1.06	0.012	350	Grass	0.46	1.62	0.06	13.9	14.8	400	0.002	0.04	4.0	2.0	2.0	1.5	1.62	0.07	71.1	71.1

Slope in ft/ft. Length in feet. In is TR55 method for Sheet and Shallow concentrated flow, Mannings method for open channel flow. (P)aved refers to paved or unpaved velocity. V is velocity in ft/s. T is TR55 travel lime in hours. To is TR55 time of concentration in minutes.

4.0 WATER QUALITY INFORMATION

	Applicant Name	SCDOT -	526 Long F	Point Road				Permit	Туре:	Constru	uction			
	Address	509 LONG	POINT R	D, MOUNT 164			Latitu	ude/Long	itude:	32.837	853 / - 79	.87000	00	
With	MS4 Designation in Coastal Critical Area	: Sma ll MS4 : Yes	4		Monitoring Station: 09B-18 Water Classification (Provisional): SEH									
	Waterbody Name	: Unnamed	Trib			Entere	d Wa	terbody I	lame:					
Parameter	Description													
NH3N CU	Ammonia Copper		CD HG	Cadmium Mercury				CR NI	Chron Nicke	ium				
PB PH	Lead pH		ZN TURBIDITY	Zinc Turbidity				DO ECOL	Dissol Esche	ved Oxyg richia co	en (Freshwat	ers)		
FC TN	Fecal Coliform (Shellfish) (Lakes) Nitrogen		BIO CHLA	Macroinverteb (Lakes) Chlore	rates (Bio) ophy∎ a			TP ENTERO	(Lakes Enterc) Phosph coccus (iorus Coasta l Wa	ters)		
HGF	Mercury (Fish Tissue)		PCB	PCB (Fish)	nan de Brand (D.C.									
Impaired S	tatus (downstream sites)													
Station	NH3N CD CR CU H	G NI PB	ZN DO F	H TURBI	DITY E	COLI	FC	BIO TP	TN	CHLA	ENTER		IGF	P
09B-18	<u> </u>		x x	<u>x x</u>		*	INTN			X	×	34	×	-
Parameters FC	s to be addressed (those	not support	ling standa	rds)		201								
Parameters FC	s to be addressed (those	not support n)	ing standa	rds)										
Parameters FC Fish Consu	s to be addressed (those - Fecal Coliform (Shellfis Imption Advisory	not support	ing standa	rds)		202				88				
Fish Consu	s to be addressed (those - Fecal Coliform (Shellfis imption Advisory Concern (WOC)	not support	ing standa	rds)		22								
Fish Consu Waters of C	s to be addressed (those - Fecal Coliform (Shellfis imption Advisory Concern (WOC)	not support	ing standa	rds)		22								
Fish Consu Fish Consu Waters of C	s to be addressed (those - Fecal Coliform (Shellfis imption Advisory Concern (WOC) mation - TMDL Parameter	not support n)	ing standa	rds)										
Parameters FC Fish Consu Waters of C TMDL Infor In TMDL MD	s to be addressed (those - Fecal Coliform (Shellfis imption Advisory Concern (WOC) mation - TMDL Paramete TMDL Watershed: Yes TMDL Report No: 0506 L Document Link: https:	not support n) ers to be ad -13	dressed	rds)	ss/docs/Hc	omeAnd	TMDI	TMDL S	ite: 09 ter: DC ocs/Ch	B-18) as Hbr	- DO TI	//DL.pc		
Fish Consu Waters of C TMDL Infor In TMD	s to be addressed (those - Fecal Coliform (Shellfis imption Advisory Concern (WOC) mation - TMDL Paramete TMDL Watershed: Yes TMDL Report No: 0506 L Document Link: https	not support n) -13 //www.scdt	dressed	rds)	es/docs/Hc		TMDI	TMDL S L Parame onment/D	iite: 09 ter: DC ocs/Ch	B-18) as_Hbr	T0TM	//DL.pc	lf	
Fish Consu Fish Consu Waters of O TMDL Infor In TMD	s to be addressed (those - Fecal Coliform (Shellfis imption Advisory Concern (WOC) mation - TMDL Paramete TMDL Watershed: Yes TMDL Report No: 0506 L Document Link: https	not support n) ers to be ad -13	dressed	rds)	es/docs/Hc	2023	TMDI	TMDL S L Parame onment/D	iite: 09 ter: DC ocs/Ch	B-18) ass_Hbi		//DL.pc	lf	

DRAFT HYDROLOGIC STUDY AND HYDRAULIC ANALYSIS REPORT | PAGE 4-1

5.0 CULVERT DATA

5.1 ANALYSIS OF EXISTING CULVERTS

Multiple HY-8 models were created for a pre-/post-development analysis of performance for the four existing culverts located within the project site (Culverts 1, 2, 4, and 5). See **Sections 5.1.1-5.1.4** for the HY-8 reports produced for the following culverts respectively.

- Culvert 1: 10'x5' RCBC at L-2523 Sta. 15+75
- Culvert 2: 9'x5' RCBC at I-526 Sta. 1399+75
- Culvert 4: 24" RCP at I-526 Sta. 1355+60
- Culvert 5: 24" RCP at I-526 Sta. 1378+35

Based on the post-development performance of these four existing culverts, replacement culverts that could carry flow while maintaining a design highwater to depth ratio (HW/D) < 1.2 were modeled. A series of HY-8 models were also developed for two additional proposed culverts within the project site (Culverts 3 and 6).

A model results summary of the post-development culverts with their recommended replacements is displayed in **Appendix C**. Note that because Culverts 1 and 3 cross beneath a local road and not an interstate, their design and check storms are the 25-year and 50-year storms respectively.

5.1.1 CULVERT 1 – L-2523 STA. 15+75 – 10'X5' RCBC

HY-8 Culvert Analysis Report L-2523 Sta. 15+75 Existing 10'x5' Box Culvert

Crossing Discharge Data

Discharge Selection Method: Recurrence

Table 1 - Sum Headwater Elevation (ft)	mary of Culvert Discharge Names	Flows at Crossi Total Discharge (cfs)	ng: L-2523 15+7 Culvert 1 EXISTING Discharge (cfs)	Roadway Discharge (cfs)	Iterations
6.50	2 year	208.00	208.00	0.00	1
7.99	10 year	341.00	341.00	0.00	1
8.63	25 year	425.00	387.15	37.17	10
8.84	50 year	493.00	300.46	191.96	6
9.07	100 year	566.00	94.54	474.32	6
8.49	Overtopping	386.74	386.74	0.00	Overtopping

Rating Curve Plot for Crossing: L-2523 15+75 EXISTING

Culvert Data: Culvert 1 EXISTING

Table 2 - Culvert Summary Table: Culvert 1 EXISTING

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
2 year	208.00 cfs	208.00 cfs	6.50	3.71	3.843	7-H2c	-1.00	2.38	2.38	2.24	8.75	0.00
10 year	341.00 cfs	341.00 cfs	7.99	5.14	5.333	7-H2t	-1.00	3.31	3.54	3.54	9.63	0.00
25 year	425.00 cfs	387.15 cfs	8.63	5.61	5.966	7-H2t	-1.00	3.60	4.54	4.54	8.53	0.00
50 year	493.00 cfs	300.46 cfs	8.84	4.73	6.184	4-FFf	-1.00	3.04	5.00	5.44	6.01	0.00
100 year	566.00 cfs	94.54 cfs	9.07	2.20	6.414	4-FFf	-1.00	1.41	5.00	6.34	1.89	0.00

Culvert Barrel Data

Culvert Barrel Type Straight Culvert

Inlet Elevation (invert): 2.66 ft,

Outlet Elevation (invert): 2.66 ft

Culvert Length: 60.00 ft,

Culvert Slope: 0.0000

Culvert Performance Curve Plot: Culvert 1 EXISTING

Site Data - Culvert 1 EXISTING

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 2.66 ft

Outlet Station: 60.00 ft

Outlet Elevation: 2.66 ft

Number of Barrels: 1

Culvert Data Summary - Culvert 1 EXISTING

Barrel Shape: Concrete Box

Barrel Span: 10.00 ft

Barrel Rise: 5.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: 1.5:1 Bevel (18-34º flare) Wingwall

Inlet Depression: None

Tailwater Data for Crossing: L-2523 15+75 EXISTING

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
208.00	4.90	4.90	0.00
341.00	6.20	6.20	0.00
425.00	7.20	7.20	0.00
493.00	8.10	8.10	0.00
566.00	9.00	9.00	0.00

Table 3 - Downstream Channel Rating Curve (Crossing: L-2523 15+75 EXISTING)

Tailwater Channel Data - L-2523 15+75 EXISTING

Tailwater Channel Option: Enter Rating Curve

Channel Invert Elevation: Enter Rating Curve

Roadway Data for Crossing: L-2523 15+75 EXISTING

Roadway Profile Shape: Irregular Roadway Shape (coordinates)

Irregular Roadway Cross-Section

Coord No.	Station (ft)	Elevation (ft)	
0	1125.00	8.50	
1	1365.00	8.49	
2	1650.00	8.99	
3	1900.00	10.67	
4	2100.00	11.75	

Roadway Surface: Paved

Roadway Top Width: 36.00 ft

HY-8 Culvert Analysis Report L-2523 Sta. 15+75 Post-Development 10'x5' Box Culvert

Crossing Discharge Data

Discharge Selection Method: Recurrence

Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	Culvert 1 POST Discharge (cfs)	Roadway Discharge (cfs)	Iterations
6.78	2 year	231.00	231.00	0.00	1
8.42	10 year	380.00	380.00	0.00	1
8.78	25 year	473.00	338.22	133.60	7
9.00	50 year	548.00	165.88	380.79	4
9.10	100 year	629.00	108.82	521.00	4
8.49	Overtopping	386.81	386.81	0.00	Overtopping

Culvert Data: Culvert 1 POST

Table 2 - Culvert Summary Table: Culvert 1 POST

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
2 year	231.00 cfs	231.00 cfs	6.78	3.98	4.118	7-H2c	-1.00	2.55	2.55	2.13	9.06	0.00
10 year	380.00 cfs	380.00 cfs	8.42	5.54	5.756	7-H2t	-1.00	3.55	4.00	4.00	9.49	0.00
25 year	473.00 cfs	338.22 cfs	8.78	5.12	6.118	4-FFf	-1.00	3.29	5.00	5.18	6.76	0.00
50 year	548.00 cfs	165.88 cfs	9.00	3.20	6.345	4-FFf	-1.00	2.04	5.00	6.12	3.32	0.00
100 year	629.00 cfs	108.82 cfs	9.10	2.42	6.438	4-FFf	-1.00	1.54	5.00	6.34	2.18	0.00

Culvert Barrel Data

Culvert Barrel Type Straight Culvert

Inlet Elevation (invert): 2.66 ft,

Outlet Elevation (invert): 2.66 ft

Culvert Length: 60.00 ft,

Culvert Slope: 0.0000

Culvert Performance Curve Plot: Culvert 1 POST

Site Data - Culvert 1 POST

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 2.66 ft

Outlet Station: 60.00 ft

Outlet Elevation: 2.66 ft

Number of Barrels: 1

Culvert Data Summary - Culvert 1 POST

Barrel Shape: Concrete Box

Barrel Span: 10.00 ft

Barrel Rise: 5.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: 1.5:1 Bevel (18-34º flare) Wingwall

Inlet Depression: None

Tailwater Data for Crossing: L-2523 15+75 POST

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
208.00	4.50	4.50	0.00
341.00	6.20	6.20	0.00
425.00	7.20	7.20	0.00
493.00	8.10	8.10	0.00
566.00	9.00	9.00	0.00

Table 3 - Downstream Channel Rating Curve (Crossing: L-2523 15+75 POST)

Tailwater Channel Data - L-2523 15+75 POST

Tailwater Channel Option: Enter Rating Curve

Channel Invert Elevation: Enter Rating Curve

Roadway Data for Crossing: L-2523 15+75 POST

Roadway Profile Shape: Irregular Roadway Shape (coordinates)

Irregular Roadway Cross-Section

Coord No.	Station (ft)	Elevation (ft)	
0	1125.00	8.50	
1	1365.00	8.49	
2	1650.00	8.99	
3	1900.00	10.67	
4	2100.00	11.75	

Roadway Surface: Paved

Roadway Top Width: 36.00 ft

5.1.2 CULVERT 2 – I-526 STA. 1399+75 – 9'x5' RCBC

HY-8 Culvert Analysis Report I-526 Sta. 1399+75 Existing 9'x5' Box Culvert

Crossing Discharge Data Discharge Selection Method: Recurrence

Table 1 - Summary of Culvert Flows at Crossing: I526 1399+75 EXIST										
Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	Culvert 2 EXISTING Discharge (cfs)	Roadway Discharge (cfs)	Iterations					
7.03	2 year	178.00	178.00	0.00	1					
8.91	10 year	289.00	289.00	0.00	1					
10.16	25 year	358.00	358.00	0.00	1					
10.82	50 year	415.00	415.00	0.00	1					
11.57	100 year	475.00	475.00	0.00	1					
11.70	Overtopping	485.76	485.76	0.00	Overtopping					

Culvert Data: Culvert 2 EXISTING

Table 2 - Culvert Summary Table: Culvert 2 EXISTING

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
2 year	178.00 cfs	178.00 cfs	7.03	3.58	3.943	1-S1t	2.14	2.30	3.90	3.90	5.07	0.00
10 year	289.00 cfs	289.00 cfs	8.91	4.93	5.820	4-FFf	3.01	3.18	5.00	5.41	6.42	0.00
25 year	358.00 cfs	358.00 cfs	10.16	5.71	7.070	4-FFf	3.51	3.66	5.00	6.11	7.96	0.00
50 year	415.00 cfs	415.00 cfs	10.82	6.37	7.734	4-FFf	3.91	4.04	5.00	6.23	9.22	0.00
100 year	475.00 cfs	475.00 cfs	11.57	7.09	8.482	4-FFf	4.32	4.42	5.00	6.32	10.56	0.00

Culvert Barrel Data

Culvert Barrel Type Straight Culvert

Inlet Elevation (invert): 3.09 ft,

Outlet Elevation (invert): 2.47 ft

Culvert Length: 184.00 ft,

Culvert Slope: 0.0034

Culvert Performance Curve Plot: Culvert 2 EXISTING

Site Data - Culvert 2 EXISTING

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 3.09 ft

Outlet Station: 184.00 ft

Outlet Elevation: 2.47 ft

Number of Barrels: 1

Culvert Data Summary - Culvert 2 EXISTING

Barrel Shape: Concrete Box

Barrel Span: 9.00 ft

Barrel Rise: 5.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: 1.5:1 Bevel (18-34º flare) Wingwall

Inlet Depression: None

Tailwater Data for Crossing: I526 1399+75 EXIST

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
178.00	6.37	6.37	0.00
289.00	7.88	7.88	0.00
358.00	8.58	8.58	0.00
415.00	8.70	8.70	0.00
475.00	8.79	8.79	0.00

Table 3 - Downstream Channel Rating Curve (Crossing: I526 1399+75 EXIST)

Tailwater Channel Data - I526 1399+75 EXIST

Tailwater Channel Option: Enter Rating Curve

Channel Invert Elevation: Enter Rating Curve

Roadway Data for Crossing: I526 1399+75 EXIST Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 1000.00 ft

Crest Elevation: 11.70 ft

Roadway Surface: Paved

Roadway Top Width: 142.00 ft

HY-8 Culvert Analysis Report I-526 Sta. 1399+75 Post-Development 9'x5' Box Culvert

Crossing Discharge Data

Discharge Selection Method: Recurrence

Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	Culvert 2 POST Discharge (cfs)	Roadway Discharge (cfs)	Iterations	
7.30	2 year	188.00	188.00	0.00	1	
9.54	10 year	308.00	308.00	0.00	1	
10.58	25 year	383.00	383.00	0.00	1	
11.37	50 year	444.00	444.00	0.00	1	
11.75	100 year	510.00	472.40	36.16	13	
11.70	Overtopping	470.44	470.44	0.00	Overtopping	

Culvert Data: Culvert 2 POST

Table 2 - Culvert Summary Table: Culvert 2 POST

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
2 year	188.00 cfs	188.00 cfs	7.30	3.72	4.215	1-S1t	2.38	2.38	4.18	4.18	5.00	0.00
10 year	308.00 cfs	308.00 cfs	9.54	5.15	6.454	4-FFf	3.38	3.31	5.00	5.84	6.84	0.00
25 year	383.00 cfs	383.00 cfs	10.58	6.00	7.489	4-FFf	3.97	3.83	5.00	6.20	8.51	0.00
50 year	444.00 cfs	444.00 cfs	11.37	6.72	8.275	4-FFf	4.43	4.23	5.00	6.33	9.87	0.00
100 year	510.00 cfs	472.40 cfs	11.75	7.06	8.664	4-FFf	4.64	4.41	5.00	6.38	10.50	0.00

Culvert Barrel Data

Culvert Barrel Type Straight Culvert

Inlet Elevation (invert): 3.09 ft,

Outlet Elevation (invert): 2.47 ft

Culvert Length: 224.00 ft,

Culvert Slope: 0.0028

Culvert Performance Curve Plot: Culvert 2 POST

Site Data - Culvert 2 POST

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 3.09 ft

Outlet Station: 224.00 ft

Outlet Elevation: 2.47 ft

Number of Barrels: 1

Culvert Data Summary - Culvert 2 POST

Barrel Shape: Concrete Box

Barrel Span: 9.00 ft

Barrel Rise: 5.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: 1.5:1 Bevel (18-34º flare) Wingwall

Inlet Depression: None

Tailwater Data for Crossing: I526 1399+75 POST

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
188.00	6.65	6.65	0.00
308.00	8.31	8.31	0.00
383.00	8.67	8.67	0.00
444.00	8.80	8.80	0.00
510.00	8.85	8.85	0.00

Table 3 - Downstream Channel Rating Curve (Crossing: I526 1399+75 POST)

Tailwater Channel Data - I526 1399+75 POST

Tailwater Channel Option: Enter Rating Curve

Channel Invert Elevation: Enter Rating Curve

Roadway Data for Crossing: 1526 1399+75 POST Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 1000.00 ft

Crest Elevation: 11.70 ft

Roadway Surface: Paved

Roadway Top Width: 196.00 ft

5.1.3 CULVERT 4 – I-526 STA. 1355+60 – 24" RCP

HY-8 Culvert Analysis Report I-526 Sta. 1355+60 Existing 24" RC Pipe

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 12.20 cfs

Design Flow: 14.70 cfs

Maximum Flow: 16.60 cfs

Table 1 - Summar	y of Culvert	t Flows at	Crossing:	1526	1355+60	EXISTING
------------------	--------------	------------	-----------	------	---------	-----------------

Headwater Elevation (ft)	Total Discharge (cfs)	Culvert 4 EXISTING Discharge (cfs)	Roadway Discharge (cfs)	Iterations
6.66	12.20	12.20	0.00	1
7.01	12.64	12.64	0.00	1
7.46	13.08	13.08	0.00	1
7.77	13.52	13.52	0.00	1
8.06	13.96	13.96	0.00	1
8.36	14.40	14.40	0.00	1
8.57	14.70	14.70	0.00	1
8.94	15.28	15.28	0.00	1
9.26	15.72	15.72	0.00	1
9.71	16.16	16.16	0.00	1
10.05	16.60	16.60	0.00	1
10.90	22.33	22.33	0.00	Overtopping

Culvert Data: Culvert 4 EXISTING

Table 2 - Culvert Summary Table: Culvert 4 EXISTING

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
12.20 cfs	12.20 cfs	6.66	1.82	2.032	1-S1f	0.86	1.26	2.00	3.42	3.88	0.00
12.64 cfs	12.64 cfs	7.01	1.86	2.383	4-FFf	0.87	1.28	2.00	3.73	4.02	0.00
13.08 cfs	13.08 cfs	7.46	1.90	2.834	4-FFf	0.89	1.30	2.00	4.14	4.16	0.00
13.52 cfs	13.52 cfs	7.77	1.95	3.142	4-FFf	0.91	1.32	2.00	4.41	4.30	0.00
13.96 cfs	13.96 cfs	8.06	1.99	3.427	4-FFf	0.93	1.35	2.00	4.65	4.44	0.00
14.40 cfs	14.40 cfs	8.36	2.03	3.726	4-FFf	0.94	1.37	2.00	4.90	4.58	0.00
14.70 cfs	14.70 cfs	8.57	2.06	3.943	4-FFf	0.95	1.38	2.00	5.08	4.68	0.00
15.28 cfs	15.28 cfs	8.94	2.12	4.307	4-FFf	0.97	1.41	2.00	5.38	4.86	0.00
15.72 cfs	15.72 cfs	9.26	2.16	4.629	4-FFf	0.99	1.43	2.00	5.65	5.00	0.00
16.16 cfs	16.16 cfs	9.71	2.21	5.077	4-FFf	1.01	1.45	2.00	6.04	5.14	0.00
16.60 cfs	16.60 cfs	10.05	2.25	5.419	4-FFf	1.02	1.47	2.00	6.33	5.28	0.00

Culvert Barrel Data

Culvert Barrel Type Straight Culvert

Inlet Elevation (invert): 4.63 ft,

Outlet Elevation (invert): 2.67 ft

Culvert Length: 116.02 ft,

Culvert Slope: 0.0169

Water Surface Profile Plot for Culvert: Culvert 4 EXISTING Crossing - I526 1355+60 EXISTING, Design Discharge - 14.7 cfs Culvert - Culvert 4 EXISTING, Culvert Discharge - 14.7 cfs

Site Data - Culvert 4 EXISTING

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 4.63 ft

Outlet Station: 116.00 ft

Outlet Elevation: 2.67 ft

Number of Barrels: 1
Culvert Data Summary - Culvert 4 EXISTING

Barrel Shape: Circular

Barrel Diameter: 2.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Grooved End Projecting

Inlet Depression: None

Tailwater Data for Crossing: I526 1355+60 EXISTING

Table 3 - Downstream Channel Rating Curve (Crossing: I526 1355+60 EXISTING)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
12.00	6.00	6.00	0.00
12.46	6.20	6.20	0.00
12.90	6.70	6.70	0.00
13.38	7.00	7.00	0.00
13.84	7.25	7.25	0.00
14.30	7.50	7.50	0.00
14.60	7.70	7.70	0.00
15.20	8.00	8.00	0.00
15.70	8.30	8.30	0.00
16.14	8.70	8.70	0.00
16.60	9.00	9.00	0.00

Tailwater Channel Data - I526 1355+60 EXISTING

Tailwater Channel Option: Enter Rating Curve

Channel Invert Elevation: Enter Rating Curve

Roadway Data for Crossing: I526 1355+60 EXISTING

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 1000.00 ft

Crest Elevation: 10.90 ft

Roadway Surface: Paved

Roadway Top Width: 75.00 ft

HY-8 Culvert Analysis Report I-526 Sta. 1355+60 Post-Development 24" RC Pipe

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 12.80 cfs

Design Flow: 15.40 cfs

Maximum Flow: 17.40 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	Culvert 4 Post- Dev Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7.52	12.80	12.80	0.00	1
7.99	13.26	13.26	0.00	1
8.33	13.72	13.72	0.00	1
8.65	14.18	14.18	0.00	1
9.00	14.64	14.64	0.00	1
9.30	15.10	15.10	0.00	1
9.51	15.40	15.40	0.00	1
10.08	16.02	16.02	0.00	1
10.48	16.48	16.48	0.00	1
10.64	16.94	16.94	0.00	1
10.73	17.40	17.40	0.00	1
11.54	21.05	21.05	0.00	Overtopping

Table 1 - Summary of Culvert Flows at Crossing: I526 1355+60 POS

Culvert Data: Culvert 4 Post-Dev

Table 2 - Culvert Summary Table: Culvert 4 Post-Dev

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
12.80 cfs	12.80 cfs	7.52	1.89	2.895	4-FFf	1.06	1.29	2.00	3.92	4.07	0.00
13.26 cfs	13.26 cfs	7.99	1.93	3.359	4-FFf	1.08	1.31	2.00	4.31	4.22	0.00
13.72 cfs	13.72 cfs	8.33	1.97	3.701	4-FFf	1.11	1.33	2.00	4.58	4.37	0.00
14.18 cfs	14.18 cfs	8.65	2.02	4.023	4-FFf	1.13	1.36	2.00	4.83	4.51	0.00
14.64 cfs	14.64 cfs	9.00	2.06	4.368	4-FFf	1.15	1.38	2.00	5.10	4.66	0.00
15.10 cfs	15.10 cfs	9.30	2.11	4.675	4-FFf	1.18	1.40	2.00	5.33	4.81	0.00
15.40 cfs	15.40 cfs	9.51	2.14	4.885	4-FFf	1.19	1.41	2.00	5.49	4.90	0.00
16.02 cfs	16.02 cfs	10.08	2.20	5.446	4-FFf	1.22	1.44	2.00	5.94	5.10	0.00
16.48 cfs	16.48 cfs	10.48	2.25	5.851	4-FFf	1.25	1.46	2.00	6.26	5.25	0.00
16.94 cfs	16.94 cfs	10.64	2,30	6.014	4-FFf	1.27	1.48	2.00	6.33	5.39	0.00
17.40 cfs	17.40 cfs	10.73	2.35	6.104	4-FFf	1.29	1.50	2.00	6.33	5.54	0.00

Culvert Barrel Data

Culvert Barrel Type Straight Culvert

Inlet Elevation (invert): 4.63 ft,

Outlet Elevation (invert): 2.56 ft

Culvert Length: 232.01 ft,

Culvert Slope: 0.0089

Water Surface Profile Plot for Culvert: Culvert 4 Post-Dev

Site Data - Culvert 4 Post-Dev Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 4.63 ft

Outlet Station: 232.00 ft

Outlet Elevation: 2.56 ft

Number of Barrels: 1

Culvert Data Summary - Culvert 4 Post-Dev

Barrel Shape: Circular

Barrel Diameter: 2.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Grooved End Projecting

Inlet Depression: None

Tailwater Data for Crossing: I526 1355+60 POST

Table 3 - Downstream Channel Rating Curve (Crossing: I526 1355+60 POST)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
12.00	6.00	6.00	0.00
12.46	6.20	6.20	0.00
12.90	6.70	6.70	0.00
13.38	7.08	7.08	0.00
13.84	7.32	7.32	0.00
14.30	7.57	7.57	0.00
14.60	7.75	7.75	0.00
15.20	8.05	8.05	0.00
15.70	8.32	8.32	0.00
16.14	8.71	8.71	0.00
16.60	9.00	9.00	0.00

Tailwater Channel Data - I526 1355+60 POST

Tailwater Channel Option: Enter Rating Curve

Channel Invert Elevation: Enter Rating Curve

Roadway Data for Crossing: I526 1355+60 POST

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 1000.00 ft

Crest Elevation: 11.54 ft

Roadway Surface: Paved

Roadway Top Width: 75.00 ft

5.1.4 CULVERT 5 – I-526 STA. 1378+35 – 24" RCP

HY-8 Culvert Analysis Report I-526 Sta. 1378+35 Existing 24" RC Pipe

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 11.50 cfs

Design Flow: 13.90 cfs

Maximum Flow: 15.90 cfs

Table 1 - Summary of Culvert Flows at Crossing: I526 1378+40

Headwater Elevation (ft)	Total Discharge (cfs)	Culvert 5 EXISTING Discharge (cfs)	Roadway Discharge (cfs)	Iterations
9.58	11.50	11.50	0.00	1
9.68	11.94	11.94	0.00	1
9.78	12.38	12.38	0.00	1
9.88	12.82	12.82	0.00	1
9.98	13.26	13.26	0.00	1
10.13	13.90	13.90	0.00	1
10.19	14.14	14.14	0.00	1
10.30	14.58	14.58	0.00	1
10.41	15.02	15.02	0.00	1
10.52	15.46	15.46	0.00	1
10.63	15.90	15.90	0.00	1
14.20	28.38	28.38	0.00	Overtopping

Culvert Data: Culvert 5 EXISTING

Table 2 - Culvert Summary Table: Culvert 5 EXISTING

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
11.50 cfs	11.50 cfs	9.58	1.78	3.354	4-FFf	-1.00	1.22	2.00	2.49	3.66	0.00
11.94 cfs	11.94 cfs	9.68	1.82	3.451	4-FFf	-1.00	1.24	2.00	2.52	3.80	0.00
12.38 cfs	12.38 cfs	9.78	1.86	3.550	4-FFf	-1.00	1.26	2.00	2.55	3.94	0.00
12.82 cfs	12.82 cfs	9.88	1.90	3.651	4-FFf	-1.00	1.29	2.00	2.58	4.08	0.00
13.26 cfs	13.26 cfs	9.98	1.94	3.753	4-FFf	-1.00	1.31	2.00	2.61	4.22	0.00
13.90 cfs	13.90 cfs	10.13	2.00	3.898	4-FFf	-1.00	1.34	2.00	2.64	4.42	0.00
14.14 cfs	14.14 cfs	10.19	2.02	3.958	4-FFf	-1.00	1.35	2.00	2.66	4.50	0.00
14.58 cfs	14.58 cfs	10.30	2.06	4.071	4-FFf	-1.00	1.38	2.00	2.69	4.64	0.00
15.02 cfs	15.02 cfs	10.41	2.11	4.178	4-FFf	-1.00	1.40	2.00	2.71	4.78	0.00
15.46 cfs	15.46 cfs	10.52	2.15	4.293	4-FFf	-1.00	1.42	2.00	2.74	4.92	0.00
15.90 cfs	15.90 cfs	10.63	2.20	4.402	4-FFf	-1.00	1.44	2.00	2.76	5.06	0.00

Culvert Barrel Data

Culvert Barrel Type Straight Culvert

Inlet Elevation (invert): 6.23 ft,

Outlet Elevation (invert): 6.24 ft

Culvert Length: 276.00 ft,

Culvert Slope: -0.0000

Water Surface Profile Plot for Culvert: Culvert 5 EXISTING Crossing - 1526 1378+40, Design Discharge - 13.9 cfs Culvert - Culvert 5 EXISTING, Culvert Discharge - 13.9 cfs

Site Data - Culvert 5 EXISTING

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 6.23 ft

Outlet Station: 276.00 ft

Outlet Elevation: 6.24 ft

Number of Barrels: 1

Culvert Data Summary - Culvert 5 EXISTING

Barrel Shape: Circular

Barrel Diameter: 2.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Grooved End Projecting

Inlet Depression: None

Tailwater Data for Crossing: I526 1378+40

Table 3 - Downstream Channel Rating Curve (Crossing: I526 1378+40)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
11.50	8.73	8.73	0.00
11.94	8.76	8.76	0.00
12.38	8.79	8.79	0.00
12.82	8.82	8.82	0.00
13.30	8.85	8.85	0.00
13.70	8.87	8.87	0.00
13.90	8.88	8.88	0.00
14.60	8.93	8.93	0.00
15.00	8.95	8.95	0.00
15.46	8.98	8.98	0.00
15.90	9.00	9.00	0.00

Tailwater Channel Data - I526 1378+40

Tailwater Channel Option: Enter Rating Curve

Channel Invert Elevation: Enter Rating Curve

Roadway Data for Crossing: I526 1378+40

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 1000.00 ft

Crest Elevation: 14.20 ft

Roadway Surface: Paved

Roadway Top Width: 236.00 ft

HY-8 Culvert Analysis Report I-526 Sta. 1378+35 Post-Development 24" RC Pipe

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 14.20 cfs

Design Flow: 17.30 cfs

Maximum Flow: 19.80 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	Culvert 5 Post Dev Discharge (cfs)	Roadway Discharge (cfs)	Iterations
10.20	14.20	14.20	0.00	1
10.34	14.76	14.76	0.00	1
10.49	15.32	15.32	0.00	1
10.63	15.88	15.88	0.00	1
10.75	16.44	16.44	0.00	1
10.87	17.00	17.00	0.00	1
10.93	17.30	17.30	0.00	1
11.12	18.12	18.12	0.00	1
11.25	18.68	18.68	0.00	1
11.39	19.24	19.24	0.00	1
11.53	19.80	19.80	0.00	1
14.20	28.38	28.38	0.00	Overtopping

Table 1 - Summary of Culvert Flows at Crossing: 1526 1378+40 POS

Culvert Data: Culvert 5 Post Dev

Table 2 - Culvert Summary Table: Culvert 5 Post Dev

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
14.20 cfs	14.20 cfs	10.20	2.03	3.974	4-FFf	-1.00	1.36	2.00	2.66	4.52	0.00
14.76 cfs	14.76 cfs	10.34	2.08	4.115	4-FFf	-1.00	1.38	2.00	2.70	4.70	0.00
15.32 cfs	15.32 cfs	10.49	2.14	4.256	4-FFf	-1.00	1.41	2.00	2.73	4.88	0.00
15.88 cfs	15.88 cfs	10.63	2.19	4.397	4-FFf	-1.00	1.44	2.00	2.76	5.05	0.00
16.44 cfs	16.44 cfs	10.75	2.25	4.515	4-FFf	-1.00	1.46	2.00	2.76	5.23	0.00
17.00 cfs	17.00 cfs	10.87	2.31	4.636	4-FFf	-1.00	1.49	2.00	2.76	5.41	0.00
17.30 cfs	17.30 cfs	10.93	2.34	4.703	4-FFf	-1.00	1.50	2.00	2.76	5.51	0.00
18.12 cfs	18.12 cfs	11.12	2.44	4.890	4-FFf	-1.00	1.53	2.00	2.76	5.77	0.00
18.68 cfs	18.68 cfs	11.25	2.50	5.023	4-FFf	-1.00	1.56	2.00	2.76	5.95	0.00
19.24 cfs	19.24 cfs	11.39	2.57	5.160	4-FFf	-1.00	1.58	2.00	2.76	6.12	0.00
19.80 cfs	19.80 cfs	11.53	2.64	5.302	4-FFf	-1.00	1.60	2.00	2.76	6.30	0.00

Culvert Barrel Data

Culvert Barrel Type Straight Culvert

Inlet Elevation (invert): 6.23 ft,

Outlet Elevation (invert): 6.24 ft

Culvert Length: 276.00 ft,

Culvert Slope: -0.0000

Water Surface Profile Plot for Culvert: Culvert 5 Post Dev Crossing - I526 1378+40 POST, Design Discharge - 17.3 cfs Culvert - Culvert 5 Post Dev, Culvert Discharge - 17.3 cfs

Site Data - Culvert 5 Post Dev

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 6.23 ft

Outlet Station: 276.00 ft

Outlet Elevation: 6.24 ft

Number of Barrels: 1

Culvert Data Summary - Culvert 5 Post Dev

Barrel Shape: Circular

Barrel Diameter: 2.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Grooved End Projecting

Inlet Depression: None

Tailwater Data for Crossing: I526 1378+40 POST

Table 3 - Downstream Channel Rating Curve (Crossing: I526 1378+40 POST)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
11.50	8.73	8.73	0.00
11.94	8.76	8.76	0.00
12.38	8.79	8.79	0.00
12.82	8.82	8.82	0.00
13.26	8.85	8.85	0.00
13.70	8.87	8.87	0.00
13.90	8.88	8.88	0.00
14.58	8.93	8.93	0.00
15.02	8.95	8.95	0.00
15.46	8.98	8.98	0.00
15.90	9.00	9.00	0.00

Tailwater Channel Data - I526 1378+40 POST

Tailwater Channel Option: Enter Rating Curve

Channel Invert Elevation: Enter Rating Curve

Roadway Data for Crossing: I526 1378+40 POST

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 1000.00 ft

Crest Elevation: 14.20 ft

Roadway Surface: Paved

Roadway Top Width: 236.00 ft

6.0 EXISTING STORM DRAIN SYSTEM ITEMS

A storm drain system was developed in Geopak near the realigned portion of Long Point Road. See **Appendix D** for a visual display of the system and a preliminary Geopak output table.

7.0 HALF-LINE PIPE ASSESSMENT

Several half-line pipes draining under both lanes of I-526 from numerous median drop inlets will need to be extended due to proposed fill limits on the new ramp and roadway alignments. See **Appendix C** for a complete summary table of half-line pipes that will be impacted by the proposed project, including retention and extension recommendations.

8.0 OUTFALL ANALYSIS

As previously mentioned in **Section 1.6 Proposed Stormwater Management**, preliminary analysis of post-development discharges indicates that stormwater management will not be required for this project. Given the predominance of poorly drained soils and high levels of existing impervious areas within the project site, further changes in land use are not expected to significantly increase peak discharges leaving the project ROW. Should design reveal further increases in impervious surfaces, infield and median areas within the project limits may be used for detention storage.

9.0 SEDIMENT AND EROSION CONTROL MEASURES

Sediment tubes will be installed along the ditches at the outfalls from the project area to ensure that sediment will not leave the permitted area. Inlet structure filters and silt fence will also be utilized to prevent sediment from leaving the site.

Temporary erosion control blanket will be used on all slopes steeper than 3:1 and longer than 5 feet to prevent erosion. Also, the newly graded ditches and shoulder slopes can be stabilized with erosion control blanket if needed to prevent erosion and sediment movement.

All access areas into and out of the limits of disturbance are required to be equipped with a gravel construction entrance. The use of this BMP will limit the amount of sediment being transported by construction vehicles onto existing roadways or other impervious areas. Any tracked sediment, along with any attached pollutants, deposited on impervious areas could be washed downstream during the next rain event.

During extremely dry conditions, drought, and/or excessive winds, the construction site should be treated for dust control to prevent the suspension of fine sediment particles into the air, being carried offsite, and deposited on adjacent properties or surface waters. A water tanker used to spray the soil down may be an effective way to prevent excessive dust at a construction site.

Throughout construction activities, the amount of soil exposed during construction should be kept to a minimum. This may be accomplished by minimizing the amount of disturbed area within the permitted Limits of Disturbance to only that which is necessary to complete the proposed work. For areas that have already been disturbed and where construction activities will not begin for a period of 14 days or more, temporary stabilization techniques must be implemented.

Throughout construction activities, soil stabilization techniques are to be initiated as soon as practicable whenever any clearing, grading, excavating, or other land-disturbing activities have permanently or temporarily ceased on any portion of the construction site and will not resume for a period exceeding 14 calendar days. For areas where initiating stabilization measures is infeasible, (e.g., where snow cover, frozen ground, or drought conditions preclude stabilization), initiate vegetative or non-vegetative stabilization measures as soon as practicable.

Stabilization of steep slopes should be a priority for those performing work at the construction site. At the very least, runoff control BMPs should be implemented to transport stormwater runoff from the top of the slope to the toe of the slope. All pipe slope drain outlets are to be equipped with proper outlet protection.

Appendix A – PROJECT MAPS

NOTES TO USERS

is for use in administering the National Flood Insurance Program. It does sarily identify all areas subject to flooding, particularly from local drainage of small size. The community map repository should be consulted for updated or additional flood hazard information.

ation in areas where Base Flood Elevation nono detailed information in areas where Base Food Elevations diof foodways have been determined, users are nocuraged to consult Profiles and Floodway Data and/or. Summary of Stilwater Elevations thated within the Food Insurance Staty (15); report that incompanies which food elevations. These BFEs are intended for flood insurance asting only and should not be used as the sole source of flood elevation in Accordingly, flood elevation data presented in the FIS report should in conjunction with the FIMA for purposed of constructions and/or in conjunction with the FIMA for purposed of construction and/or more detailed info anagemen

Base Flood Elevations shown on this map apply only landward of American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should that coastal food elevations are also provided in the Summary of Elevations tables in the Flood Insurance Study report for this jurisdiction. shown in the Summary of Sillwarte Elevations table should be used for lain management purposes when they are higher that tions shown on this FIRM

as of the **floodways** were computed at cross sections and interpolated cross sections. The floodways were based on hydraulic considerations of to requirements of the National Flood insurance Program. Floodway do other pertinent floodway data are provided in the Flood insurance of for this jurisdiction.

reas not in Special Flood Hazard Areas may be protected by **flood** structures. Refer to Section 2.4 "Flood Protection Measures" of the urance Study report for information on flood control structures for this

ection used in the proparation of this map was State Plane South FIPS 300. The horizontal datum was NAD 83, GR51880 aphenoid. Is in datum, spheroid, projection or State Plane zones used in the n of FIRMs for adjacent jurisdictions may result in slight positional is in map features across jurisdiction boundaries. These differences do the accuracy of this FIRM.

Une accuracy of this minor.
These flood elevations must be compared to structure and ground referenced of the same vertical addum. For information regarding in between the National Geodetic Vertical Datum of 1952, and the national Geodetic Survey of the Status of the National Geodetic Survey in the Status Geodetic Survey on g address.

rnation Services (NGS12 Secdetic Survey #9202 t-West Highway ring, Maryland 20910-3282 ~3242

n current elevation, description, and/or location information for bench-hown on this map, please contact the Information Services Branch-ational Geodetic Survey at (301) 713-3242, or visit its website at <u>ow.ngs.nosa.gov</u>.

ap information shown on this FIRM was provided in digital format by in County, South Carolina.

updated topographic information, this map reflects more detailed and up-tream channel configurations and floodplain delineations than those the previous FIRM for this juridiciton. As a result, the Flood Profiles and Data tabes may reflect stream channel distances that differ from what is the map. Also, the road to floodplain relationships for unrevised streams from what is shown on previous maps.

e limits shown on this map are based on the best data available at the ublication. Because changes due to annexations or de-annexations may urred after this map was published, map users should contact appropriate ty officials to verify current corporate limit locations.

fer to the separately printed **Map Index** for an overview map of the county the layout of map panels; community map repository addresses; and a Communities table containing National Flood Insurance Program dates community as well as a listing of the panels on which each community is

the FEMA Map Information eXchange (FMIX) at 1-877-336-2627 for no na available products associated with this FIRM. Available products de previously issued Letters of Map Change, a Flood Insurance Study calcr digital versions of this map. The FMIX may also be reached by Fax 556-9620 and there website at <u>https://www.msclema.gov/</u>.

ve questions about this map or questions concerning the National Floor Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or EMA website at <u>https://www.fema.gov/national-flood-insurance-program</u>.

gital Flood Insurance Rate Map (FIRM) was produced through a unique ative pathership between the State of South Carolina and the Federal model a long-term sproach of floodship in naragement to decrease the sociated with flooding. This is demonstrated by the State's commitment floodplain areas a her local level. As a part of this effort, the State of Carolina has joined in a Cooperating Technical State agreement with o produce and maintain this digital FIRM.

500

PANEL 0528K

NUMBER PANEL

MAP N

45019

MAP R

JANUARY 2

http://www.dnr.state.sc.us/

NOTES TO USERS

is for use in administering the National Flood Insurance Program. It does sarily identify all areas subject to flooding, particularly from local drainage of small size. The community map repository should be consulted for pdated or additional flood hazard information.

nome detailed information in areas where Base Flood Elevations duct floodways have been determined, users are encouraged to consult Profiles and Floodway Data and/or Summary of Sithware Elevations to the second second second second second second second U second environment of the second s

one category has been divided by a **Limit of Moderate Wave Action**. A represents the approximate landward limit of the 1.5-foot breaking effects of wave hazards behaven the VE Zone and the LIMVA (or the shoreline and the LIMVA for areas where VE Zones are not will be similar to but less severe than those in the VE Zone.

will be similar by, but less severe taun toole in the VE conte. Base Flood Elevations shown on this map appy only landward of American Vertical Datam of 1988 (NAVD 85). Users of this FIRM should that cossial flood elevations are also provided in the Summary of Elevations tables in the Flood Insurance Study report for this jurisdiction, shown in the Summary of Sillware Elevations table should be used for no and/or floodplain mattern of the Flood.

s of the **floodways** were computed at cross sections and interpolated cross sections. The floodways were based on hydraulic considerations of to requirements of the National Flood insurance Program. Floodway d other pertinent floodway data are provided in the Flood insurance or for this jurisdiction.

reas not in Special Flood Hazard Areas may be protected by flood structures. Refer to Section 2.4 "Flood Protection Measures" of the urance Study report for information on flood control structures for this

ection used in the preparation of this map was State Plane South rIPS 3900. The horizontal datum was NAD 83, GRS1980 spheroid. Is in datum, spheroid, projection or State Plane cones used in the or # FIRMs for adjacent jurisdictions may result in slight positional is in map features across jurisdictions boundaries. These differences do the accuracy of this FIRM.

actions on this map are referenced to the North American Vertical Datum These flood elevations must be compared to structure and ground referenced to the same vertical addum. For information regarding in between the National Geodetic Vertical Datum of 1522 and the https://www.ngb.addum.gov.or.ontact the National Geodetic Survey wing address:

mation Services MGS12 Beodetic Survey #9202 -/West Highway ing, Maryland 20910-3282 -3242

current elevation, description, and/or location information for **bench** nown on this map, please contact the Information Services Branch ational Geodetic Survey at (**301) 713-3242**, or visit its website at <u>wings nosa gov</u>.

p information shown on this FIRM was provided in digital format by n County, South Carolina.

may reflect more detailed or up-to-date **stream channel configurations** e shown on the previous FIRM. The floodplains and floodways that dirend from the previous FIRM may have been adjusted to conform to v ateam channel configurations and improved topographic data. The elines depicted on this may represent the hydraulic modeling baselines the flood profiles and Floodway Data Tables / applicable, in the FIS a result, the profile baselines may deviate split-faulty from the new channel representation and may appear outside of the floodplair

Imits shown on this map are based on the best data available at the ublication. Because changes due to annexations or de-annexations may irred after this map was published, map users should contact appropriate y dificials to verify current corporate limit locations.

for to the separately printed **Map Index** for an overview map of the owing the layout of map panels; community map repository addresses; ing of Communities table containing National Flood Insurance Program each community as well as a listing of the panels on which each is located.

he FEMA Map Information eXchange (FMIX) at 1-877-336-2627 for n on available products associated with this FIRM. Available products de previously issued Letters of Map Change, a Flood Insurance Study clice digital versions of this map. The FMIX may also be reached by Fax 56-9620 and there website at <u>https://www.msc.fema.gov</u>/

gital Flood Insurance Rate Map (FIRM) was produced through a unique attempting battering battering to Studie Carolina and the Federal studies and the studies of the studies of the studies of the sociated a long-term sproach of floodshaft narrangement to decrease the sociated with flooding. This is demonstrated by the State's commitment floodplain areas at the local level. As a part of this effort, the State of Carolina has joined in a Cooperating Technical State agreement with opcidice and maintain this digital FIRM.

LEGEND SPECIAL FLOOD HAZARD AREAS (SFHAs) SUBJECT INUNDATION BY THE 1% ANNUAL CHANCE FLOOD AUVINUAL LIVE OF THE 19% ANNUAL CHANCE FLOOD % annual choice food (160-yee flood), also knows as the base flood, is it is a sit % chance of being equaled or exceeded in any given year. The Hazard Area is the area subject fooding by the 1% annual chance flood, accal Rood Hazard include Zones A, AE, AH, AO, AR, AB, V, and VE. Th Elevation is the wate-undere elevation of the % annual chance flood. In a the water-sumice servition of the 1% annual chalance hood. No Stare Food Educations determined. Base Flood Benktoos determined. Flood depths of 1 to 3 feet (usually areas of ponding); Base Bendtines determined. Flood depths of 1 to 3 feet (usually sheet flow on sloping t average depths determined. For areas of alluvial fan flooding, v also determined. seo attermined. Special Flood Hazard Area formerly protected from the 1% chance flood by a flood control system that was subject decertified. Zone AR indicates that the former flood control sys being restored to provide protection from the 1% annual chai greater flood. Area to be protected from 1% annual chance flood by a flood protection system under construction; no Base Flood Ele determined. Coastal flood zone with velocity hazard (wave action); no Base Flood letermined Coastal flood zone with velocity hazard (wave action); Base Flood Ele determined. FLOODWAY AREAS IN ZONE AE is the channel of a stream plus any adjacent floodplain areas that encroachment so that the 1% annual chance flood can be carried creases in flood heights. OTHER FLOOD AREAS Areas of 0.2% annual chance flood; areas of 1% annual chanc with average depths of less than 1 foot or with drainage areas le 1 square mile; and areas protected by levees from 1% annual flood. OTHER AREAS ZONE X Areas determined to be outside the 0.2% annual chance floodplain. ZONE D Areas in which flood hazards are undetermined, but possible. Floodplain boundary ____ Floodway boundary Zone D Boundary Boundary dividing Special Flood Hazard Area Zones a -boundary dividing Special Flood Hazard Areas of diff Base Flood Elevations, flood depths and flood v ▲ ▲ Limit of Moderate Wave Action Base Flood Elevation line and value; elevation in feet* Base Flood Elevation value where uniform within zone; elevation in feet* merican Vertical Datum of 1988 ~~ 513 ~~~ (EL 987) enced to the North & A Cross section line 23) - - - - - (23) Transect line Culvert, Flume, Penstock, or Aqueduct Bridge Footbridge Geographic coordinates referenced to the North American Datum of 1983 (NAD 83), Western Hemisphere 1000-meter Universal Transverse Mercator grid ticks, zone : 97° 07' 30", 32° 22' 30" € 76⁰⁰"E 600000 FT 5000-foot grid values: South Carolina State Plane coordinab system (FIPSZONE 3900), Lambert Conformal Conic projec Bench mark (see explanation in Notes to Users section of th FIRM panel) DX5510× • M1.5 River Mile MAP REPOSITORY Refer to listing of Map Repositories on Map Index EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP November 17, 2004 EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL January 29, 2021 - to add Baxe Flood Elevations and Special Flood Hazard. Areas, to incorporate previc of Map Revision, to reflect the effects of coastal erosion, revisard elevation coordingtic information. For community map revision history prior to countywide mapping, Map History table located in the Flood Insurance Study report for th To determine if flood insurance is available in this community, contact your Insur agent or call the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1" = 500' 250 0 500 1000 50 METERS NFIP PANEL 0507K PROGRAM FIRM FLOOD INSURANCE RATE CHARLESTON COUNT SOUTH CAROLINA AND INCORPORATED AREAS NATTIONAL FLOOD INSURANCE PANEL 507 OF 855 (SEE MAP INDEX FOR FIRM PANEL L CONTAINS:
 COMMUNITY
 NUMBER
 PANEL

 CHARLESTON COUNTY
 455413
 0507

 MOUNT PLEASANT, TOWN OF
 455413
 0507
 Notice to User. The Map Number shown beto used when placing map orders; the Commun shown above should be used on insurance applica under community. ΜΔΡ Ν Y 45019

MAP R

JANUARY 2

Federal Emergency Management

http://www.dnr.state.sc.us/

Appendix B – PRE/POST – DEVELOPMENT CALCULATIONS

Hydrology

STORMWATER MANAGEMENT: **PRE-DEVELOPMENT INPUTS**

I-526 & LPR

PRE-DEVELOPMENT OUTFALL DISCHARGE

СНК ВУ:

Source: https://www.scdot.org/business/technicalPDFs/hydraulic/rainfall_intensity.pdf

		Rational Co	efficients	
Frequency (years)	а	b	С	
2		72.69	11.39	0.839
5		61.16	9.846	0.7573
10		55.13	8.412	0.6972
25		45.53	6.257	0.6179
50		42.68	5.28	0.5741
100		39.53	4.297	0.5309

isity.pui	
Recurrence	
Interval	Cf
2	1
5	1
10	1
25	1.1
50	1.2
100	1.25

Charleston, SC	
Frequency	24 Hr Rainfall (in)
2	4.3
5	5.5
10	6.6
25	8.0
50	9.2
100	10.4

Source: https://www.scdot.org/business/technicalPDFs/hydraulic/appendixF_SC_Rainfall_Data.pdf

		Culvert D	A = 0.358 Sq. M	I (190 Ac)					
		N	CRS TR-55 Meth	od					
							Tc =	79	min
		Area				Rounded	1		
Surface	<u>CN*</u>	<u>(Ac)</u>	AxCN		<u>TR-55</u>	<u>TR-55</u>			
Commercial B	92	30.539	2,809.59	Q2=	299.69	300	cfs		
Commercial C	94	2.966	278.80	Q5=	405.43	405	cfs		
Commercial D	95	81.971	7,787.25	Q10=	490.86	491	cfs		
Open Space B	61	3.889	237.23	Q25=	609.61	610	cfs		
Open Space C	74	4.781	353.79	Q50=	704.84	705	cfs		
Open Space D	80	23.251	1,860.08	Q100=	807.35	807	cfs		
Gravel B	85	2.223	188.96						
Gravel D	91	4.328	393.85						
Woods B	66	0.371	24.49						
Woods D	83	28.832	2,393.06						
Impervious B	98	8.456	828.69						
Impervious C	98	3.975	389.55						
Impervious D	98	29.945	2,934.61						
Residential B	70	1.561	109.27						
Residential D	85	1.877	159.55						
Total Drainage Area (Ac) =		228.97	20748.75						
Composite CN =	90.62								
Rounded CN =	91								
* from Win-TR55									

		Bridge	DA = 0.1 Sq. M	l (64 Ac)				
			Rational Metho	d				
							Tc = 82	2 min
		Area				Rounded		
Surface	C Factor*	(Ac)	AxC		Rational	Rational		<u>i</u>
Pavement	0.90	10.540	9.49	Q2=	53.74	54	cfs	1.62
Gravel Surfaces	0.55	0.000		Q5=	66.33	66	cfs	1.99
Industrial/Residential Areas	0.70	28.966	20.28	Q10=	79.32	79	cfs	2.39
Grass Shoulders/Medians	0.25	8.349	2.09	Q25=	104.54	105	cfs	2.86
Woodland & Forest	0.10	16.099	1.61	Q50=	130.92	131	cfs	3.28
				Q100=	154.13	154	cfs	3.71
Total Drainage Area (Ac) =		63.95	33.46					
Composite C =	0.52							

* from SCDOT's "Requirements for Hydraulic Design Studies" (2009), flat slopes < 2%

	-	Rational Method					
						Tc = 55	min
	Area				Rounded		
Factor*	(Ac)	AxC		Rational	Rational		<u>i</u>
0.90	12.109	10.90	Q2=	99.99	100	cfs	2.15
0.55	0.000		Q5=	120.66	121	cfs	2.60
0.70	44.644	31.25	Q10=	141.96	142	cfs	3.05
0.25	12.031	3.01	Q25=	183.08	183	cfs	3.58
0.10	11.349	1.13	Q50=	226.28	226	cfs	4.06
			Q100=	262.89	263	cfs	4.53
	80.13	46.29					
0.58							
	Factor* 0.90 0.55 0.70 0.25 0.10 0.58	Area Factor* (Ac) 0.90 12.109 0.55 0.000 0.70 44.644 0.25 12.031 0.10 11.349 80.13 0.58	Area AxC 0.90 12.109 10.90 0.55 0.000 0.70 44.644 31.25 0.25 12.031 3.01 0.10 11.349 1.13 80.13 46.29	Area Axc 9.90 12.109 10.90 Q2= 0.55 0.000 Q5= 0.70 44.644 31.25 Q10= 0.25 12.031 3.01 Q25= 0.10 11.349 1.13 Q50= 0.58 6.29 0.58 0.58	Area Rational Method Factor* (Ac) AxC Rational 0.90 12.109 10.90 Q2= 99.99 0.55 0.000 Q2= 10.90 0.70 44.644 31.25 Q10= 141.96 0.25 12.031 3.01 Q25= 183.08 0.10 11.349 1.13 Q50= 226.28 Q100= 262.89 0.58 658 100= 100=	Area Rational Method Factor* (Ac) AxC Rational 0.90 12.109 10.90 Q2= 99.99 100 0.55 0.000 Q5= 120.66 121 0.70 44.644 31.25 Q10= 141.96 142 0.25 12.031 3.01 Q25= 183.08 183 0.10 11.349 1.13 Q50= 226.28 226 Q100= 262.89 263 263 263	Area Tc = 55 Area Rational Rational 0.90 12.109 10.90 Q2= 99.99 100 cfs 0.70 44.644 31.25 Q10= 141.96 142 cfs 0.25 12.031 3.01 Q25= 183.08 183 cfs 0.10 11.349 1.13 Q50= 226.28 226 cfs Q100= 262.89 263 cfs 0.58 0.58 cfs 0.58 <t< td=""></t<>

Culverts

	Commercial B	Commercial C	Commercial D	Open Space B	Open Space C	Open Space D	Gravel B	Gravel D	Woods B	Woods D	Imp B	Imp C	Imp D	Res B	Res D	Total Ac.
Sum	30.549	2.966	81.971	3.889	4.781	23.251	2.223	4.328	0.371	28.832	8.456	3.975	29.945	1.561	1.877	228.972
	7.786	1.638	2.037	0.482	2.451	0.400	2.223	1.146	0.271	4.536	0.112	1.556	1.132	1.561	1.877	
	3.186	0.655	30.847	1.329	0.437	3.080		1.109	0.100	19.231	0.094	0.133	1.045			
	0.501	0.674	4.459	0.262	0.068	2.336		0.343		2.684	0.553	1.207	0.301			
	2.870		24.703	0.289	1.062	0.840		1.731		2.381	1.261	0.346	0.406			
	0.148		11.669	0.190	0.763	1.683					2.106	0.675	1.165			
	0.020		0.199	0.710		1.599					2.947	0.057	2.513			
	0.630		0.120	0.627		1.158					1.383		0.633			
	7.221		0.022			0.145							1.092			
	0.592		2.483			1.040							0.206			
	0.233		0.193			3.345							1.086			
	0.293		0.183			5.900							4.178			
	1.952		1.136			0.133							0.028			
	0.220		1.278			0.472							0.238			
	4.899		0.045			0.037							0.118			
			2.597			1.084							0.057			
													3.617			
													4.028			
													0.245			
													0.216			
													7.644			
				•												
Count	14	3	15	7	5	15	1	4		4	7	6	20	1	1	103

Rational Land Use Types

			 		Bridg	ge						
		Commercial		Open Space		Grave	1	Wo	ods		Impervious	Total Ac.
Sum	28.966		8.349			0		16.099		10.54		63.954
	16.052		7.476			0.000		5.665		0.604		
	5.571		0.059					10.434		3.659		
	7.343		0.814							4.679		
										1.598		
Count	3		3			1		2		4		13
Total Area	28.066		Q 240			0	ı r	16.000		10.54		
hu Tuno	20.500		0.545			0		10.055		10.54		
by type												
1					Trib to Hobo	caw Creek						
		Commercial		Open Space		Grave	1	Wo	ods		Impervious	Total Ac.
Sum	44.644		12.031			0		11.349		12.109		80.133
	31.882		0.275			0.000		9.093		4.860		
	11.886		2.233					1.080		3.756		
	0.876		0.212					0.622		3.359		
			1.491					0.221		0.134		
			0.641					0.095				
			3.540					0.238				
			0.889									
			1.521									
			1.194									
			0.035									
Count	3		10			1		6		4		24
			10.001					44.040		40.400		
i otai Area	44.644		12.031			0		11.349		12.109		
ву гуре												

26 & Long Point Ra	INAGE AREA=	0.358 229.0	SQ. MILE Acres	S			Predevelopment to 10'x5 RBC (Seacoast Pkwy)			DSN BY: CHK BY: DATE: 3/2/	ENR 2023	CDM Smith listen. think. deliver.
							Time of Concentration Velocity Method (TR-55 Metho	d)				
Flow Type	Flow Segment	Flow Length (ft)	Elev. High	Elev. Low	Slope (ft/ft)	P ₂	Surface Description	n or k	Pipe Dia. / Channel Depth (ft)	Velocity (ft/sec)	Tc (min)	Notes
Sheet Flow	1	55	21	20.6	0.0073	4.30	Dense Grass (weeping, love, blue, buffalo, blue grama, and native grass mixtures)	0.240		0.08	11.4	
Shallow Concentrated	2	160	20.6	17	0.0225		Unpaved (shallow concentrated flow)	0.491		1.00	2.7	
Shallow Concentrated	4	953	14	9	0.0052		Unpaved (shallow concentrated flow)	0.491		1.17	13.5	wooded area, no defined chnl
Open Channel	3	1056	17	14	0.0028		Vegetation Lined	0.085	2	0.59	29.9	Ex 2:1 V-ditch

Vegetation Lined

Vegetation Lined

Concrete Pipe

0.085

0.085

0.013

3

4

3

1.06

2.61

5.40

Total

Use

20.6

0.4

0.6

79.1

79

1.317

² From HEC-22 Manual

minutes

minutes

hours

¹ USDA NRCS Part 630 NEH, eq 15-8

Ex 5:1 V-ditch

Ex 9'x5' RCBC

I-526 & Long Point Rd

Open Channel

Open Channel

Closed Conduits

Closed Conduits Closed Conduits 5

7

6

(1) Sheet Flow¹ =

(3) Pipe or Channel Flow¹ =

1309

55

184

P2 = 2-year, 24-hour precipitation depth (in) =

9

2.58

1.96

(2) Shallow Concentrated $Flow^2 = V = 33 * k * VS (ft/sec)$

2

1.36

1.36

0.0053

0.0222

0.0033

 $Tc = (0.007(nL)^{0.8} / (P_2^{0.5} S^{0.4})) (hr)$

4.3 Charleston, SC

V = (1.49/n) * R^(2/3) * VS (ft/sec), Assumes Pipe Full Flow (R=D/4) or Channel Flow Depth (R=d)

-526 & Long Point Rd DRAI	NAGE AREA=	0.100 64.0	SQ. MILE Acres	S			Predevelopment to Station 1361 Bridge			DSN BY CHK BY DATE: 6/2	: ERP : 1/2023	CDM Smith listen. think. deliver.
							Time of Concentration Velocity Method (TR-55 Method)	hod)				
Flow Type	Flow Segment	Flow Length	Elev. High	Elev. Low	Slope	P ₂	Surface Description	n or k	Pipe Dia. / Channel Depth	Velocity	Тс	Notes
		(ft)			(ft/ft)				(ft)	(ft/sec)	(min)	
Sheet Flow	1	100	16	15	0.0100	4.30	Woods: Light under brush	0.400		0.07	24.4	
Shallow Concentrated	2	490	15	11	0.0082	4.30	Unpaved (shallow concentrated flow)	0.491		1.00	8.2	
Shallow Concentrated	3	40	11	10	0.0250	4.30	Paved (shallow concentrated flow)	0.619		3.23	0.2	
Shallow Concentrated	4	520	10	7	0.0058	4.30	Unpaved (shallow concentrated flow)	0.491		1.23	7.0	
Open Channel	5	1475	7	3	0.0027		Vegetation Lined	0.085	2	0.58	42.7	Ex 2:1 V-ditch
Open Channel												
Open Channel												
Closed Conduits												
Closed Conduits												
Closed Conduits												
										Total	82.6	minutes
										Use	82	minutes
	P2 = 2-year, 2 (1) Sheet Flor (2) Shallow C	24-hour pr w ¹ = Concentrate	ecipitation ed Flow ² =	depth (in Tc = (0.0 V = 33 *) = 07(nL) ^{0.8} / (P k * VS (ft/sec	4.3 2 ^{0.5} S ^{0.4})) (hr) 2)	Charleston, SC				1.367 ¹ USDA NRCS Pa ² From HEC-22	hours art 630 NEH, eq 15-8 Manual
	(3) Pipe or Cl	hannel Flov	w ¹ =	V = (1.49	/n) * R^(2/3) * √S (ft/sec), Assumes Pipe Full Flow (R=D/4) or Channel Flow Dep	oth (R=d)				

I-526 & Long Point Rd DRA	INAGE AREA=	0.125 80.1	SQ. MILE Acres	≅S			Predevelopment to Trib to Hobcaw Creek			DSN BY CHK BY DATE: 6/2	/: ERP /: 21/2023	CDM Smith listen. think. deliver.
							Time of Concentration Velocity Method (TR-55 Meth	lod)				
Flow Type	Flow Segment	Flow Length	Elev. High	Elev. Low	Slope	P ₂	Surface Description	n or k	Pipe Dia. / Channel Depth	Velocity	Тс	Notes
		(ft)			(ft/ft)				(ft)	(ft/sec)	(min)	
Sheet Flow	1	100	21	18	0.0300	4.30	Woods: Light under brush	0.400		0.11	15.8	
Shallow Concentrated	2	820	18	13	0.0061	4.30	Paved (shallow concentrated flow)	0.619		1.00	13.7	
Shallow Concentrated	3	1260	13	5	0.0063	4.30	Unpaved (shallow concentrated flow)	0.491		1.29	16.3	
Open Channel	5	375	5	4	0.0027	4.30	Natural Channel Irregular Section with pools 1	0.095	3	0.67	9.3	Wetland Trib to Hobcaw Creek
Open Channel												
Open Channel					<u> </u>							
Closed Conduits												
Closed Conduits			4	4	'	Ļ						
Closed Conduits					<u> </u>	<u> </u>						
										Total	55.0	minutes
		0.4 k a		denata (in	1	1.2	Charlester CC			Use	<u> </u>	minutes
	P2 = 2-year,	24-nour pre	ecipitation	i depth (in)=	4.3	Charleston, Sc				1 0.917	hours
	(1) Sheet Flo)W [*] =		1c = (0.00	J/(nL) / (P	2 S)) (nr)	I. Construction of the second s				¹ USDA NRCS Pa	rt 630 NEH, eq 15-8
	(2) Shallow (Concentrate	ad Flow [∠] =	V = 33 * !	к * VS (ft/sec	(تـ					² From HEC-22 I	Manual
	(3) Pipe or C	hannel Flov	$w^1 =$	V = (1.4°	J/n) * R^(2/?) * VS (ft/sec), Assumes Pipe Full Flow (R=D/4) or Channel Flow Dept'	.h (R=d)				

STORMWATER MANAGEMENT: POST-DEVELOPMENT INPUTS

Hydrology

I-526 & LPR

* from Win-TR55

POST-DEVELOPMENT OUTFALL DISCHARGE

L-2523 Sta. 15+75 DA = 0.3 Sq. MI (189 Ac) Rational Method Tc = 79 min Rounded Area Surface CN* (Ac) AxC Rational Rational Q2= 307.22 92 1,443.30 307 cfs Commercial B 15.688 Commercial C 94 2.944 276.74 Q5= 411.56 412 cfs Commercial D 95 7,787.25 Q10= 497.69 498 81.971 cfs Open Space B 61 3.889 237.23 Q25= 614.34 614 cfs Q50= 711.68 Open Space C 74 3.503 259.22 712 cfs Q100= 812.17 Open Space D 80 17.407 1,392.56 812 cfs Gravel B 85 2.223 188.96 Gravel D 91 4.329 393.94 Woods B 66 0.000 83 2,355.87 Woods D 28.384 98 13.527 1.325.65 Impervious B Impervious C 98 389.55 3.975 Impervious D 98 47.694 4,674.01 70 1.561 Residential B 109.27 Residential D 85 1.877 159.55 Total Drainage Area (Ac) = 228.97 20993.08 Composite CN = 91.68 Rounded CN = 92

			Rational Method					
		Area				Rounded	Tc = 82	min
Surface	C Factor*	<u>(Ac)</u>	AxC		Rational	Rational		<u>i</u>
Pavement	0.90	11.465	10.32	Q2=	54.77	55	cfs	1.62
Gravel Surfaces	0.55	0.000		Q5=	67.61	68	cfs	1.99
Industrial/Residential Areas	0.70	28.966	20.28	Q10=	80.84	81	cfs	2.39
Grass Shoulders/Medians	0.25	7.424	1.86	Q25=	106.55	107	cfs	2.86
Woodland & Forest	0.10	16.099	1.61	Q50=	133.44	133	cfs	3.28
				Q100=	157.09	157	cfs	3.71
Total Drainage Area (Ac) =		63.95	34.06					
Composite C =	0.53							

* from SCDOT's "Requirements for Hydraulic Design Studies" (2009), flat slopes < 2%

	Trib	to Hobcaw	Creek DA = 0.125 Sq.	MI (80 Ac)				
			Rational Method					
		Area				Rounded	Tc = 55	min
Surface	C Factor*	(Ac)	AxC		Rational	Rational		<u>i</u>
Pavement	0.90	14.086	12.68	Q2=	101.72	102	cfs	2.15
Gravel Surfaces	0.55	0.000		Q5=	122.74	123	cfs	2.60
Industrial/Residential Areas	0.70	44.644	31.25	Q10=	144.40	144	cfs	3.05
Grass Shoulders/Medians	0.25	10.054	2.51	Q25=	186.24	186	cfs	3.58
Woodland & Forest	0.10	11.349	1.13	Q50=	230.18	230	cfs	4.06
				Q100=	267.42	267	cfs	4.53
Total Drainage Area (Ac) =		80.13	47.58					
Composite C =	0.59							

Source: https://www.scdot.org/business/technicalPDFs/hydraulic/rainfall_intensity.pdf

	0.				
	Ratio	onal Coeffic	Recurrence	Г	
Frequency (years)	а	b	с	Interval	
2	72.69	11.39	0.839	2	Ī
5	61.16	9.846	0.7573	5	
10	55.13	8.412	0.6972	10	I
25	45.53	6.257	0.6179	25	I
50	42.68	5.28	0.5741	50	I
100	39.53	4.297	0.5309	100	

Charleston, SC Frequency 24 Hr Rainfall (in) 2 4.3 5 5.5 10 6.6 25 8.0 50 9.2 100 10.4 Source: https://www.scdt.org/busir

Source: https://www.scdot.org/business/technicalPDFs/hydraulic/appendixF_SC_Rainfall_Data.pdf

Culverts

c	11	n	2
_ 3	u		J

	Commercial B	Commercial C	Commercial D	Open Space B	Open Space C	Open Space D	Gravel B	Gravel D	Woods B	Woods D	Imp B	Imp C	Imp D	Res B	Res D	Total Ac.
Sum	15.688	2.944	81.971	3.889	3.503	17.407	2.223	4.329	0	28.384	13.527	3.975	47.694	1.561	1.877	228.972
	1.256	2.944	10.968	0.892	1.103	4.192	2.223	1.146		1.143	1.768	3.653	4.178	1.561	1.877	
	6.743		7.931	0.399	0.926	2.635		1.109		2.700	4.884	0.322	2.945			
	7.388		25.000	2.598	1.474	1.362		0.343		4.055	0.901		4.019			
	0.301		1.278			2.459		1.731		2.684	3.232		1.333			
			1.952			3.825				2.494	2.742		4.086			
			1.877			2.435				13.863			1.902			
			1.136			0.499				0.574			1.101			
			1.561							0.871			4.884			
			6.755										2.296			
			5.107										10.72			
			4.459										3.972			
			13.947										4.233			
													1.038			
													0.987			
													-			
Count	4	1	12	3	3	7	1	4	0	8	5	2	14	1	1	66

Rational Method Land Use Types

DRAINAGE AREA= 0.000 SQ. MILES 0.0 Acres							Predevelopment to 10'x5 RBC (Seacoast Pkwy)	DSN BY: I CHK BY: _ DATE: 3/2/	ENR 2023	CDM Smith listen. think. deliver.		
							Time of Concentration Velocity Method (TR-55 Metho	d)				
Flow Type	Flow Segment	Flow Length	Elev. High	Elev. Low	Slope	P ₂	Surface Description	n or k	Pipe Dia. / Channel Depth	Velocity	Тс	Notes
Sheet Flow	1	55	21	20.6	0.0073	4.30	Dense Grass (weeping, love, blue, buffalo, blue grama, and native grass mixtures)	0.240	(π)	(π/sec) 0.08	(min) 11.4	
Shallow Concentrated	2	160	20.6	17	0.0225		Unpaved (shallow concentrated flow)	0.491		1.00	2.7	
Shallow Concentrated	4	953	14	9	0.0052		Unpaved (shallow concentrated flow)	0.491		1.17	13.5	wooded area, no defined chnl
Open Channel	3	1056	17	14	0.0028		Vegetation Lined	0.085	2	0.59	29.9	Ex 2:1 V-ditch
Open Channel	5	1309	9	2	0.0053		Vegetation Lined	0.085	3	1.06	20.6	Ex 5:1 V-ditch
Open Channel	7	55	2.58	1.36	0.0222		Vegetation Lined	0.085	4	2.61	0.4	
Closed Conduits	6	184	1.96	1.36	0.0033		Concrete Pipe	0.013	3	5.40	0.6	Ex 9'x5' RCBC
Closed Conduits												
Closed Conduits												
										Total	79.1	minutes

					Use	79	minutes
P2 = 2-year, 24-hour precipitation	n depth (in) = 4.3	Charleston, SC				1.317	hours
(1) Sheet $Flow^1 =$	$Tc = (0.007(nL)^{0.8} / (P_2^{0.5} S^{0.4}))$	(hr)				¹ USDA NRCS Pa	art 630 NEH, eq 15-8
(2) Shallow Concentrated Flow ² =	V = 33 * k * VS (ft/sec)					² From HEC-22	Manual
(3) Pipe or Channel Flow ¹ =	V = (1.49/n) * R^(2/3) * √S (f	/sec), Assumes Pipe Fu	II Flow (R=D/4) or Channel Flow Depth	(R=d)			

I-526 & Long Point Rd

I-526 & Long Point Rd Predevelopment to Station 1361 Bridge									DSN BY			
DRA	INAGE AREA=	0.000 0.0	SQ. MILE Acres	S				CHK BY DATE: 6/2	: 1/2023	Smith listen. think. deliver.		
	Time of Concentration Velocity Method (TR-55 Method)											
Flow Type	Flow Segment	Flow Length	Elev. High	Elev. Low	Slope	P ₂	Surface Description	n or k	Pipe Dia. / Channel Depth	Velocity	Тс	Notes
		(ft)	16	45	(ft/ft)	1.20			(ft)	(ft/sec)	(min)	
Sheet Flow	1	100	16	15	0.0100	4.30	Woods: Light under brush			0.07	24.4	
Shallow Concentrated	2	490	15	11	0.0082	4.30	Unpaved (shallow concentrated flow)			1.00	8.2	
Shallow Concentrated	3	40	11	10	0.0250	4.30	Paved (shallow concentrated flow)			3.23	0.2	
Shallow Concentrated	4	520	10	7	0.0058	4.30	Unpaved (shallow concentrated flow)			1.23	7.0	
Open Channel	5	1475	7	3	0.0027		Vegetation Lined		2	0.58	42.4	Ex 2:1 V-ditch
Open Channel												
Open Channel												
Closed Conduits												
Closed Conduits												
Closed Conduits												
										Total	82.2	minutes
	D D D	24.6		denate 2	1	4.2	Charlester CC	_		Use	82	minutes
	PZ = 2-year, Z4-hour precipitation depth (in) = 4.3 Charleston, SC 1.367 hours										nours	
	(1) Sheet Flo	w ¹ =		Tc = (0.00	07(nL) ^{0.0} / (P ₂	2 ⁰¹³ S ⁰¹¹)) (hr)					¹ USDA NRCS Pa	rt 630 NEH, eq 15-8
	(2) Shallow (Concentrate	$ed Flow^2 =$	V = 33 *	k * √S (ft/sec	:)					² From HEC-22	Vanual
	(3) Pipe or C	hannel Flov	w ¹ =	V = (1.49	/n) * R^(2/3) * √S (ft/sec), Assumes Pipe Full Flow (R=D/4) or Channel Flow Dep	pth (R=d)				
I-526 & Long Point Rd DRA	INAGE AREA=	0.000 0.0	SQ. MILE Acres	ES			Predevelopment to Trib to Hobcaw Creek			DSN BY CHK BY DATE: 6/2	/: ERP /: 21/2023	CDM Smith listen. think. deliver.
------------------------------	--------------------------------	----------------------------------	------------------------	-----------------------	---	---	--	---------	---------------------------------	-------------------------------	--	---
							Time of Concentration Velocity Method (TR-55 Meth	od)				
Flow Type	Flow Segment	Flow Length	Elev. High	Elev. Low	Slope	P ₂	Surface Description	n or k	Pipe Dia. / Channel Depth	Velocity	Тс	Notes
		(ft)			(ft/ft)				(ft)	(ft/sec)	(min)	
Sheet Flow	1	100	21	18	0.0300	4.30	Woods: Light under brush			0.11	15.8	
Shallow Concentrated	2	820	18	13	0.0061	4.30	Paved (shallow concentrated flow)			1.00	13.7	
Shallow Concentrated	3	1260	13	5	0.0063	4.30	Unpaved (shallow concentrated flow)			1.29	16.3	
Open Channel	5	375	5	4	0.0027	4.30	Natural Channel Irregular Section with pools 1		3	0.67	9.3	Wetland Trib to Hobcaw Creek
Open Channel												
Open Channel												
Closed Conduits												
Closed Conduits												
Closed Conduits										Total		
											55.1	minutes
	P2 = 2-vear	24-hour pre	ecinitation	denth (in) =	43	Charleston SC	_		030	0.917	hours
	(1) Sheet Flo (2) Shallow (ow ¹ = Concentrate	ed Flow ² =	Tc = (0.0 V = 33 *	, 07(nL) ^{0.8} / (P k * √S (ft/sec	2 ^{0.5} S ^{0.4})) (hr)					¹ USDA NRCS P ² From HEC-22	art 630 NEH, eq 15-8 Manual
	(3) Pipe or C	hannel Flow	v ¹ =	V = (1.49	/n) * R^(2/3) * VS (ft/sec), Assumes Pipe Full Flow (R=D/4) or Channel Flow Dept	h (R=d)				

Appendix C – CULVERT, CROSS-LINE, AND HALF-LINE SUMMARIES

											Existing Culv	erts and	Cross-Lines								
				Culvert Date	a				ł	Hydrology Da	ta		50-Y	ear Storm			100-Ye	ear Storm			
ID	Station	Alignment	Туре	Size (US/DS)	US Height (in)	Length (ft)	Inlet El.	Outlet El.	DA (ac)	Method	Tc (min)	Q (cfs)	HW Elevation (ft)	HW/D	Overtopping	Q (cfs)	HW Elevation (ft)	HW/D	Overtopping	Field Notes	50-Year Hydraulic Analysis Notes
1*	15+75	L-2523	RCBC	10'x5'	60	60	2.66	2.66	233.0	NRCS	98	425.0	8.63	1.2	Yes	493.0	8.84	1.2	Yes	Good condition	Existing HW/D = 1.2
2	1399+75	I-526	RCBC	9'x5'	60	224	3.09	2.47	189.0	NRCS	96	415	10.82	1.546	No	475	11.57	1.696	No	Outlet has settled 1.5'	Existing HW/D = 1.5
4	1355+60	I-526	RCP	24"	24	232	4.63	2.56	3.4	Rational	18.6	14.7	9.51	2.4	No	16.6	10.73	3.1	No	Good condition	Existing HW/D = 2.0
5	1378+35	I-526	RCP	24"	24	276	6.23	6.24	4.1	Rational	30	13.9	10.13	1.95	No	15.9	10.63	2.2	No	Good condition	Existing HW/D = 2.0

* Design storm for Culvert 1 is the 25-year storm

** Check storm for Culvert 1 is the 50-year storm

										Post-De	velopment Cu	ilverts ai	nd Cross-Lin	es with Re	commended R	eplacem	ents					
				Culvert Date	•				н	lydrology Dat	la		50-Y	ear Storm			100-Ye	ar Storm				
ID	Station	Alignment	Туре	Size (US/DS)	US Height (in)	Length (ft)	Inlet El.	Outlet El.	DA (ac)	Method	Tc (min)	Q (cfs)	HW Elevation (ft)	HW/D	Overtopping	Q (cfs)	HW Elevation (ft)	HW/D	Overtopping	Field Notes	50-Year Hydraulic Analysis Notes	Recommendations
1*	15+75	L-2523	RCBC	10'x5'	60	60	2.66	2.66	229.0	NRCS	98	473	8.78	1.224	Yes	548	9	1.268	Yes	Good condition	Post-Dev. HW/D = 1.2	Retain existing
2	1399+75	I-526	RCBC	9'x5'	60	224	3.09	2.47	189.0	NRCS	96	444	11.37	1.656	No	510	11.75	1.732	No	Outlet has settled 1.5'	Post-Dev. HW/D = 1.7	11'x5' RCBC for HW/D < 1.2
3*	23+30	L-2118	RCP	(3) 48"	48	84	3.85	3	89.0	NRCS	95	176	7.99	1	No	205	9.05	1.3	No	Existing (3)36" under current L-2118 alignment	N/A	Relocated crossing. Recommendation shown
4	1355+60	I-526	RCP	24"	24	232	4.63	2.56	3.4	Rational	18.6	15.4	9.51	2.4	No	17.4	10.73	3.1	No	Good condition	Post-Dev. HW/D = 2.4	36" RCP for HW/D = 1.2
5	1378+35	I-526	RCP	24"	24	276	6.23	6.24	4.1	Rational	30	17.3	10.93	2.35	No	19.8	11.53	2.65	No	Good condition	Post-Dev. HW/D = 2.4	36" RCP for HW/D < 1.2
6	1422+00	Line 3	RCP	(3) 18"	18	84	13.55	12.4	11.0	Rational	71.1	19.3	14.99	1	No	22.6	15.15	1.1	No	No existing pipe at this location	N/A	Proposed new crossing. Recommendation shown

* Design storm for Culverts 1 and 3 is the 25-year storm ** Check storm for Culverts 1 and 3 is the 50-year storm

						Exist	ng Culve	erts and Cro	oss-Lines	with Propose	ed Flow Ro	ates				
			ulvert Da	ta					ŀ	lydrology Da	ıta			D-Year Storm		
ID	Station	Alignment	Туре	Size (US/DS)	US Height (in)	Length (ft)	Inlet El.	Outlet El.	DA (ac)	Method	Tc (min)	Q (cfs)	HW Elevation (ft)	Overtopping	Exceeds Capacity?	Recommendation
EP-0900	1368+00 left	I-526	RCP	18"	18	96.7	2.54	3.9	0.5	Rational	5	2.3	3.34	No	No	Possibly replace due to settlement of existing pipe. Invert out is higher than invert in by 1.5'. Otherwise retain.
EP-0902	1373+00 left	I-526	RCP	18"	18	96.4	5.51	4.84	0.6	Rational	5	2.6	6.37	No	No	Retain & Extend
EP-1000	1393+00 left	I-526	RCP	18"	18	95.5	8.09	7.03	0.9	Rational	5	3.6	9.15	No	No	Retain & Extend
EP-1100	1406+00 left	I-526	RCP	18"	18	104.6	11.44	9.63	0.7	Rational	5	2.1	12.20	No	No	Retain
EP-1200	1412+00 left	I-526	RCP	18"	18	117	12.91	12.04	0.9	Rational	5	2.4	13.74	No	No	Retain
EP-1201	1420+00 left	I-526	RCP	18"	18	135.1	14.58	13.63	1.6	Rational	5	3.9	15.70	No	No	Retain & Extend

Appendix D – STORM DRAIN NETWORK OUTPUTS

	LOCATION			RUNOFF								PIPE DE	SIGN					
PIPE I.D.	FROM	то	TIME OF	DISCHARGE	COMPOSITE	INLET ELEV	OUTLET	INLET	OUTLET	TYPE	MATERIAL	LENGTH	SLOPE	DIA. (ft)	CAPACITY	AVAILABLE FREEBOARD	VELOCITY	PAY ITEM
			CONC. (min)	(cfs)	C VALUE	[ft]	ELEV ft]	HGL (ft)	HGL (ft)	=		(ft)	(ft/ft)	((cfs)	US (ft)	(ft/s)	
EP-0900	EXDI-0900	EXOP-0901	5	3.98	0.9	0.14	-0.34	0.94	0.2	Pine	Concrete	96.74	0.5	15	8 66	7.06	1.28	71/1113
EP-0901	EXDI-0902	EXOP-0903	5	1.8	0.9	4.04	3.46	19	4.01	Pine	Concrete	96.37	0.5	1.5	9.5	5.11	1.20	71/1113
EP 1000	EXDI 1000	EXOR 1001	5	1.07	0.9	4.04	5.40	7.06	F.00	Dipo	Concrete	05.57	1.5	1.5	14.09	3.11	2.01	7141113
EP-1000	EXDI-1000	EXOP-1001	5	1.57	0.9	10.4	0.47	11 16	0.00	Pipe	Concrete	104.62	1.5	1.5	14.50	2.51	2.01	7141113
EP-1100	EXDI-1100	EXOP-1101	5	1.75	0.9	10.4	0.7	12.00	9.09	Pipe	Concrete	104.62	1.02	1.5	11.42	2.59	1.19	7141113
EP-1200	EXDI-1200	EXOP-1201	5	1.64	0.9	12.05	14.01	15.00	12.5	Pipe	Concrete	117.01	0.87	1.5	11.45	4.16	1.50	7141113
EP-1201	EXDI-1202	EXOP-1203	5	0.49	0.9	15.59	14.91	16.71	15.65	Pipe	Concrete	135.05	0.5	1.5	8.66	1.65	2.22	7141113
EP-1301	EXIP-1301	EXOP-1302	5	0.55	0.9	-1.5	-1.5	0	0	Pipe	Concrete	78.05	0	1.5	0	0	0	7141113
EP-1302	EXCB-1304	EXOP-1303	5	1.04	0.9	14.5	14.48	16.02	15.62	Pipe	Concrete	47.15	0.04	2	5.43	2.31	3.23	7141114
EP-1303	EXCB-2040	EXCB-1304	5	0.74	0.9	14.51	14.5	16.84	16.02	Pipe	Concrete	134.58	0.01	2	2.27	1.27	3.2	7141114
EP-1304	EXDI-1901	EXOP-1305	5	0.89	0.9	-2.5	-2.5	0	0	Pipe	Concrete	287.63	0	2.5	0	0	0	7141115
EP-1601	EXCB-1601	EXCB-1826	5	1.02	0.9	17.66	16.8	69.55	58.01	Pipe	Concrete	185.41	0.47	1.5	8.36	-47.32	15.96	7141113
EP-1602	EXCB-1602	EXCB-1601	5	0.81	0.9	17.75	17.66	76.78	69.55	Pipe	Concrete	88.12	0.1	1.5	3.91	-54.95	15.74	7141113
EP-1603	EXIP-1603	EXCB-1602	5	0.82	0.9	18.61	18.33	76.82	76.78	Pipe	Concrete	9.78	2.86	1.25	12.74	-56.21	1.35	7141112
EP-1605	EXDI-1605	EXCB-1604	5	0.8	0.9	18.8	17.83	84.89	84.71	Pipe	Concrete	13.85	8.53	1.5	35.75	-64.58	3.09	7141113
EP-1606	EXCB-1829	EXCB-1604	5	0.81	0.9	22.91	17.88	85.65	84.71	Pipe	Concrete	208.13	2.42	1.5	19.03	-62.85	3.68	7141113
EP-1607	EXCB-1606	EXCB-1604	5	0.94	0.9	18	17.83	86.66	84.71	Pipe	Concrete	107.5	0.16	1.5	4.87	-65.27	8.54	7141113
EP-1608	EXCB-1607	EXCB-1606	5	0.94	0.9	18.28	18.17	89.94	86.66	Pipe	Concrete	76.75	0.14	1.17	4.15	-69.07	8.2	7141141
EP-1609	EXDI-1608	EXCB-1607	5	0.52	0.83	18.54	18.4	92.12	89.94	Pipe	Concrete	9.95	1.41	1	4.92	-72.13	10.53	7141111
EP-1610	EXDI-1609	EXCB-1607	5	1.32	0.84	18.5	18.38	90.35	89.94	Pipe	Concrete	116.24	0.1	1.17	3.47	-69.99	3.61	7141141
EP-1611	EXIP-1610	EXDI-1609	5	1.01	0.86	18.41	18.17	90.74	90.35	Pipe	Concrete	83.17	0.29	1.25	4.04	-70.33	3.06	7141112
EP-1701	EXDI-1702	EXOP-1701	5	0.45	0.9	8.89	8.8	13.02	11.01	Pipe	Concrete	17.12	0.53	2.5	34.66	2.15	9	7141115
EP-1702	EXDI-1703	EXDI-1702	5	1.2	0.9	9	8.89	15.04	13.02	Pipe	Concrete	40.84	0.27	2.5	24.81	0.05	8.91	7141115
EP-1703	EXCB-1704	EXDI-1703	5	1.7	0.9	10.26	9	17.68	15.04	Pipe	Concrete	186.73	0.67	2.5	39.26	-1.79	8.81	7141115
FP-1704	EXCB-1705	EXCB-1704	5	0.69	0.9	11.05	10.51	17.69	17.68	Pipe	Concrete	47.58	1.13	1.25	8.02	-1.87	0.67	7141112
EP-1705	EXCB-1706	EXCB-1704	5	0.65	0.9	11.07	10.26	19 71	17.68	Pipe	Concrete	202.81	0.4	2.5	30.21	-3.08	8.63	7141115
EP-1706	EXCB-1707	EXCB-1706	5	0.74	0.9	12 29	11 16	19.72	19.71	Pine	Concrete	48.32	2 34	1.25	11 51	-3.12	0.66	7141112
EP-1707	EXCB-1708	EXCB-1706	5	0.77	0.9	11.84	11.10	21.64	19.71	Pine	Concrete	202.47	0.34	2.5	27.7	-4.22	8 44	7141115
EP-1708	EXCB-1709	EXCB-1708	5	0.47	0.9	13.16	11.10	21.64	21.64	Pine	Concrete	47.95	2.75	1.25	12.49	-4.18	0.76	7141113
EP-1700	EXDL 1910	EXCB-1708	5	2.55	0.5	21.42	11.04	22.00	12 11	Dipo	Concrete	225.29	4.04	2.5	96.09	-4.10	9.10	7141112
ED 1901	EXCP 1801	EXCB-1708	5	1.35	0.9	21.45	11.52	23.30	13.11	Pipe	Concrete	202.20	4.04	2.5	30.03	-5.02	0.13	7141113
ED 1903	EXDI 1903	EXCB-1914	5	1.20	0.9	1.25	1.25	0	0	Pipe	Concrete	12 12	0	1 25	0	0	0	7141114
EP-1802	EXDI-1802	EXCB-1801	5	0.85	0.9	-1.25	-1.25	0	0	Pipe	Concrete	13.13	0	1.25	0	0	0	7141112
EP-1803	EXCB-1803	EXCB-1801	5	2.04	0.9	-2	-2	0	0	Pipe	Concrete	77.66	0	2	0	0	0	7141114
EP-1804	EXIP-1804	EXCB-1803	5	2.62	0.9	-1.5	-1.5	0	0	Pipe	Concrete	91.06	0	1.5	0	0	0	7141113
EP-1805	EXCB-1805	EXCB-1803	5	1.01	0.9	-2	-2	0	0	Pipe	Concrete	/1./3	0	2	0	0	0	7141114
EP-1806	EXCB-1806	EXCB-1805	5	0.5	0.9	-2	-2	0	0	Pipe	Concrete	94.47	0	2	0	0	0	/141114
EP-1807	EXCB-1807	EXCB-1806	5	0.4	0.74	-1.5	-1.5	0	0	Pipe	Concrete	32.23	0	1.5	0	0	0	/141113
EP-1808	EXCB-1808	EXCB-1807	5	1.92	0.9	-1.5	-1.5	0	0	Ріре	Concrete	156.73	0	1.5	0	0	0	/141113
EP-1809	EXCB-1809	EXCB-1808	5	1.49	0.9	-1.5	-1.5	0	0	Pipe	Concrete	71.58	0.5	1.5	0	0	0	7141113
EP-1810	EXCB-1811	EXDI-1810	5	1.08	0.9	22.73	22.68	23.99	23.98	Pipe	Concrete	46.87	0.1	1.25	2.38	-5.59	0.53	7141112
EP-1811	EXCB-1812	EXDI-1810	5	1.37	0.78	21.6	21.43	25.4	23.98	Pipe	Concrete	162.92	0.1	2.5	15.12	-6.54	8.04	7141115
EP-1812	EXCB-1813	EXCB-1812	5	0.28	0.9	14.87	13.69	25.41	25.4	Pipe	Concrete	47.67	2.48	1.25	11.84	-6.46	0.63	7141112
EP-1813	EXCB-1814	EXCB-1812	5	0.85	0.9	14.75	13.76	28.24	25.4	Pipe	Concrete	194.68	0.51	2.5	34.09	-8.49	7.87	7141115
EP-1814	EXCB-1815	EXCB-1814	5	0.73	0.9	16.32	14.87	28.37	28.24	Pipe	Concrete	47.66	3.04	1.25	13.13	-8.6	2.08	7141112
EP-1815	EXDI-1816	EXCB-1814	5	0.88	0.9	15.31	14.84	30.32	28.24	Pipe	Concrete	130.44	0.36	2.5	28.69	-11.06	7.42	7141115
EP-1816	EXCB-1817	EXDI-1816	5	1.6	0.9	15.58	15.38	32.05	30.32	Pipe	Concrete	26.77	0.75	2	22.79	-10.42	11.35	7141114
EP-1817	EXCB-1818	EXCB-1817	5	1.02	0.9	15.74	15.58	41.52	32.05	Pipe	Concrete	104.36	0.15	2	10.32	-19.63	11.07	7141114
EP-1818	EXDI-1819	EXCB-1818	5	0.44	0.9	17.19	16.47	41.52	41.52	Pipe	Concrete	10.03	7.18	1.25	20.17	-21.42	0.09	7141112
EP-1819	EXJB-1820	EXCB-1818	19.02	4.48	0.9	22.36	15.83	46.73	41.52	Pipe	Concrete	93.12	7.01	2	69.79	-24.7	10.84	7141114
EP-1820	EXDI-1821	EXJB-1820	19.08	3.66	0.9	16.37	16.3	46.74	46.73	Pipe	Concrete	13	0.5	1.25	5.32	-26.83	0.69	7141112
EP-1821	EXCB-1822	EXJB-1820	5	0.88	0.9	16.24	15.73	54.55	46.73	Pipe	Concrete	101.11	0.5	2	18.64	-32.74	10.66	7141114
EP-1822	EXDI-1824	EXCB-1822	5	0.86	0.9	22.26	16.31	54.55	54.55	Pipe	Concrete	90.08	6.61	1.5	31.46	-34.71	0.03	7141113
EP-1823	EXDI-1823	EXCB-1822	5	0.94	0.9	18.04	17.87	54.56	54.55	Pipe	Concrete	9.87	1.72	1.25	9.88	-34.52	0.76	7141112
EP-1825	EXCB-1826	EXCB-1825	5	1.22	0.9	16.52	16.46	58.01	57.07	Pipe	Concrete	64.27	0.09	2	8	-35.91	9.35	7141114
EP-1826	EXDI-1828	EXCB-1829	5	0.96	0.9	20.57	20.51	86.12	85.65	Pipe	Concrete	12.55	0.5	1.25	5.32	-63.22	4.91	7141112
EP-1827	EXDI-1827	EXCB-1826	5	0.9	0.9	18.44	18.22	58.01	58.01	Pipe	Concrete	11.78	2.32	1.25	11.47	-37.57	0.45	7141112
EP-1901	EXDI-1902	EXDI-1901	5	0.32	0.9	-3	-3	0	0	Pipe	Concrete	295.94	0	3	0	0	0	7141116
EP-1902	EXDI-1903	EXDI-1902	5	0.5	0.9	-25	-25	n n	0	Pine	Concrete	392.7	n n	25	n	n n	n	7141115
EP-1902	EXDI-1904	EXDI-1902	5	0.5	0.9	_2.5	_?	n	n	Pine	Concrete	148 68	0	2.2	n	0 0	0	7141114
CL-T202	2701-1904	LVDI-1903	,	0.00	0.9	-2	-2		v	ripe	concrete	140.00	U V	۷ ۲	v			/141114

	LOCATION			RUNOFF								PIPE DE	SIGN					
PIPE I.D.	FROM	то	TIME OF CONC. (min)	DISCHARGE (cfs)	COMPOSITE C VALUE	INLET ELEV [ft]	OUTLET ELEV ft]	INLET HGL (ft)	OUTLET HGL (ft)	TYPE	MATERIAL	LENGTH (ft)	SLOPE (ft/ft)	DIA. (ft)	CAPACITY (cfs)	AVAILABLE FREEBOARD	VELOCITY (ft/s)	PAY ITEM
								. ,			-					US (ft)	,	
EP-1904	EXDI-1905	EXDI-1904	5	0.72	0.9	-2	-2	0	0	Pipe	Concrete	251.44	0	2	0	0	0	7141114
EP-1905	EXCB-1906	EXDI-1905	5	1.2	0.9	-2.5	-2.5	0	0	Pipe	Concrete	99.27	0	2.5	0	0	0	7141115
EP-1906	EXDI-1917	EXCB-1906	10	1.09	0.9	-1.25	-1.25	0	0	Pipe	Concrete	15.12	0	1.25	0	0	0	7141112
EP-1907	EXCB-1907	EXCB-1906	5	1.5	0.9	-2	-2	0	0	Pipe	Concrete	84.57	0.5	2	0	0	0	7141114
EP-1908	EXDI-1908	EXCB-1907	102.12	21.29	0.67	-1.25	-1.25	0	0	Pipe	Concrete	11.38	0.5	1.25	0	0	0	7141112
EP-1909	EXMH-1909	EXCB-1907	5	0.82	0.8	-1.5	-1.5	0	0	Pipe	Concrete	146.78	0.5	1.5	0	0	0	7141113
EP-1910	EXCB-1910	EXCB-1907	5	0.76	0.77	-1.5	-1.5	0	0	Pipe	Concrete	87.53	0	1.5	0	0	0	7141113
EP-1911	EXIP-1911	EXCB-1910	5	2.27	0.6	-1.25	-1.25	0	0	Pipe	Concrete	10.13	0	1.25	0	0	0	7141112
EP-1912	EXCB-1912	EXCB-1910	5	2.55	0.56	-1.5	-1.5	0	0	Pipe	Concrete	104.32	0	1.5	0	0	0	7141113
EP-1913	EXDI-1913	EXCB-1912	5	3.56	0.56	-1.25	-1.25	0	0	Pipe	Concrete	14.37	0	1.25	0	0	0	7141112
EP-1914	EXCB-1914	EXCB-1906	5	2.09	0.41	-2	-2	0	0	Pipe	Concrete	121.3	0	2	0	0	0	7141114
EP-2001	EXCB-2103	EXCB-2000	5	2.4	0.35	13.24	12.86	16.61	16.18	Pipe	Concrete	170.6	0.22	2.5	22.56	3.71	4.41	7141115
EP-2002	EXCB-2000	EXCB-2001	5	3.92	0.34	12.68	12.6	16.18	16.12	Pipe	Concrete	53.71	0.15	3	30	3.37	3.07	7141116
EP-2003	EXCB-2001	EXCB-2002	5	5.45	0.69	12.7	12.53	16.12	16.06	Pipe	Concrete	52.47	0.32	3	44.24	3.43	3.08	7141116
EP-2004	EXCB-2002	EXCB-2003	12.5	8.27	0.68	12.5	12.38	16.06	15.99	Pipe	Concrete	65.12	0.18	3	33.37	3.42	3.11	7141116
EP-2005	EXCB-2004	EXCB-2003	5	2.66	0.81	15.41	15.08	16.06	15.99	Pipe	Concrete	78.21	0.42	3	50.49	3.66	0.31	7141116
EP-2006	EXCB-2005	EXCB-2004	5	0.72	0.9	15.81	15.54	16.48	16.06	Pipe	Concrete	88.03	0.31	1.5	6.78	3.24	0.85	7141113
EP-2007	EXCB-2006	EXCB-2005	5	1.06	0.9	18.12	15.81	18.45	15.96	Pipe	Concrete	64.38	3.59	1.5	23.19	1.27	0.25	7141113
EP-2008	EXDI-2007	EXCB-2005	5	0.58	0.17	16.79	16.67	17.28	16.96	Pipe	Concrete	9.33	1.29	1.25	8.54	1.63	0.68	7141112
EP-2009	EXDI-2008	EXCB-2003	5	0.65	0.9	16.23	15.21	17.65	15.93	Pipe	Concrete	96.87	1.05	2	27.05	2.04	2.22	7141114
EP-2010	EXDI-2009	EXDI-2008	5	1.01	0.48	16.81	16.41	17.91	17.65	Pipe	Concrete	170.86	0.23	2	12.76	2.11	2.06	7141114
EP-2012	EXMH-2010	EXDI-2009	5	0.11	0.45	17.7	16.85	18.78	17.65	Pipe	Concrete	107.41	0.79	1.25	6.7	2.23	3.74	7141112
EP-2013	EXIP-2011	EXMH-2010	5	0.85	0.52	19.35	17.77	19.56	17.86	Pipe	Concrete	33.85	4.67	1.25	16.26	1.09	0.13	7141112
EP-2014	EXCB-2012	EXMH-2010	5	0.93	0.31	17.81	17.71	19.19	18.78	Pipe	Concrete	24.57	0.41	1.25	4.8	2.01	3.65	7141112
EP-2015	EXCB-2013	EXDI-2009	5	0.05	0.1	16.98	16.85	18.04	17.91	Pipe	Concrete	61.48	0.21	2	12.12	3.12	1.17	7141114
EP-2016	EXCB-2003	EXMH-2015	5	0.56	0.31	12.41	11.23	15.99	15.37	Pipe	Concrete	71.7	1.65	3	99.71	3.53	3.89	7141116
EP-2017	EXDI-2014	EXMH-2015	6.4	6.03	0.65	12.63	11.23	15.47	15.37	Pipe	Concrete	25.87	5.41	1.25	17.51	1.03	2.06	7141112
EP-2018	EXMH-2015	EXOP-2016	5	0.19	0.1	11.11	9.96	15.37	11.48	Pipe	Concrete	195.9	0.59	3	59.55	1.99	3.98	7141116
EP-2019	EXCB-2017	EXCB-2018	5	0.86	0.19	16.47	16.17	17.01	16.96	Pipe	Concrete	70	0.43	1.5	8.01	2.79	0.5	7141113
EP-2020	EXCB-2018	EXCB-2019	5	0.21	0.26	16.16	15.96	16.96	16.73	Pipe	Concrete	137.28	0.15	1.5	4.67	2.68	0.98	7141113
EP-2021	EXCB-2019	EXCB-2020	5	0.56	0.3	15.86	15.6	16.73	16.58	Pipe	Concrete	140.97	0.18	1.5	5.26	2.57	1.46	7141113
EP-2022	EXCB-2020	EXCB-2021	5	0.09	0.2	15.51	15.38	16.58	16.33	Pipe	Concrete	119.93	0.11	1.5	4.03	2.37	2.08	7141113
EP-2023	EXCB-2021	EXCB-2022	49.6	1.04	0.14	15.37	15.05	16.33	15.86	Pipe	Concrete	101.13	0.32	1.5	6.89	2.28	2.53	7141113
EP-2024	EXCB-2022	EXCB-2023	5	0.09	0.16	14.56	14.54	15.57	15.35	Pipe	Concrete	35.33	0.06	2	6.26	2.85	1.67	7141114
EP-2025	EXCB-2023	EXCB-2024	5	0.28	0.3	14.49	13.25	15.34	13.79	Pipe	Concrete	55.44	2.22	2	39.31	2.99	1.75	7141114
EP-2026	EXCB-2024	EXOP-2025	47.4	0.84	0.14	13.21	11.99	14.18	12.55	Pipe	Concrete	55.21	2.2	2	39.13	3.91	1.89	7141114
EP-2027	EXCB-2026	EXOP-2027	46.5	0.58	0.13	-1.25	-1.25	0	0	Pipe	Concrete	18.71	0	1.25	0	0	0	7141112
EP-2028	EXIP-2028	EXMH-2029	46.9	1.18	0.27	16.08	16	18.05	18.01	Pipe	Concrete	94.77	0.08	2	7.66	0.05	1.18	7141114
EP-2029	EXIP-2030	EXMH-2029	5	2.53	0.37	16.55	16.51	18.15	18.01	Pipe	Concrete	33.33	0.12	1.25	2.61	0.4	2.33	7141112
EP-2030	EXMH-2029	EXDI-2032	5	0.05	0.1	16	15.82	18.01	17.95	Pipe	Concrete	33.42	0.54	2	19.35	0.58	2.07	7141114
EP-2031	EXCB-2031	EXDI-2032	7.2	4.4/	0.58	16.29	16.22	17.95	17.95	Pipe	Concrete	17.64	0.39	1.5	7.69	1.34	0.41	/141113
EP-2032	EXDI-2032	EXDI-2033	5	0.58	0.18	15.82	15.71	17.95	17.88	Pipe	Concrete	65.33	0.17	2	10.82	0.72	2.17	/141114
EP-2033	EXDI-2034	EXDI-2033	5	1.49	0.4	16.27	16.01	17.92	17.88	Pipe D:	Concrete	20.36	1.28	2	29.79	1.48	1.42	/141114
EP-2034	EXDI-2033	EXCB-2035	5	0.24	0.26	15.61	15.48	17.88	17.55	Pipe	Concrete	84./3	0.15	2	10.33	0.48	2.85	/141114
EP-2035	EXCB-2035	EXCB-2036	5	0.39	0.16	15.48	15.14	17.55	17.38	Pipe	Concrete	108.06	0.31	2	14.78	0.88	3.01	/141114
EP-2036	EXIP-2037	EXCB-2036	5	1.66	0.37	16.05	15.25	1/.4	17.38	Pipe	Aluminum	34.68	2.3	1	6.3	1.19	0.86	/144512
EP-2037	EXIP-2038	EXCB-2036	5	3.76	0.71	17.46	15.29	17.94	15.45	Pipe	Plastic	21.63	10	1.25	23.81	1.68	0.64	7141794
EP-2038	EXCB-2036	EXCB-2039	44.9	0.34	0.1/	15.14	14.58	17.38	17.29	Pipe	Concrete	69.43	0.81	2	23.66	1.21	2.82	/141114
EP-2039	EXCB-2039	EXCB-2040	49	0.28	0.1	14.58	14.51	17.29	16.84	Pipe	Concrete	305.39	0.02	2	3.99	1.33	2.97	7141114
EP-2040	EXDI-2041	EXCB-2040	5	2.1	0.6	14.87	14.51	10.85	16.84	Pipe	Concrete	9.88	3.65	1.5	23.37	0.58	1.46	7141113
EP-2041	EXDI-2042	EXDI-2041	5	0.16	0.12	16.25	14.87	17.16	16.85	Pipe	Concrete	186.31	0.74	1.25	6.48	1.24	1.68	7141112
EP-2042	EXDI-2043	EXDI-2042	4/.1	3./	0.58	10.85	16.25	17.19	10.54	Pipe D:	Concrete	107.18	0.56	1.25	5.63	1.44	0.51	7141112
EP-2043	EXDI-2044	EXDI-2043	4/	2.86	0.63	1/	10.85	17.36	17.19	Pipe	Concrete	49.65	0.3	1	2.28	1.44	0.5	7141111
EP-2101	EXCB-2101	EXCB-2102	74.9	0.68	0.38	13.61	13.54	17.22	16.76	Pipe Di	Concrete	/1.56	0.1	2.5	15.12	3.23	4.34	7141115
EP-2102	EXCB-2102	EXCB-2103	76.5	0.78	0.13	13.41	13.35	16.76	16.61	Pipe	Concrete	60.66	0.1	2.5	15.12	3.62	4.37	7141115
NP-1612	CB-1611	CB-1612				-1.5	-1.5	0	0	Pipe	Concrete	47.94	0	1.5	0	1.65	2.22	7141113
NP-1613	CB-1612	CB-1613				-1.5	-1.5	U	U	Pipe	Concrete	95.71	U	1.5	U	1.65	2.22	7141113
NP-1614	CR-1013	CB-1614				-1.5	-1.5	U	U	ыре	concrete	122.82	U	1.5	U	1.65	Z.22	/141113

	LOCATION			RUNOFF								PIPE DE	SIGN					
PIPE I.D.	FROM	то	TIME OF CONC. (min)	DISCHARGE (cfs)	COMPOSITE C VALUE	INLET ELEV [ft]	OUTLET ELEV ft]	INLET HGL (ft)	OUTLET HGL (ft)	TYPE	MATERIAL	LENGTH (ft)	SLOPE (ft/ft)	DIA. (ft)	CAPACITY (cfs)	AVAILABLE FREEBOARD US (ft)	VELOCITY (ft/s)	PAY ITEM
NP-1615	CB-1614	CB-1830				-1.5	-1.5	0	0	Pipe	Concrete	140.01	0	1.5	0	1.65	2.22	7141113
NP-1616	CB-1830	EXCB-1822				-2	-2	0	0	Pipe	Concrete	146.71	0	2	0	1.65	2.22	7141114
NP-1617	EXCB-1604	CB-1613				-2	-2	0	0	Pipe	Concrete	125.37	0	2	0	1.65	2.22	7141114

NOTES TO USERS

is for use in administering the National Flood Insurance Program. It does sarily identify all areas subject to flooding, particularly from local drainage of small size. The community map repository should be consulted for updated or additional flood hazard information.

ation in areas where Base Flood Elevation nono detailed information in areas where Base Food Elevations diof foodways have been determined, users are acouraged to consult Profiles and Floodway Data and/or. Summary of Stilwater Elevations thated within the Food Insurance Staty (15); report that incompanies which efood tervations. These BFEs are intended for flood insurance asting only and should not be used as the sole source of flood insurance asting in conjunction with the FIRM for purposed of construction and/or in conjunction with the FIRM for purposed of construction and/or more detailed info anagemen

Base Flood Elevations shown on this map apply only landward of American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should that coastal food elevations are also provided in the Summary of Elevations tables in the Flood Insurance Study report for this jurisdiction. shown in the Summary of Sillwarte Elevations table should be used for lain management purposes when they are higher that tions shown on this FIRM

as of the **floodways** were computed at cross sections and interpolated cross sections. The floodways were based on hydraulic considerations of to requirements of the National Flood insurance Program. Floodway do other pertinent floodway data are provided in the Flood insurance of for this jurisdiction.

reas not in Special Flood Hazard Areas may be protected by **flood** structures. Refer to Section 2.4 "Flood Protection Measures" of the urance Study report for information on flood control structures for this

ection used in the preparation of this map was State Plane South FIPS 300. The horizontal datum was NAD 83, GR51880 aphenoid. Is in datum, sphenoid, projection or State Plane zones used in the n of FIRMs for adjacent jurisdictions may result in slight positional is in map features across jurisdiction boundaries. These differences do the accuracy of this FIRM.

Une accuracy of this minor.
These flood elevations must be compared to structure and ground referenced of the same vertical addum. For information regarding in between the National Geodetic Vertical Datum of 1952, and the national Geodetic Survey of the Structure national Geodetic Survey in the statemat Geodetic Survey in the additional Geodetic Survey and additional Geodetic Survey and additional Geodetic Survey and additional Geodetic Survey and additional Geodetic Survey Structure additional Geodetic Structure additional Geodetic Survey Structure additional Geodetic Survey Structure additional Geodetic Structure additional Geodetic Survey Structure additional Geodetic Survey Structure additic

rnation Services (NGS12 Secdetic Survey #9202 t-West Highway ring, Maryland 20910-3282 ~3242

n current elevation, description, and/or location information for bench-hown on this map, please contact the Information Services Branch-ational Geodetic Survey at (301) 713-3242, or visit its website at <u>ow.ngs.nosa.gov</u>.

ap information shown on this FIRM was provided in digital format by in County, South Carolina.

updated topographic information, this map reflects more detailed and up-tream channel configurations and floodplain delineations than those the previous FIRM for this juridicion. As a result, the Flood Profiles and Data tabes may reflect stream channel distances that differ from what is the map. Also, the road to floodplain relationships for unrevised streams from what is shown on previous maps.

e limits shown on this map are based on the best data available at the ublication. Because changes due to annexations or de-annexations may urred after this map was published, map users should contact appropriate ty officials to verify current corporate limit locations.

fer to the separately printed **Map Index** for an overview map of the county the layout of map panels; community map repository addresses; and a Communities table containing National Flood Insurance Program dates community as well as a listing of the panels on which each community is

the FEMA Map Information eXchange (FMIX) at 1-877-336-2627 for no na available products associated with this FIRM. Available products de previously issued Letters of Map Change, a Flood Insurance Study culor digital versions of this map. The FMIX may also be reached by Fax 556-9620 and there website at <u>https://www.msclema.gov/</u>.

ve questions about this map or questions concerning the National Floor Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or EMA website at <u>https://www.fema.gov/national-flood-insurance-program</u>.

gital Flood Insurance Rate Map (FIRM) was produced through a unique attempting battering battering to Studie Carolina and the Federal studies and the studies of the studies of the studies of the sociated a long-term sproach of floodshaft narrangement to decrease the sociated with flooding. This is demonstrated by the State's commitment floodplain areas at the local level. As a part of this effort, the State of Carolina has joined in a Cooperating Technical State agreement with opcidice and maintain this digital FIRM.

500

PANEL 0528K

NUMBER PANEL

MAP N

45019

MAP R

JANUARY 2

http://www.dnr.state.sc.us/

NOTES TO USERS

is for use in administering the National Flood Insurance Program. It does sarily identify all areas subject to flooding, particularly from local drainage of small size. The community map repository should be consulted for pdated or additional flood hazard information.

nome detailed information in areas where Base Flood Elevations dict floodways have been determined, users are encouraged to consult Profiles and Floodway Data and/or Summary of Siltware Elevations to the second second second second second second second U second environment of the second s

one category has been divided by a **Limit of Moderate Wave Action**. A represents the approximate landward limit of the 1.5-foot breaking effects of wave hazards behaven the VE Zone and the LIMVA (or the shoreline and the LIMVA for areas where VE Zones are not will be similar to but less severe than those in the VE Zone.

will be similar by, but less severe taun toole in the VE conte. Base Flood Elevations shown on this map appy only landward of American Vertical Datam of 1988 (NAVD 86). Users of this FIRM should that cossial flood elevations are also provided in the Summary of Elevations tables in the Flood Insurance Study report for this jurisdiction, shown in the Summary of Sillware Elevations table should be used for no and/or floodplain mattern of the Flood.

s of the **floodways** were computed at cross sections and interpolated cross sections. The floodways were based on hydraulic considerations of to requirements of the National Flood insurance Program. Floodway d other pertinent floodway data are provided in the Flood insurance or for this jurisdiction.

reas not in Special Flood Hazard Areas may be protected by flood structures. Refer to Section 2.4 "Flood Protection Measures" of the urance Study report for information on flood control structures for this

ection used in the preparation of this map was State Plane South rIPS 3900. The horizontal datum was NAD 83, GRS1980 spheroid. Is in datum, spheroid, projection or State Plane cones used in the or # FIRMs for adjacent jurisdictions may result in slight positional is in map features across jurisdictions boundaries. These differences do the accuracy of this FIRM.

actions on this map are referenced to the North American Vertical Datum These flood elevations must be compared to structure and ground referenced to the same vertical addum. For information regarding in between the National Geodetic Vertical Datum of 1522 and the https://www.ngb.addum.gov.or.ontact the National Geodetic Survey wing address:

mation Services MGS12 Beodetic Survey #9202 -/West Highway ing, Maryland 20910-3282 -3242

current elevation, description, and/or location information for **bench** nown on this map, please contact the Information Services Branch ational Geodetic Survey at (**301) 713-3242**, or visit its website at <u>wings nosa gov</u>.

p information shown on this FIRM was provided in digital format by n County, South Carolina.

may reflect more detailed or up-to-date **stream channel configurations** e shown on the previous FIRM. The flootdains and flootdways that dirend from the previous FIRM may have been adjusted to conform to v ateam channel configurations and improved topographic data. The elines depicted on this may represent the hydraulic modeling baselines the flootd profiles and Flootdway. Data Tables I applicable, in the FIS a result, the profile baselines may deviate split-clarity from the new channel representation and may appear outside of the floodplair

Imits shown on this map are based on the best data available at the ublication. Because changes due to annexations or de-annexations may irred after this map was published, map users should contact appropriate y dificials to verify current corporate limit locations.

for to the separately printed **Map Index** for an overview map of the owing the layout of map panels; community map repository addresses; ing of Communities table containing National Flood Insurance Program each community as well as a listing of the panels on which each is located.

he FEMA Map Information eXchange (FMIX) at 1-877-336-2627 for n on available products associated with this FIRM. Available products de previously issued Letters of Map Change, a Flood Insurance Study clice digital versions of this map. The FMIX may also be reached by Fax 56-9620 and there website at <u>https://www.msc.fema.gov</u>/

gital Flood Insurance Rate Map (FIRM) was produced through a unique ative pathership between the State of South Carolina and the Federal model a long-term sproach of floodship in naragement to decrease the sociated with flooding. This is demonstrated by the State's commitment floodplain areas a her local level. As a part of this effort, the State of Carolina has joined in a Cooperating Technical State agreement with o produce and maintain this digital FIRM.

LEGEND SPECIAL FLOOD HAZARD AREAS (SFHAs) SUBJECT INUNDATION BY THE 1% ANNUAL CHANCE FLOOD AUVINUAL LIVE OF THE 19% ANNUAL CHANCE FLOOD % annual choice food (160-yeer food), also knows as the base food, is it has a 1% chance of being equaled or exceeded in any given year. The Hazard Area is the area subject fooding by the 1% annual chance food, accal Rood Hazard include Zones A, AE, AH, AO, AR, AB, V, and VE. Th Elevation is the wate-undere elevation of the % annual chance flood. In a the water-sumice servition of the 1% annual chalance hood. No Stare Food Educations determined. Base Flood Benktoos determined. Flood depths of 1 to 3 feet (usually areas of ponding); Base Bendtines determined. Flood depths of 1 to 3 feet (usually sheet flow on sloping t average depths determined. For areas of alluvial fan flooding, v also determined. seo attermined. Special Flood Hazard Area formerly protected from the 1% chance flood by a flood control system that was subject decertified. Zone AR indicates that the former flood control sys being restored to provide protection from the 1% annual chai greater flood. Area to be protected from 1% annual chance flood by a flood protection system under construction; no Base Flood Ele determined. Coastal flood zone with velocity hazard (wave action); no Base Flood letermined Coastal flood zone with velocity hazard (wave action); Base Flood Ele determined. FLOODWAY AREAS IN ZONE AE is the channel of a stream plus any adjacent floodplain areas that encroachment so that the 1% annual chance flood can be carried creases in flood heights. OTHER FLOOD AREAS Areas of 0.2% annual chance flood; areas of 1% annual chanc with average depths of less than 1 foot or with drainage areas le 1 square mile; and areas protected by levees from 1% annual flood. OTHER AREAS ZONE X Areas determined to be outside the 0.2% annual chance floodplain. ZONE D Areas in which flood hazards are undetermined, but possible. Floodplain boundary ____ Floodway boundary Zone D Boundary Boundary dividing Special Flood Hazard Area Zones a -boundary dividing Special Flood Hazard Areas of diff Base Flood Elevations, flood depths and flood v ▲ ▲ Limit of Moderate Wave Action Base Flood Elevation line and value; elevation in feet* Base Flood Elevation value where uniform within zone; elevation in feet* merican Vertical Datum of 1988 ~~ 513 ~~~ (EL 987) enced to the North & A Cross section line 23) - - - - - (23) Transect line Culvert, Flume, Penstock, or Aqueduct Bridge Footbridge Geographic coordinates referenced to the North American Datum of 1983 (NAD 83), Western Hemisphere 1000-meter Universal Transverse Mercator grid ticks, zone : 97° 07' 30", 32° 22' 30" € 76⁰⁰"E 600000 FT 5000-foot grid values: South Carolina State Plane coordinab system (FIPSZONE 3900), Lambert Conformal Conic projec Bench mark (see explanation in Notes to Users section of th FIRM panel) DX5510× • M1.5 River Mile MAP REPOSITORY Refer to listing of Map Repositories on Map Index EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP November 17, 2004 EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL January 29, 2021 - to add Baxe Flood Elevations and Special Flood Hazard. Areas, to incorporate previc of Map Revision, to reflect the effects of coastal erosion, revisard elevation coordingtic information. For community map revision history prior to countywide mapping, Map History table located in the Flood Insurance Study report for th To determine if flood insurance is available in this community, contact your Insur agent or call the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1" = 500' 250 0 500 1000 50 METERS NFIP PANEL 0507K PROGRAM FIRM FLOOD INSURANCE RATE CHARLESTON COUNT SOUTH CAROLINA AND INCORPORATED AREAS NATTIONAL FLOOD INSURANCE PANEL 507 OF 855 (SEE MAP INDEX FOR FIRM PANEL L CONTAINS:
 COMMUNITY
 NUMBER
 PANEL

 CHARLESTON COUNTY
 455413
 0507

 MOUNT PLEASANT, TOWN OF
 455413
 0507
 Notice to User. The Map Number shown beto used when placing map orders; the Commun shown above should be used on insurance applica under community. ΜΔΡ Ν Y 45019

MAP R

JANUARY 2

Federal Emergency Management

http://www.dnr.state.sc.us/

Hydrology

STORMWATER MANAGEMENT: **PRE-DEVELOPMENT INPUTS**

I-526 & LPR

PRE-DEVELOPMENT OUTFALL DISCHARGE

СНК ВУ:

Source: https://www.scdot.org/business/technicalPDFs/hydraulic/rainfall_intensity.pdf

		Rational Co	efficients	
Frequency (years)	а	b	С	
2		72.69	11.39	0.839
5		61.16	9.846	0.7573
10		55.13	8.412	0.6972
25		45.53	6.257	0.6179
50		42.68	5.28	0.5741
100		39.53	4.297	0.5309

isity.pui	
Recurrence	
Interval	Cf
2	1
5	1
10	1
25	1.1
50	1.2
100	1.25

Charleston, SC	
Frequency	24 Hr Rainfall (in)
2	4.3
5	5.5
10	6.6
25	8.0
50	9.2
100	10.4

Source: https://www.scdot.org/business/technicalPDFs/hydraulic/appendixF_SC_Rainfall_Data.pdf

		Culvert D	A = 0.358 Sq. M	I (190 Ac)					
		N	CRS TR-55 Meth	od					
							Tc =	79	min
		Area				Rounded	1		
Surface	<u>CN*</u>	<u>(Ac)</u>	AxCN		<u>TR-55</u>	<u>TR-55</u>			
Commercial B	92	30.539	2,809.59	Q2=	299.69	300	cfs		
Commercial C	94	2.966	278.80	Q5=	405.43	405	cfs		
Commercial D	95	81.971	7,787.25	Q10=	490.86	491	cfs		
Open Space B	61	3.889	237.23	Q25=	609.61	610	cfs		
Open Space C	74	4.781	353.79	Q50=	704.84	705	cfs		
Open Space D	80	23.251	1,860.08	Q100=	807.35	807	cfs		
Gravel B	85	2.223	188.96						
Gravel D	91	4.328	393.85						
Woods B	66	0.371	24.49						
Woods D	83	28.832	2,393.06						
Impervious B	98	8.456	828.69						
Impervious C	98	3.975	389.55						
Impervious D	98	29.945	2,934.61						
Residential B	70	1.561	109.27						
Residential D	85	1.877	159.55						
Total Drainage Area (Ac) =		228.97	20748.75						
Composite CN =	90.62								
Rounded CN =	91								
* from Win-TR55									

		Bridge	DA = 0.1 Sq. M	l (64 Ac)				
			Rational Metho	d				
							Tc = 82	2 min
		Area				Rounded		
Surface	C Factor*	(Ac)	AxC		Rational	Rational		<u>i</u>
Pavement	0.90	10.540	9.49	Q2=	53.74	54	cfs	1.62
Gravel Surfaces	0.55	0.000		Q5=	66.33	66	cfs	1.99
Industrial/Residential Areas	0.70	28.966	20.28	Q10=	79.32	79	cfs	2.39
Grass Shoulders/Medians	0.25	8.349	2.09	Q25=	104.54	105	cfs	2.86
Woodland & Forest	0.10	16.099	1.61	Q50=	130.92	131	cfs	3.28
				Q100=	154.13	154	cfs	3.71
Total Drainage Area (Ac) =		63.95	33.46					
Composite C =	0.52							

* from SCDOT's "Requirements for Hydraulic Design Studies" (2009), flat slopes < 2%

	-	Rational Method					
						Tc = 55	min
	Area				Rounded		
Factor*	(Ac)	AxC		Rational	Rational		<u>i</u>
0.90	12.109	10.90	Q2=	99.99	100	cfs	2.15
0.55	0.000		Q5=	120.66	121	cfs	2.60
0.70	44.644	31.25	Q10=	141.96	142	cfs	3.05
0.25	12.031	3.01	Q25=	183.08	183	cfs	3.58
0.10	11.349	1.13	Q50=	226.28	226	cfs	4.06
			Q100=	262.89	263	cfs	4.53
	80.13	46.29					
0.58							
	Factor* 0.90 0.55 0.70 0.25 0.10 0.58	Area Factor* (Ac) 0.90 12.109 0.55 0.000 0.70 44.644 0.25 12.031 0.10 11.349 80.13 0.58	Area AxC 0.90 12.109 10.90 0.55 0.000 0.70 44.644 31.25 0.25 12.031 3.01 0.10 11.349 1.13 80.13 46.29	Area Axc 9.90 12.109 10.90 Q2= 0.55 0.000 Q5= 0.70 44.644 31.25 Q10= 0.25 12.031 3.01 Q25= 0.10 11.349 1.13 Q50= 0.58 6.29 0.58 0.58	Area Rational Method Factor* (Ac) AxC Rational 0.90 12.109 10.90 Q2= 99.99 0.55 0.000 Q2= 10.90 0.70 44.644 31.25 Q10= 141.96 0.25 12.031 3.01 Q25= 183.08 0.10 11.349 1.13 Q50= 226.28 Q100= 262.89 0.58 658 100= 100=	Area Rational Method Factor* (Ac) AxC Rational 0.90 12.109 10.90 Q2= 99.99 100 0.55 0.000 Q5= 120.66 121 0.70 44.644 31.25 Q10= 141.96 142 0.25 12.031 3.01 Q25= 183.08 183 0.10 11.349 1.13 Q50= 226.28 226 Q100= 262.89 263 263 263	Area Tc = 55 Area Rational Rational 0.90 12.109 10.90 Q2= 99.99 100 cfs 0.70 44.644 31.25 Q10= 141.96 142 cfs 0.25 12.031 3.01 Q25= 183.08 183 cfs 0.10 11.349 1.13 Q50= 226.28 226 cfs Q100= 262.89 263 cfs 0.58 0.58 cfs 0.58 <t< td=""></t<>

Culverts

	Commercial B	Commercial C	Commercial D	Open Space B	Open Space C	Open Space D	Gravel B	Gravel D	Woods B	Woods D	Imp B	Imp C	Imp D	Res B	Res D	Total Ac.
Sum	30.549	2.966	81.971	3.889	4.781	23.251	2.223	4.328	0.371	28.832	8.456	3.975	29.945	1.561	1.877	228.972
	7.786	1.638	2.037	0.482	2.451	0.400	2.223	1.146	0.271	4.536	0.112	1.556	1.132	1.561	1.877	
	3.186	0.655	30.847	1.329	0.437	3.080		1.109	0.100	19.231	0.094	0.133	1.045			
	0.501	0.674	4.459	0.262	0.068	2.336		0.343		2.684	0.553	1.207	0.301			
	2.870		24.703	0.289	1.062	0.840		1.731		2.381	1.261	0.346	0.406			
	0.148		11.669	0.190	0.763	1.683					2.106	0.675	1.165			
	0.020		0.199	0.710		1.599					2.947	0.057	2.513			
	0.630		0.120	0.627		1.158					1.383		0.633			
	7.221		0.022			0.145							1.092			
	0.592		2.483			1.040							0.206			
	0.233		0.193			3.345							1.086			
	0.293		0.183			5.900							4.178			
	1.952		1.136			0.133							0.028			
	0.220		1.278			0.472							0.238			
	4.899		0.045			0.037							0.118			
			2.597			1.084							0.057			
													3.617			
													4.028			
													0.245			
													0.216			
													7.644			
				•												
Count	14	3	15	7	5	15	1	4		4	7	6	20	1	1	103

Rational Land Use Types

			 		Bridg	ge						
		Commercial		Open Space		Grave	1	Wo	ods		Impervious	Total Ac.
Sum	28.966		8.349			0		16.099		10.54		63.954
	16.052		7.476			0.000		5.665		0.604		
	5.571		0.059					10.434		3.659		
	7.343		0.814							4.679		
										1.598		
Count	3		3			1		2		4		13
Total Area	28.066		Q 240			0	ı r	16.000		10.54		
hu Tuno	20.500		0.545			0		10.055		10.54		
by type												
1					Trib to Hobo	caw Creek						
		Commercial		Open Space		Grave	1	Wo	ods		Impervious	Total Ac.
Sum	44.644		12.031			0		11.349		12.109		80.133
	31.882		0.275			0.000		9.093		4.860		
	11.886		2.233					1.080		3.756		
	0.876		0.212					0.622		3.359		
			1.491					0.221		0.134		
			0.641					0.095				
			3.540					0.238				
			0.889									
			1.521									
			1.194									
			0.035									
Count	3		10			1		6		4		24
			10.001					44.040		40.400		
i otai Area	44.644		12.031			0		11.349		12.109		
ву гуре												

26 & Long Point Ra	DRAINAGE AREA= 0.358 SQ. 229.0 Acri						Predevelopment to 10'x5 RBC (Seacoast Pkwy)	DSN BY: CHK BY: DATE: 3/2/	ENR 2023	CDM Smith listen. think. deliver.		
							Time of Concentration Velocity Method (TR-55 Metho	d)				
Flow Type	Flow Segment	Flow Length (ft)	Elev. High	Elev. Low	Slope (ft/ft)	P ₂	Surface Description	n or k	Pipe Dia. / Channel Depth (ft)	Velocity (ft/sec)	Tc (min)	Notes
Sheet Flow	1	55	21	20.6	0.0073	4.30	Dense Grass (weeping, love, blue, buffalo, blue grama, and native grass mixtures)	0.240		0.08	11.4	
Shallow Concentrated	2	160	20.6	17	0.0225		Unpaved (shallow concentrated flow)	0.491		1.00	2.7	
Shallow Concentrated	4	953	14	9	0.0052		Unpaved (shallow concentrated flow)	0.491		1.17	13.5	wooded area, no defined chnl
Open Channel	3	1056	17	14	0.0028		Vegetation Lined	0.085	2	0.59	29.9	Ex 2:1 V-ditch

Vegetation Lined

Vegetation Lined

Concrete Pipe

0.085

0.085

0.013

3

4

3

1.06

2.61

5.40

Total

Use

20.6

0.4

0.6

79.1

79

1.317

² From HEC-22 Manual

minutes

minutes

hours

¹ USDA NRCS Part 630 NEH, eq 15-8

Ex 5:1 V-ditch

Ex 9'x5' RCBC

I-526 & Long Point Rd

Open Channel

Open Channel

Closed Conduits

Closed Conduits Closed Conduits 5

7

6

(1) Sheet Flow¹ =

(3) Pipe or Channel Flow¹ =

1309

55

184

P2 = 2-year, 24-hour precipitation depth (in) =

9

2.58

1.96

(2) Shallow Concentrated $Flow^2 = V = 33 * k * VS (ft/sec)$

2

1.36

1.36

0.0053

0.0222

0.0033

 $Tc = (0.007(nL)^{0.8} / (P_2^{0.5} S^{0.4})) (hr)$

4.3 Charleston, SC

V = (1.49/n) * R^(2/3) * VS (ft/sec), Assumes Pipe Full Flow (R=D/4) or Channel Flow Depth (R=d)

-526 & Long Point Rd DRAI	NAGE AREA=	0.100 64.0	SQ. MILE Acres	S			Predevelopment to Station 1361 Bridge			DSN BY CHK BY DATE: 6/2	: ERP : 1/2023	CDM Smith listen. think. deliver.
							Time of Concentration Velocity Method (TR-55 Method)	hod)				
Flow Type	Flow Segment	Flow Length	Elev. High	Elev. Low	Slope	P ₂	Surface Description	n or k	Pipe Dia. / Channel Depth	Velocity	Тс	Notes
		(ft)			(ft/ft)				(ft)	(ft/sec)	(min)	
Sheet Flow	1	100	16	15	0.0100	4.30	Woods: Light under brush	0.400		0.07	24.4	
Shallow Concentrated	2	490	15	11	0.0082	4.30	Unpaved (shallow concentrated flow)	0.491		1.00	8.2	
Shallow Concentrated	3	40	11	10	0.0250	4.30	Paved (shallow concentrated flow)	0.619		3.23	0.2	
Shallow Concentrated	4	520	10	7	0.0058	4.30	Unpaved (shallow concentrated flow)	0.491		1.23	7.0	
Open Channel	5	1475	7	3	0.0027		Vegetation Lined	0.085	2	0.58	42.7	Ex 2:1 V-ditch
Open Channel												
Open Channel												
Closed Conduits												
Closed Conduits												
Closed Conduits												
										Total	82.6	minutes
										Use	82	minutes
	P2 = 2-year, 2 (1) Sheet Flor (2) Shallow C	24-hour pr w ¹ = Concentrate	ecipitation ed Flow ² =	depth (in Tc = (0.0 V = 33 *) = 07(nL) ^{0.8} / (P k * VS (ft/sec	4.3 2 ^{0.5} S ^{0.4})) (hr) 2)	Charleston, SC				1.367 ¹ USDA NRCS Pa ² From HEC-22	hours art 630 NEH, eq 15-8 Manual
	(3) Pipe or Cl	hannel Flov	w ¹ =	V = (1.49	/n) * R^(2/3) * √S (ft/sec), Assumes Pipe Full Flow (R=D/4) or Channel Flow Dep	oth (R=d)				

I-526 & Long Point Rd DRA	INAGE AREA=	0.125 80.1	SQ. MILE Acres	≅S			Predevelopment to Trib to Hobcaw Creek			DSN BY CHK BY DATE: 6/2	/: ERP /: 21/2023	CDM Smith listen. think. deliver.
							Time of Concentration Velocity Method (TR-55 Meth	lod)				
Flow Type	Flow Segment	Flow Length	Elev. High	Elev. Low	Slope	P ₂	Surface Description	n or k	Pipe Dia. / Channel Depth	Velocity	Тс	Notes
		(ft)			(ft/ft)				(ft)	(ft/sec)	(min)	
Sheet Flow	1	100	21	18	0.0300	4.30	Woods: Light under brush	0.400		0.11	15.8	
Shallow Concentrated	2	820	18	13	0.0061	4.30	Paved (shallow concentrated flow)	0.619		1.00	13.7	
Shallow Concentrated	3	1260	13	5	0.0063	4.30	Unpaved (shallow concentrated flow)	0.491		1.29	16.3	
Open Channel	5	375	5	4	0.0027	4.30	Natural Channel Irregular Section with pools 1	0.095	3	0.67	9.3	Wetland Trib to Hobcaw Creek
Open Channel												
Open Channel					<u> </u>							
Closed Conduits												
Closed Conduits			4	4	'	Ļ						
Closed Conduits					<u> </u>	<u> </u>						
										Total	55.0	minutes
		0.4 k a		denata (in	1	1.2	Charlester CC			Use	<u> </u>	minutes
	P2 = 2-year,	24-nour pre	ecipitation	i depth (in)=	4.3	Charleston, Sc				1 0.917	hours
	(1) Sheet Flo)W [*] =		1c = (0.00	J/(nL) / (P	2 S)) (nr)	I. Construction of the second s				¹ USDA NRCS Pa	rt 630 NEH, eq 15-8
	(2) Shallow (Concentrate	ad Flow [∠] =	V = 33 * !	к * VS (ft/sec	(تـ					² From HEC-22 I	Manual
	(3) Pipe or C	hannel Flov	$w^1 =$	V = (1.4°	J/n) * R^(2/?) * VS (ft/sec), Assumes Pipe Full Flow (R=D/4) or Channel Flow Dept'	.h (R=d)				

STORMWATER MANAGEMENT: POST-DEVELOPMENT INPUTS

Hydrology

I-526 & LPR

* from Win-TR55

POST-DEVELOPMENT OUTFALL DISCHARGE

L-2523 Sta. 15+75 DA = 0.3 Sq. MI (189 Ac) Rational Method Tc = 79 min Rounded Area Surface CN* (Ac) AxC Rational Rational Q2= 307.22 92 1,443.30 307 cfs Commercial B 15.688 Commercial C 94 2.944 276.74 Q5= 411.56 412 cfs Commercial D 95 7,787.25 Q10= 497.69 498 81.971 cfs Open Space B 61 3.889 237.23 Q25= 614.34 614 cfs Q50= 711.68 Open Space C 74 3.503 259.22 712 cfs Q100= 812.17 Open Space D 80 17.407 1,392.56 812 cfs Gravel B 85 2.223 188.96 Gravel D 91 4.329 393.94 Woods B 66 0.000 83 2,355.87 Woods D 28.384 98 13.527 1.325.65 Impervious B Impervious C 98 389.55 3.975 Impervious D 98 47.694 4,674.01 70 1.561 Residential B 109.27 Residential D 85 1.877 159.55 Total Drainage Area (Ac) = 228.97 20993.08 Composite CN = 91.68 Rounded CN = 92

			Rational Method					
		Area				Rounded	Tc = 82	min
Surface	C Factor*	<u>(Ac)</u>	AxC		Rational	Rational		<u>i</u>
Pavement	0.90	11.465	10.32	Q2=	54.77	55	cfs	1.62
Gravel Surfaces	0.55	0.000		Q5=	67.61	68	cfs	1.99
Industrial/Residential Areas	0.70	28.966	20.28	Q10=	80.84	81	cfs	2.39
Grass Shoulders/Medians	0.25	7.424	1.86	Q25=	106.55	107	cfs	2.86
Woodland & Forest	0.10	16.099	1.61	Q50=	133.44	133	cfs	3.28
				Q100=	157.09	157	cfs	3.71
Total Drainage Area (Ac) =		63.95	34.06					
Composite C =	0.53							

* from SCDOT's "Requirements for Hydraulic Design Studies" (2009), flat slopes < 2%

	Trib	to Hobcaw	Creek DA = 0.125 Sq.	MI (80 Ac)				
			Rational Method					
		Area				Rounded	Tc = 55	min
Surface	C Factor*	(Ac)	AxC		Rational	Rational		<u>i</u>
Pavement	0.90	14.086	12.68	Q2=	101.72	102	cfs	2.15
Gravel Surfaces	0.55	0.000		Q5=	122.74	123	cfs	2.60
Industrial/Residential Areas	0.70	44.644	31.25	Q10=	144.40	144	cfs	3.05
Grass Shoulders/Medians	0.25	10.054	2.51	Q25=	186.24	186	cfs	3.58
Woodland & Forest	0.10	11.349	1.13	Q50=	230.18	230	cfs	4.06
				Q100=	267.42	267	cfs	4.53
Total Drainage Area (Ac) =		80.13	47.58					
Composite C =	0.59							

Source: https://www.scdot.org/business/technicalPDFs/hydraulic/rainfall_intensity.pdf

	0.				
	Ratio	onal Coeffic	ients	Recurrence	Г
Frequency (years)	а	b	с	Interval	
2	72.69	11.39	0.839	2	Ī
5	61.16	9.846	0.7573	5	
10	55.13	8.412	0.6972	10	I
25	45.53	6.257	0.6179	25	I
50	42.68	5.28	0.5741	50	I
100	39.53	4.297	0.5309	100	

Charleston, SC Frequency 24 Hr Rainfall (in) 2 4.3 5 5.5 10 6.6 25 8.0 50 9.2 100 10.4 Source: https://www.scdt.org/busir

Source: https://www.scdot.org/business/technicalPDFs/hydraulic/appendixF_SC_Rainfall_Data.pdf

Culverts

c	11	n	2
_ 3	u		J

	Commercial B	Commercial C	Commercial D	Open Space B	Open Space C	Open Space D	Gravel B	Gravel D	Woods B	Woods D	Imp B	Imp C	Imp D	Res B	Res D	Total Ac.
Sum	15.688	2.944	81.971	3.889	3.503	17.407	2.223	4.329	0	28.384	13.527	3.975	47.694	1.561	1.877	228.972
	1.256	2.944	10.968	0.892	1.103	4.192	2.223	1.146		1.143	1.768	3.653	4.178	1.561	1.877	
	6.743		7.931	0.399	0.926	2.635		1.109		2.700	4.884	0.322	2.945			
	7.388		25.000	2.598	1.474	1.362		0.343		4.055	0.901		4.019			
	0.301		1.278			2.459		1.731		2.684	3.232		1.333			
			1.952			3.825				2.494	2.742		4.086			
			1.877			2.435				13.863			1.902			
			1.136			0.499				0.574			1.101			
			1.561							0.871			4.884			
			6.755										2.296			
			5.107										10.72			
			4.459										3.972			
			13.947										4.233			
													1.038			
													0.987			
													-			
Count	4	1	12	3	3	7	1	4	0	8	5	2	14	1	1	66

Rational Method Land Use Types

-526 & Long Point Rd DRAI	NAGE AREA=	0.000 0.0	SQ. MILE Acres	S			Predevelopment to 10'x5 RBC (Seacoast Pkwy)			DSN BY: I CHK BY: _ DATE: 3/2/	:NR 2023	CDM Smith listen. think. deliver.
							Time of Concentration Velocity Method (TR-55 Metho	d)				
Flow Type	Flow Segment	Flow Length	Elev. High	Elev. Low	Slope	P ₂	Surface Description	n or k	Pipe Dia. / Channel Depth	Velocity	Тс	Notes
Sheet Flow	1	55	21	20.6	0.0073	4.30	Dense Grass (weeping, love, blue, buffalo, blue grama, and native grass mixtures)	0.240	(π)	(π/sec) 0.08	(min) 11.4	
Shallow Concentrated	2	160	20.6	17	0.0225		Unpaved (shallow concentrated flow)	0.491		1.00	2.7	
Shallow Concentrated	4	953	14	9	0.0052		Unpaved (shallow concentrated flow)	0.491		1.17	13.5	wooded area, no defined chnl
Open Channel	3	1056	17	14	0.0028		Vegetation Lined	0.085	2	0.59	29.9	Ex 2:1 V-ditch
Open Channel	5	1309	9	2	0.0053		Vegetation Lined	0.085	3	1.06	20.6	Ex 5:1 V-ditch
Open Channel	7	55	2.58	1.36	0.0222		Vegetation Lined	0.085	4	2.61	0.4	
Closed Conduits	6	184	1.96	1.36	0.0033		Concrete Pipe	0.013	3	5.40	0.6	Ex 9'x5' RCBC
Closed Conduits												
Closed Conduits												
										Total	79.1	minutes

					Use	79	minutes
P2 = 2-year, 24-hour precipitation depth (in)	4.3	Charleston, SC				1.317	hours
(1) Sheet Flow ¹ = Tc = (0.00	(nL) ^{0.8} / (P2 ^{0.5} S ^{0.4})) (I	٦r)			-	¹ USDA NRCS Pa	art 630 NEH, eq 15-8
(2) Shallow Concentrated Flow ² = $V = 33 * k$	√S (ft/sec)					² From HEC-22	Manual
(3) Pipe or Channel Flow ¹ = V = (1.49/	* R^(2/3) * √S (ft/s	ec), Assumes Pipe Full	Flow (R=D/4) or Channel Flow Depth	(R=d)			

I-526 & Long Point Rd

I-526 & Long Point Rd							Predevelopment to Station 1361 Bridge			DSN BY	·FRP	CDM.
DRA	NAGE AREA=	0.000 0.0	SQ. MILE Acres	S						CHK BY DATE: 6/2	: 1/2023	Smith listen. think. deliver.
							Time of Concentration Velocity Method (TR-55 Met	hod)				
Flow Type	Flow Segment	Flow Length	Elev. High	Elev. Low	Slope	P ₂	Surface Description	n or k	Pipe Dia. / Channel Depth	Velocity	Tc	Notes
Sheet Flow	1	100	16	15	0.0100	4.30	Woods: Light under brush		(19)	0.07	24.4	
Shallow Concentrated	2	490	15	11	0.0082	4.30	Unpaved (shallow concentrated flow)			1.00	8.2	
Shallow Concentrated	3	40	11	10	0.0250	4.30	Paved (shallow concentrated flow)			3.23	0.2	
Shallow Concentrated	4	520	10	7	0.0058	4.30	Unpaved (shallow concentrated flow)			1.23	7.0	
Open Channel	5	1475	7	3	0.0027		Vegetation Lined		2	0.58	42.4	Ex 2:1 V-ditch
Open Channel												
Open Channel												
Closed Conduits												
Closed Conduits												
Closed Conduits												
										Total	82.2	minutes
	D2 2	24		denate 2	1	4.2	Charlester CC	_		Use	82	minutes
	P2 = 2-year,	24-hour pr	ecipitation	depth (in) = 0.8 / (D)	4.3	Charleston, SC				1.36/	hours
	(1) Sheet Flo	- w =	2	IC = (0.0	J/(NL) / (P)	2 S)) (nr) \					USDA NRCS Pa	rt 630 NEH, eq 15-8
	(2) Shallow (Concentrate	ed Flow ² =	v = 33 *	к v5 (ft/sec	.)					[~] From HEC-22	Vianual
	(3) Pipe or C	hannel Flov	N ¹ =	V = (1.49	/n) * R^(2/3) * √S (ft/sec), Assumes Pipe Full Flow (R=D/4) or Channel Flow Dep	oth (R=d)				

I-526 & Long Point Rd DRAI	NAGE AREA=	0.000 0.0	SQ. MILE Acres	S			Predevelopment to Trib to Hobcaw Creek			DSN BY CHK BY DATE: 6/2	/: ERP /: 21/2023	CDM Smith listen. think. deliver.
							Time of Concentration Valority Method (TP EE Metho	ad)				
Flow Type	Flow Segment	Flow Length	Elev. High	Elev. Low	Slope	P ₂	Surface Description	n or k	Pipe Dia. / Channel Depth	Velocity	Тс	Notes
		(ft)			(ft/ft)				(ft)	(ft/sec)	(min)	
Sheet Flow	1	100	21	18	0.0300	4.30	Woods: Light under brush			0.11	15.8	
Shallow Concentrated	2	820	18	13	0.0061	4.30	Paved (shallow concentrated flow)			1.00	13.7	
Shallow Concentrated	3	1260	13	5	0.0063	4.30	Unpaved (shallow concentrated flow)			1.29	16.3	
Open Channel	5	375	5	4	0.0027	4.30	Natural Channel Irregular Section with pools 1		3	0.67	9.3	Wetland Trib to Hobcaw Creek
Open Channel												
Open Channel												
Closed Conduits												
Closed Conduits												
Closed Conduits												
										Total	55.1	minutes
								_		Use	55	minutes
	P2 = 2-year,	24-hour pr	ecipitation	i depth (in) =	4.3	Charleston, SC				0.917	hours
	(1) Sheet Flo (2) Shallow (ow ¹ = Concentrate	ed Flow ² =	Tc = (0.0) V = 33 *	07(nL) ^{0.8} / (P k * VS (ft/sec	2 ^{0.5} S ^{0.4})) (hr) :)					¹ USDA NRCS Pa ² From HEC-22	art 630 NEH, eq 15-8 Manual

											Existing Culv	erts and	Cross-Lines								
				Culvert Date	a				ł	lydrology Da	ta		50-Y	ear Storm			100-Ye	ear Storm			
ID	Station	Alignment	Туре	Size (US/DS)	US Height (in)	Length (ft)	Inlet El.	Outlet El.	DA (ac)	Method	Tc (min)	Q (cfs)	HW Elevation (ft)	HW/D	Overtopping	Q (cfs)	HW Elevation (ft)	HW/D	Overtopping	Field Notes	50-Year Hydraulic Analysis Notes
1*	15+75	L-2523	RCBC	10'x5'	60	60	2.66	2.66	233.0	NRCS	98	425.0	8.63	1.2	Yes	493.0	8.84	1.2	Yes	Good condition	Existing HW/D = 1.2
2	1399+75	I-526	RCBC	9'x5'	60	224	3.09	2.47	189.0	NRCS	96	415	10.82	1.546	No	475	11.57	1.696	No	Outlet has settled 1.5'	Existing HW/D = 1.5
4	1355+60	I-526	RCP	24"	24	232	4.63	2.56	3.4	Rational	18.6	14.7	9.51	2.4	No	16.6	10.73	3.1	No	Good condition	Existing HW/D = 2.0
5	1378+35	I-526	RCP	24"	24	276	6.23	6.24	4.1	Rational	30	13.9	10.13	1.95	No	15.9	10.63	2.2	No	Good condition	Existing HW/D = 2.0

* Design storm for Culvert 1 is the 25-year storm

** Check storm for Culvert 1 is the 50-year storm

										Post-De	velopment Cu	ilverts ai	nd Cross-Lin	es with Re	commended R	eplacem	ents					
				Culvert Date	•				н	lydrology Dat	la		50-Y	ear Storm			100-Ye	ar Storm				
ID	Station	Alignment	Туре	Size (US/DS)	US Height (in)	Length (ft)	Inlet El.	Outlet El.	DA (ac)	Method	Tc (min)	Q (cfs)	HW Elevation (ft)	HW/D	Overtopping	Q (cfs)	HW Elevation (ft)	HW/D	Overtopping	Field Notes	50-Year Hydraulic Analysis Notes	Recommendations
1*	15+75	L-2523	RCBC	10'x5'	60	60	2.66	2.66	229.0	NRCS	98	473	8.78	1.224	Yes	548	9	1.268	Yes	Good condition	Post-Dev. HW/D = 1.2	Retain existing
2	1399+75	I-526	RCBC	9'x5'	60	224	3.09	2.47	189.0	NRCS	96	444	11.37	1.656	No	510	11.75	1.732	No	Outlet has settled 1.5'	Post-Dev. HW/D = 1.7	11'x5' RCBC for HW/D < 1.2
3*	23+30	L-2118	RCP	(3) 48"	48	84	3.85	3	89.0	NRCS	95	176	7.99	1	No	205	9.05	1.3	No	Existing (3)36" under current L-2118 alignment	N/A	Relocated crossing. Recommendation shown
4	1355+60	I-526	RCP	24"	24	232	4.63	2.56	3.4	Rational	18.6	15.4	9.51	2.4	No	17.4	10.73	3.1	No	Good condition	Post-Dev. HW/D = 2.4	36" RCP for HW/D = 1.2
5	1378+35	I-526	RCP	24"	24	276	6.23	6.24	4.1	Rational	30	17.3	10.93	2.35	No	19.8	11.53	2.65	No	Good condition	Post-Dev. HW/D = 2.4	36" RCP for HW/D < 1.2
6	1422+00	Line 3	RCP	(3) 18"	18	84	13.55	12.4	11.0	Rational	71.1	19.3	14.99	1	No	22.6	15.15	1.1	No	No existing pipe at this location	N/A	Proposed new crossing. Recommendation shown

* Design storm for Culverts 1 and 3 is the 25-year storm ** Check storm for Culverts 1 and 3 is the 50-year storm

						Exist	ng Culve	erts and Cro	oss-Lines	with Propose	ed Flow Ro	ates				
			ulvert Da	ta					ŀ	iydrology Da	ıta			D-Year Storm		
ID	ID Station Alignment Type Size US Heigh (n) Length (th) Inte E Outlet E Cach (ac) Method (c) A (c) HW Overtopping Exceed Cache (c)													Exceeds Capacity?	Recommendation	
EP-0900	1368+00 left	I-526	RCP	18"	18	96.7	2.54	3.9	0.5	Rational	5	2.3	3.34	No	No	Possibly replace due to settlement of existing pipe. Invert out is higher than invert in by 1.5'. Otherwise retain.
EP-0902	1373+00 left	I-526	RCP	18"	18	96.4	5.51	4.84	0.6	Rational	5	2.6	6.37	No	No	Retain & Extend
EP-1000	1393+00 left	I-526	RCP	18"	18	95.5	8.09	7.03	0.9	Rational	5	3.6	9.15	No	No	Retain & Extend
EP-1100	1406+00 left	I-526	RCP	18"	18	104.6	11.44	9.63	0.7	Rational	5	2.1	12.20	No	No	Retain
EP-1200	1412+00 left	I-526	RCP	18"	18	117	12.91	12.04	0.9	Rational	5	2.4	13.74	No	No	Retain
EP-1201	1420+00 left	I-526	RCP	18"	18	135.1	14.58	13.63	1.6	Rational	5	3.9	15.70	No	No	Retain & Extend

	LOCATION			RUNOFF								PIPE DE	SIGN					
PIPE I.D.	FROM	то	TIME OF	DISCHARGE	COMPOSITE	INLET ELEV	OUTLET	INLET	OUTLET	TYPE	MATERIAL	LENGTH	SLOPE	DIA. (ft)	CAPACITY	AVAILABLE FREEBOARD	VELOCITY	PAY ITEM
			CONC. (min)	(cfs)	C VALUE	[ft]	ELEV ft]	HGL (ft)	HGL (ft)	=		(ft)	(ft/ft)	((cfs)	US (ft)	(ft/s)	
EP-0900	EXDI-0900	EXOP-0901	5	3.98	0.9	0.14	-0.34	0.94	0.2	Pine	Concrete	96.74	0.5	15	8 66	7.06	1.28	71/1113
EP-0901	EXDI-0902	EXOP-0903	5	1.8	0.9	4.04	3.46	19	4.01	Pine	Concrete	96.37	0.5	1.5	9.5	5.11	1.20	71/1113
EP 1000	EXDI-0002	EXOR 1001	5	1.07	0.9	4.04	5.40	7.06	F.00	Dipo	Concrete	05.57	1.5	1.5	14.09	3.11	2.01	7141113
EP-1000	EXDI-1000	EXOP-1001	5	1.57	0.9	10.4	0.47	11 16	0.00	Pipe	Concrete	104.62	1.5	1.5	14.50	2.51	2.01	7141113
EP-1100	EXDI-1100	EXOP-1101	5	1.75	0.9	10.4	0.7	12.00	9.09	Pipe	Concrete	104.62	1.02	1.5	11.42	2.59	1.19	7141113
EP-1200	EXDI-1200	EXOP-1201	5	1.64	0.9	12.05	14.01	16.71	12.5	Pipe	Concrete	117.01	0.87	1.5	11.45	4.16	1.50	7141113
EP-1201	EXDI-1202	EXOP-1203	F	0.49	0.9	15.55	14.91	10.71	15.05	Pipe	Concrete	78.05	0.5	1.5	0.00	1.05	2.22	7141113
EP-1501	EXIP-1301	EXOP-1302	5	0.55	0.9	-1.5	-1.5	16.02	15.02	Pipe	Concrete	78.05	0.04	1.5	- U	0	2.22	7141115
EP-1302	EXCB-1304	EXCP-1303	F	0.74	0.9	14.5	14.40	16.02	16.02	Pipe	Concrete	47.15	0.04	2	3.43	2.31	3.23	7141114
EP-1505	EXCB-2040	EXCB-1304	5	0.74	0.9	14.51	14.5	10.64	10.02	Pipe	Concrete	154.56	0.01	2	2.27	1.27	5.2	7141114
EP-1504	EXDI-1901	EXOP-1305	5	0.89	0.9	-2.5	-2.5	0	59.01	Pipe	Concrete	207.03	0.47	2.5	0	47.22	15.00	7141115
EP-1001	EXCB-1601	EXCB-1620	5	1.02	0.9	17.00	17.0	76 70	50.01	Pipe	Concrete	105.41	0.47	1.5	0.50	-47.52	15.90	7141113
EP-1002	EXCB-1602	EXCB-1601	5	0.81	0.9	10.01	10.00	70.78	76.70	Pipe	Concrete	00.12	0.1	1.5	5.91	-54.95	15.74	7141113
EP-1603	EXIP-1603	EXCB-1602	5	0.82	0.9	18.01	18.55	76.82	/0./8	Pipe	Concrete	9.78	2.80	1.25	12.74	-56.21	1.35	7141112
EP-1605	EXDI-1605	EXCB-1604	5	0.8	0.9	18.8	17.83	84.89	84.71	Pipe	Concrete	13.85	8.53	1.5	35.75	-64.58	3.09	7141113
EP-1606	EXCB-1829	EXCB-1604	5	0.81	0.9	22.91	17.88	85.65	84.71	Pipe	Concrete	208.13	2.42	1.5	19.03	-62.85	3.68	7141113
EP-1607	EXCB-1606	EXCB-1604	5	0.94	0.9	10.20	17.83	80.00	84.71	Pipe	Concrete	107.5	0.16	1.5	4.87	-65.27	8.54	7141113
EP-1608	EXCB-1607	EXCB-1606	5	0.94	0.9	18.28	18.17	89.94	86.66	Pipe	Concrete	76.75	0.14	1.17	4.15	-69.07	8.2	7141141
EP-1609	EXDI-1608	EXCB-1607	5	0.52	0.83	18.54	18.4	92.12	89.94	Pipe	Concrete	9.95	1.41	1	4.92	-72.13	10.53	7141111
EP-1610	EXDI-1609	EXCB-1607	5	1.32	0.84	18.5	18.38	90.35	89.94	Pipe	Concrete	116.24	0.1	1.17	3.47	-69.99	3.61	/141141
EP-1611	EXIP-1610	EXDI-1609	5	1.01	0.86	18.41	18.17	90.74	90.35	Pipe D:	Concrete	83.17	0.29	1.25	4.04	-70.33	3.06	7141112
EP-1701	EXDI-1702	EXOP-1701	5	0.45	0.9	8.89	8.8	13.02	11.01	Pipe	Concrete	17.12	0.53	2.5	34.66	2.15	9	/141115
EP-1702	EXDI-1703	EXDI-1702	5	1.2	0.9	9	8.89	15.04	13.02	Pipe	Concrete	40.84	0.27	2.5	24.81	0.05	8.91	7141115
EP-1703	EXCB-1704	EXDI-1703	5	1.7	0.9	10.26	9	17.68	15.04	Pipe	Concrete	186.73	0.67	2.5	39.26	-1.79	8.81	7141115
EP-1704	EXCB-1705	EXCB-1704	5	0.69	0.9	11.05	10.51	17.69	17.68	Pipe	Concrete	47.58	1.13	1.25	8.02	-1.87	0.67	7141112
EP-1705	EXCB-1706	EXCB-1704	5	0.65	0.9	11.07	10.26	19.71	17.68	Pipe	Concrete	202.81	0.4	2.5	30.21	-3.08	8.63	7141115
EP-1706	EXCB-1707	EXCB-1706	5	0.74	0.9	12.29	11.16	19.72	19.71	Pipe	Concrete	48.32	2.34	1.25	11.51	-3.12	0.66	7141112
EP-1707	EXCB-1708	EXCB-1706	5	0.77	0.9	11.84	11.16	21.64	19.71	Pipe	Concrete	202.47	0.34	2.5	27.7	-4.22	8.44	7141115
EP-1708	EXCB-1709	EXCB-1708	5	0.47	0.9	13.16	11.84	21.66	21.64	Ріре	Concrete	47.95	2.75	1.25	12.49	-4.18	0.76	/141112
EP-1709	EXDI-1810	EXCB-1708	5	2.55	0.9	21.43	11.92	23.98	13.11	Pipe	Concrete	235.38	4.04	2.5	96.09	-5.62	8.19	7141115
EP-1801	EXCB-1801	EXCB-1914	5	1.26	0.9	-2	-2	0	0	Ріре	Concrete	203.3	0	2	0	0	0	/141114
EP-1802	EXDI-1802	EXCB-1801	5	0.85	0.9	-1.25	-1.25	0	0	Pipe	Concrete	13.13	0	1.25	0	0	0	7141112
EP-1803	EXCB-1803	EXCB-1801	5	2.04	0.9	-2	-2	0	0	Pipe	Concrete	77.66	0	2	0	0	0	7141114
EP-1804	EXIP-1804	EXCB-1803	5	2.62	0.9	-1.5	-1.5	0	0	Pipe	Concrete	91.06	0	1.5	0	0	0	7141113
EP-1805	EXCB-1805	EXCB-1803	5	1.01	0.9	-2	-2	0	0	Pipe	Concrete	71.73	0	2	0	0	0	7141114
EP-1806	EXCB-1806	EXCB-1805	5	0.5	0.9	-2	-2	0	0	Pipe	Concrete	94.47	0	2	0	0	0	/141114
EP-1807	EXCB-1807	EXCB-1806	5	0.4	0.74	-1.5	-1.5	0	0	Pipe	Concrete	32.23	0	1.5	0	0	0	7141113
EP-1808	EXCB-1808	EXCB-1807	5	1.92	0.9	-1.5	-1.5	0	0	Ріре	Concrete	156.73	0	1.5	0	0	0	/141113
EP-1809	EXCB-1809	EXCB-1808	5	1.49	0.9	-1.5	-1.5	0	0	Pipe	Concrete	71.58	0.5	1.5	0	0	0	7141113
EP-1810	EXCB-1811	EXDI-1810	5	1.08	0.9	22.73	22.68	23.99	23.98	Pipe	Concrete	46.87	0.1	1.25	2.38	-5.59	0.53	/141112
EP-1811	EXCB-1812	EXDI-1810	5	1.37	0.78	21.6	21.43	25.4	23.98	Pipe	Concrete	162.92	0.1	2.5	15.12	-6.54	8.04	7141115
EP-1812	EXCB-1813	EXCB-1812	5	0.28	0.9	14.87	13.69	25.41	25.4	Pipe	Concrete	47.67	2.48	1.25	11.84	-6.46	0.63	/141112
EP-1813	EXCB-1814	EXCB-1812	5	0.85	0.9	14.75	13.76	28.24	25.4	Pipe	Concrete	194.68	0.51	2.5	34.09	-8.49	7.87	/141115
EP-1814	EXCB-1815	EXCB-1814	5	0.73	0.9	16.32	14.87	28.37	28.24	Pipe D:	Concrete	47.66	3.04	1.25	13.13	-8.6	2.08	/141112
EP-1815	EXDI-1816	EXCB-1814	5	0.88	0.9	15.31	14.84	30.32	28.24	Pipe	Concrete	130.44	0.36	2.5	28.69	-11.06	/.42	/141115
EP-1816	EXCB-1817	EXDI-1816	5	1.6	0.9	15.58	15.38	32.05	30.32	Pipe	Concrete	26.77	0.75	2	22.79	-10.42	11.35	/141114
EP-181/	EXCB-1818	EXCB-1817	5	1.02	0.9	15.74	15.58	41.52	32.05	Pipe	Concrete	104.36	0.15	2	10.32	-19.63	11.07	/141114
EP-1818	EXDI-1819	EXCB-1818	5	0.44	0.9	17.19	16.47	41.52	41.52	Pipe B:	Concrete	10.03	/.18	1.25	20.17	-21.42	0.09	/141112
EP-1819	EXJB-1820	EXCB-1818	19.02	4.48	0.9	22.36	15.83	46.73	41.52	Pipe	Concrete	93.12	7.01	2	69.79	-24.7	10.84	/141114
EP-1820	EXDI-1821	EXJB-1820	19.08	3.66	0.9	16.37	16.3	46.74	46.73	Pipe	Concrete	13	0.5	1.25	5.32	-26.83	0.69	/141112
EP-1821	EXCB-1822	EXJB-1820	5	0.88	0.9	16.24	15.73	54.55	46.73	Pipe	Concrete	101.11	0.5	2	18.64	-32.74	10.66	/141114
EP-1822	EXDI-1824	EXCB-1822	5	0.86	0.9	22.26	16.31	54.55	54.55	Pipe	Concrete	90.08	6.61	1.5	31.46	-34.71	0.03	/141113
EP-1823	EXDI-1823	EXCB-1822	5	0.94	0.9	18.04	17.87	54.56	54.55	Pipe	Concrete	9.87	1.72	1.25	9.88	-34.52	0.76	7141112
EP-1825	EXCB-1826	EXCB-1825	5	1.22	0.9	16.52	16.46	58.01	57.07	Pipe	Concrete	64.27	0.09	2	8	-35.91	9.35	7141114
EP-1826	EXDI-1828	EXCB-1829	5	0.96	0.9	20.57	20.51	86.12	85.65	Pipe	Concrete	12.55	0.5	1.25	5.32	-63.22	4.91	7141112
EP-1827	EXDI-1827	EXCB-1826	5	0.9	0.9	18.44	18.22	58.01	58.01	Pipe	Concrete	11.78	2.32	1.25	11.47	-37.57	0.45	7141112
EP-1901	EXDI-1902	EXDI-1901	5	0.32	0.9	-3	-3	0	0	Pipe	Concrete	295.94	0	3	0	0	0	7141116
EP-1902	EXDI-1903	EXDI-1902	5	0.5	0.9	-2.5	-2.5	0	0	Pipe	Concrete	392.7	0	2.5	0	0	0	7141115
EP-1903	EXDI-1904	EXDI-1903	5	0.88	0.9	-2	-2	0	0	Pipe	Concrete	148.68	0	2	0	0	0	7141114

	LOCATION			RUNOFF								PIPE DE	SIGN					
PIPE I.D.	FROM	то	TIME OF CONC. (min)	DISCHARGE (cfs)	COMPOSITE C VALUE	INLET ELEV [ft]	OUTLET ELEV ft]	INLET HGL (ft)	OUTLET HGL (ft)	TYPE	MATERIAL	LENGTH (ft)	SLOPE (ft/ft)	DIA. (ft)	CAPACITY (cfs)	AVAILABLE FREEBOARD	VELOCITY (ft/s)	PAY ITEM
														-		US (ft)		
EP-1904	EXDI-1905	EXDI-1904	5	0.72	0.9	-2	-2	0	0	Pipe	Concrete	251.44	0	2	0	0	0	/141114
EP-1905	EXCB-1906	EXDI-1905	5	1.2	0.9	-2.5	-2.5	0	0	Pipe	Concrete	99.27	0	2.5	0	0	0	7141115
EP-1906	EXDI-1917	EXCB-1906	10	1.09	0.9	-1.25	-1.25	0	0	Pipe	Concrete	15.12	0	1.25	0	0	0	7141112
EP-1907	EXCB-1907	EXCB-1906	5	1.5	0.9	-2	-2	0	0	Pipe	Concrete	84.57	0.5	2	0	0	0	7141114
EP-1908	EXDI-1908	EXCB-1907	102.12	21.29	0.67	-1.25	-1.25	0	0	Pipe	Concrete	11.38	0.5	1.25	0	0	0	/141112
EP-1909	EXMH-1909	EXCB-1907	5	0.82	0.8	-1.5	-1.5	0	0	Pipe	Concrete	146.78	0.5	1.5	0	0	0	/141113
EP-1910	EXCB-1910	EXCB-1907	5	0.76	0.77	-1.5	-1.5	0	0	Pipe	Concrete	87.53	0	1.5	0	0	0	/141113
EP-1911	EXIP-1911	EXCB-1910	5	2.27	0.6	-1.25	-1.25	0	0	Pipe	Concrete	10.13	0	1.25	0	0	0	7141112
EP-1912	EXCB-1912	EXCB-1910	5	2.55	0.56	-1.5	-1.5	0	0	Pipe	Concrete	104.32	0	1.5	0	0	0	7141113
EP-1913	EXDI-1913	EXCB-1912	5	3.56	0.56	-1.25	-1.25	0	0	Pipe	Concrete	14.37	0	1.25	0	0	0	7141112
EP-1914	EXCB-1914	EXCB-1906	5	2.09	0.41	-2	-2	0	0	Pipe	Concrete	121.3	0	2	0	0	0	7141114
EP-2001	EXCB-2103	EXCB-2000	5	2.4	0.35	13.24	12.86	16.61	16.18	Pipe	Concrete	170.6	0.22	2.5	22.56	3.71	4.41	7141115
EP-2002	EXCB-2000	EXCB-2001	5	3.92	0.34	12.68	12.6	16.18	16.12	Pipe	Concrete	53./1	0.15	3	30	3.37	3.07	7141116
EP-2003	EXCB-2001	EXCB-2002	5	5.45	0.69	12.7	12.53	16.12	16.06	Pipe	Concrete	52.47	0.32	3	44.24	3.43	3.08	/141116
EP-2004	EXCB-2002	EXCB-2003	12.5	8.27	0.68	12.5	12.38	16.06	15.99	Pipe	Concrete	65.12	0.18	3	33.37	3.42	3.11	7141116
EP-2005	EXCB-2004	EXCB-2003	5	2.66	0.81	15.41	15.08	16.06	15.99	Pipe	Concrete	/8.21	0.42	3	50.49	3.66	0.31	/141116
EP-2006	EXCB-2005	EXCB-2004	5	0.72	0.9	15.81	15.54	16.48	16.06	Pipe	Concrete	88.03	0.31	1.5	6.78	3.24	0.85	/141113
EP-2007	EXCB-2006	EXCB-2005	5	1.06	0.9	18.12	15.81	18.45	15.96	Pipe	Concrete	64.38	3.59	1.5	23.19	1.27	0.25	7141113
EP-2008	EXDI-2007	EXCB-2005	5	0.58	0.17	16.79	15.5/	17.28	16.96	Pipe	Concrete	9.33	1.29	1.25	8.54	1.63	0.68	7141112
EP-2009	EXDI-2008	EXCB-2003	5	0.65	0.9	16.23	15.21	17.65	15.93	Pipe	Concrete	96.87	1.05	2	27.05	2.04	2.22	7141114
EP-2010	EXDI-2009	EXDI-2008	5	1.01	0.48	16.81	16.41	17.91	17.65	Pipe	Concrete	170.86	0.23	2	12.76	2.11	2.06	7141114
EP-2012	EXIVIH-2010	EXDI-2009	5	0.11	0.45	17.7	16.85	18.78	17.65	Pipe	Concrete	107.41	0.79	1.25	6.7	2.23	3.74	7141112
EP-2013	EXIP-2011	EXMH-2010	5	0.85	0.52	19.35	17.77	19.56	17.86	Pipe	Concrete	33.85	4.67	1.25	16.26	1.09	0.13	7141112
EP-2014	EXCB-2012	EXMH-2010	5	0.93	0.31	17.81	17.71	19.19	18.78	Pipe	Concrete	24.57	0.41	1.25	4.8	2.01	3.65	7141112
EP-2015	EXCB-2013	EXDI-2009	5	0.05	0.1	16.98	16.85	18.04	17.91	Pipe	Concrete	61.48	0.21	2	12.12	3.12	1.17	7141114
EP-2016	EXCB-2003	EXMH-2015	5	0.56	0.31	12.41	11.23	15.99	15.37	Pipe	Concrete	/1./	1.65	3	99.71	3.53	3.89	7141116
EP-2017	EXDI-2014	EXIMH-2015	6.4	6.03	0.65	12.63	11.23	15.47	15.37	Pipe	Concrete	25.87	5.41	1.25	17.51	1.03	2.06	7141112
EP-2018	EXMH-2015	EXOP-2016	5	0.19	0.1	11.11	9.96	15.37	11.48	Pipe	Concrete	195.9	0.59	3	59.55	1.99	3.98	7141116
EP-2019	EXCB-2017	EXCB-2018	5	0.86	0.19	16.47	16.17	17.01	16.96	Pipe	Concrete	70	0.43	1.5	8.01	2.79	0.5	7141113
EP-2020	EXCB-2018	EXCB-2019	5	0.21	0.26	16.16	15.96	16.96	16.73	Pipe	Concrete	137.28	0.15	1.5	4.67	2.68	0.98	7141113
EP-2021	EXCB-2019	EXCB-2020	5	0.56	0.3	15.86	15.6	16.73	16.58	Pipe	Concrete	140.97	0.18	1.5	5.26	2.57	1.46	7141113
EP-2022	EXCB-2020	EXCB-2021	5	0.09	0.2	15.51	15.38	16.58	16.33	Pipe	Concrete	119.93	0.11	1.5	4.03	2.37	2.08	7141113
EP-2023	EXCB-2021	EXCB-2022	49.6	1.04	0.14	15.37	15.05	16.55	15.86	Pipe	Concrete	101.13	0.32	1.5	6.89	2.28	2.53	7141113
EP-2024	EXCB-2022	EXCB-2023	5	0.09	0.16	14.50	14.54	15.57	15.35	Pipe	Concrete	35.33	0.06	2	0.20	2.85	1.67	7141114
EP-2025	EXCB-2023	EXCB-2024	5	0.28	0.3	14.49	13.25	15.34	13.79	Pipe	Concrete	55.44	2.22	2	39.31	2.99	1.75	7141114
EP-2026	EXCB-2024	EXOP-2025	47.4	0.84	0.14	13.21	11.99	14.18	12.55	Pipe	Concrete	55.21	2.2	2 1.25	39.13	3.91	1.89	7141114
EP-2027	EXCB-2026	EX0P-2027	46.5	0.58	0.13	-1.25	-1.25	18.05	18.01	Pipe	Concrete	18./1	0.00	1.25	7.00	0	0	7141112
EP-2028	EXIP-2028	EXIVIH-2029	46.9	1.18	0.27	16.08	16 51	18.05	18.01	Pipe	Concrete	94.77	0.08	1.25	7.00	0.05	1.18	7141114
EP-2029	EXIP-2030	EXIVITI-2029	5	2.53	0.37	16.01	15.01	10.15	17.05	Pipe	Concrete	22.33	0.12	1.25	2.01	0.4	2.33	7141112
EP-2030	EVCP 2021	EXDI-2032	5 7 2	0.05	0.1	16.20	16.22	17.01	17.95	Pipe	Concrete	33.42	0.54	15	13.33	0.58	2.07	7141114
EP-2031	EXCD-2031	EXDI-2032	7.2 E	4.47	0.56	15.00	15 71	17.95	17.95	Pipe	Concrete	65.22	0.59	1.5	10.03	1.54	0.41	7141113
EP 2022	EXDI-2032	EXDI-2033	5	0.58	0.10	16.27	16.01	17.95	17.00	Pipe	Concrete	20.25	1.20	2	20.82	1.72	1.47	7141114
EP-2033	EXDI-2034	EXCB-2033	5	0.24	0.4	15.61	15 / 9	17.92	17.55	Pine	Concrete	20.50	0.15	2	10.33	0.49	2.42	7141114
EP-2034	EXCB. 2025	EXCB-2035	5	0.24	0.20	15.01	15 14	17.00	17.35	Pipe	Concrete	102.06	0.15	2	1/ 70	0.40	2.03	71/111/
EP-2035	EXID-2033	EXCB-2030	5	1.55	0.10	16.05	15 25	17.55	17.30	Pine	Aluminum	34.68	23	1	£3	0.00	0.86	7144512
EP-2030	EXID-2037	EXCB-2030	5	3.76	0.37	17.05	15 20	17 0/	15 /5	Pipe	Plactic	21.62	2.3	1 25	73 91	1.15	0.60	71/170/
EP-2037	EXCB-2036	EXCB-2030	14.9	0.34	0.71	15 14	14 58	17 39	17.20	Pine	Concreto	69.43	0.81	1.25	23.61	1.00	2.04	71/111/
EP-2030	EXCB-2030	EXCB-2039	44.5	0.34	0.17	14 59	14.50	17.30	16.94	Pipe	Concrete	305.20	0.01	2	20.00	1 22	2.02	71/111/
EP-2039	EXDL-2039	EXCB-2040	-+5	2.20	0.1	14.30	14.51	16.85	16.84	Pine	Concrete	9.88	3.65	15	23.22	0.58	1.16	71/1112
EP-2040	EXDI-2041	EXCB-2040	5	0.16	0.0	16.25	14.91	17 16	16.85	Pine	Concrete	186.21	0.74	1.5	6 / 9	1.74	1.40	7141113
EP-2041	EXDL-2042	EXDI-2041	47.1	3.7	0.12	16.85	16.25	17.10	16.54	Pine	Concrete	107.19	0.74	1.25	5.63	1.24	0.51	71/1112
EP-2042	EXDI-2043	EXDI-2042	47.1	2.86	0.50	17	16.25	17.13	17 10	Pine	Concrete	49.65	0.50	1.25	2.05	1.44	0.51	7141112
EP-2101	EXCB-2044	EXCB-2102	7/ 9	2.00	0.03	13.61	13.5/	17.30	16.76	Pine	Concrete	71 56	0.5	25	15 12	2.44	13/	71/1115
EP-2101	FXCB-2101	FXCB-2102	76.5	0.78	0.30	13.01	13 35	16.76	16.61	Pine	Concrete	60.66	0.1	2.5	15 12	3.67	4 37	7141115
NP-1612	CB-1611	CB-1612	, , , , ,	0.70	0.13	-15	-1 5	10.70	0.01	Pine	Concrete	47 9/	0.1	15	0	1.65	2.37	7141113
NP-1612	CB-1612	CB-1612				-1.5	-15	0	0	Pine	Concrete	95 71	0	1.5	0	1.65	2.22	7141113
NP-1614	CB-1613	CB-1614				-15	-15	0	0 0	Pine	Concrete	155.85	0	1.5	0	1.65	2.22	7141113
141 1014	CD 1013	CD 1014				1	1.5		,	ipe	Concrete	100.00	0	L.J	5	1.00	L.LL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	LOCATION			RUNOFF								PIPE DE	SIGN					
PIPE I.D.	FROM	то	TIME OF CONC. (min)	DISCHARGE (cfs)	COMPOSITE C VALUE	INLET ELEV [ft]	OUTLET ELEV ft]	INLET HGL (ft)	OUTLET HGL (ft)	TYPE	MATERIAL	LENGTH (ft)	SLOPE (ft/ft)	DIA. (ft)	CAPACITY (cfs)	AVAILABLE FREEBOARD US (ft)	VELOCITY (ft/s)	PAY ITEM
NP-1615	CB-1614	CB-1830				-1.5	-1.5	0	0	Pipe	Concrete	140.01	0	1.5	0	1.65	2.22	7141113
NP-1616	CB-1830	EXCB-1822				-2	-2	0	0	Pipe	Concrete	146.71	0	2	0	1.65	2.22	7141114
NP-1617	EXCB-1604	CB-1613				-2	-2	0	0	Pipe	Concrete	125.37	0	2	0	1.65	2.22	7141114

