

ECS Southeast, LLP

Geotechnical Subsurface Data Report Emergency Bridge Package 2020-1 SCDOT Project ID: P039600

Anderson County, South Carolina

ECS Project Number 14:9922

March 24, 2020

GEOTECHNICAL SUBSURFACE DATA REPORT

Emergency Bridge Package 2020-1 SCDOT Project ID: P039600 Anderson County, South Carolina

Prepared For:

Mr. Trapp Harris, P.E. 955 Park Street Columbia, SC 29201

Prepared By: ECS SOUTHEAST, LLP 1812 Center Park Drive, Suite D Charlotte, NC 28217

ECS Project No: 14:9922

Report Date: March 24, 2020

"Setting the Standard for Service"

NC Registered Engineering Firm F-1078 NC Registered Geologists Firm C-553 SC Registered Engineering Firm 3239

March 24, 2020

Mr. Trapp Harris, P.E. Geotechnical Engineer South Carolina Department of Transportation 955 Park Street Columbia, South Carolina 29201

ECS Project No. 14:9922

Reference: Geotechnical Subsurface Data Report Emergency Bridge Package 2020-1 SCDOT Project ID: P039600 Anderson County, South Carolina

Dear Mr. Harris:

ECS Southeast, LLP (ECS) has completed the subsurface exploration and laboratory testing for the above referenced project. Our services were performed in general accordance with the scope provided in the SCDOT NTP dated February 28, 2019. This report presents our understanding of the geotechnical aspects of the project, along with the results of the field exploration and laboratory testing conducted.

It has been our pleasure to be of service to the South Carolina Department of Transportation (SCDOT) during this phase of this project. Should you have any questions concerning the information contained in this report, or if we can be of further assistance to you, please contact us.

mmmm CARC Respectfully submitted, **ECS Southeast, LLP** Marc F. Plotkin, P.E., D.GE Kelly N. de Montbrun, P.E. DE MU **Principal Engineer** Geotechnical Project Engineer MPlotkin@ecslimited.com KdeMontbrun@ecslimited.com CA SC License No. 33477 ECS SOUTHEAST, LL No. COA3239

506 W. 13th Street, Greenville, NC 27834 • T: 252-215-2257 • F: 252-656-2622 • www.ecslimited.com ECS Capitol Services, PLLC • ECS Florida, LLC • ECS Mid-Atlantic, LLC • ECS Midwest, LLC • ECS Southeast, LLP • ECS Southwest, LLP

TABLE OF CONTENTS

1.0 INTRODUCTION	L
2.0 PROJECT LOCATION	Ĺ
2.1 PROJECT LOCATION	Ĺ
2.2 PROJECT DESCRIPTION	Ĺ
3.0 SUBSURFACE EXPLORATION	Ĺ
3.1 SOIL TEST BORINGS	Ĺ
3.2 ROCK CORING	<u>)</u>
3.3 GROUNDWATER	3
3.4 LABORATORY TESTING	3
4.0 CLOSING	\$

APPENDICES

Appendix A – Drawings & Reports

- Site Location Diagram
- Boring Location Diagram

Appendix B – Field Operations

- Reference Notes for Boring Logs
- Boring Logs (Borings B-1, B-2, B-3, B-4)
- Rock Core Photo Log (Borings B-1, B-2, B-3, B-4)
- Photo Log

Appendix C – Laboratory Testing

- Summary of Laboratory Results
- Laboratory Data Sheets
- Rock Core Summary
- Uniaxial Compressive Strength Reports (12 sheets)

Appendix D – Supplemental Report Documents

• Hammer Calibration

1.0 INTRODUCTION

ECS is pleased to present this Geotechnical Subsurface Data Report for the S-4-174 (Timms Mill Road) Bridge over Six & Twenty Creek, part of the Emergency Bridge Package 2020-1 project. The purpose of this report is to provide geotechnical information and laboratory testing results.

2.0 PROJECT LOCATION

2.1 PROJECT LOCATION

The project site is located along S-4-174 (Timms Mill Road) approximately 3.5 miles northwest of the intersection of I-85 and N Hwy 81. The project site is approximately 7.9 miles northeast of the town of Pendleton in Anderson County, South Carolina, as shown on the Site Location Diagram in Appendix A.

2.2 PROJECT DESCRIPTION

The S-4-174 (Timms Mill Road) Bridge over Six & Twenty Creek currently a 2 lane bridge in Anderson County, South Carolina. This bridge is currently closed to traffic. We understand plans are to demolish the existing bridge and replace with a new bridge.

3.0 SUBSURFACE EXPLORATION

3.1 SOIL TEST BORINGS

ECS completed a total of four (4) soil test borings (B-1, B-2, B-3, and B-4) at the subject bridge consisting of four (4) bridge end bent borings. The soil test borings were performed utilizing a CME 75 drill rig on March 3 through March 6, 2020. Photographic documentation of the drill rig setup at each boring location is included in Appendix B. The borings were located in the field by an ECS representative at the approximate locations provided by the SCDOT. After completion, the test locations were obtained by a licensed surveyor. A Boring Location Diagram is included in Appendix A.

The soil test borings were drilled by a CME 75 drill rig using the rotary wash drilling method with a 6 inch bit. Standard Penetration Tests (SPTs) were generally conducted continuously within the top 10 feet and at 5- foot intervals thereafter until refusal was encountered. The SPT is used to provide an index for estimating soil strength and density. In conjunction with the penetration testing, split barrel soil samples were recovered for soil classification and laboratory testing at various intervals. The N-values presented in the boring logs are uncorrected, field N-values. Blow counts recorded at these intervals were produced from a standard penetration test hammer with an energy efficiency of 72.8%. The hammer calibration records are included in Appendix D.

An ECS Geotechnical Professional was on site and visually classified each sample during drilling. Samples from each split spoon were sealed in plastic bags and returned to the ECS office for laboratory testing. The boring logs are included in Appendix B. A summary of the borings is presented in Table 3.1.1.

Boring ID	Boring Type	Northing (Int. ft.)	Easting (Int. ft.)	Ground Surface Elevation (ft.)	24-HR Water Depth (ft)	24- HR Water Elevation (ft)
B-1	SPT	1030956.89	1506478.62	723.4	6.5	716.9
B-2	SPT	1030968.77	1506480.85	723.1	7.1	716.0
B-3	SPT	1030962.41	1506392.28	722.3	8.4	713.9
B-4	SPT	1030975.57	1506390.18	721.8	9.7	712.1

Table 3.1.1 Summary of Subsurface Exploration Boring Locations	
--	--

3.2 ROCK CORING

Rock coring was performed within the soil test borings at the auger and spoon refusal depths. Borings B-1 through B-4 were terminated in rock at depths ranging between approximately 29 feet and 46 feet below the existing ground surface.

A summary of the rock coring runs recovered from the borings is included in Table 3.2.1. Rock coring was performed using a diamond-studded bit fastened to the end of a hollow double tube core barrel. A HQ core barrel was used to obtain rock cores 21/2 inches in diameter. This device was rotated at high speed by the drill rig and the cuttings were brought to the surface by circulating water. Core samples of the materials penetrated were protected and retained in the swivel-mounted inner tube of the core barrel. Upon completion of each drill run, the core barrel was brought to the surface, removed and placed in core boxes, and returned to our laboratory for testing. An ECS Project Geologist was on site and visually classified each sample during coring. The rock coring results are presented on the boring logs and a Photo Log is included in Appendix B.

Boring ID	Run ID	Run Depth (ft)	Recovery (%)	Rock Quality Designation (%)	qu (psi)		
	HQ-1	14.0 - 19.0	100	100	7,359.9		
B-1	HQ-2	19.0 – 24.0	100	100	13,604.5		
	HQ-3	24.0 – 29.0	100	100	7,947.5		
	HQ-1	14.0 - 19.0	100	80	11,317.1		
B-2	HQ-2	19.0 - 24.0	100	100	7,592.1		
	HQ-3	24.0 - 29.0	100	100	9,625.5		
	HQ-1	31.0 - 34.0	100	77	9,813.8		
B-3	HQ-2	34.0 - 39.0	100	96	16,224.0		
D-2	HQ-3	39.0 - 44.0	100	80	16,485.4		
	HQ-4	44.0 - 46.0	100	75	12,731.4		
B-4	HQ-1	24.0 - 29.0	70	50	-		
	HQ-2	29.0 - 34.0	82	34	-		
	HQ-3	34.0 - 39.0	88	64	9,038.1		
	HQ-4	39.0 - 44.0	100	100	17,311.1		

3.3 GROUNDWATER

Groundwater was measured between approximately 6.5 and 9.7 feet below the existing ground surface at around the 24-hr time interval within Borings B-1, B-2, B-3, and B-4. After a 24 hour measurement was obtained, the borings were backfilled and capped with bentonite. Groundwater elevations should be expected to vary depending on seasonal fluctuations in precipitation, surface water absorption characteristics, and other factors not readily apparent at the time of our exploration, and may be higher or lower than inferred from the recent test boring data.

3.4 LABORATORY TESTING

The laboratory testing frequency was determined by the SCDOT and laboratory testing was performed in accordance with the respective ASTM and AASHTO standards. Individual laboratory test results and a Laboratory Testing Summary are presented in Appendix C. Table 3.3.1 provides a quantitative overview of the testing performed:

Test Type	Quantity					
Atterberg Limits	4					
Sieve Analysis	4					
Moisture Content	12					
Hydrometer	8					
Corrosion Testing	1					
Unconfined Compressive Strength (Rock)	12					

Table 3.4.1 Laboratory Test Quantities

4.0 CLOSING

Due to the prevailing geology, changes in the subsurface conditions can occur over relatively short distances that have not been disclosed by the results of the borings evaluated. Consequently, there may be undisclosed subsurface conditions that require special treatment or additional preparation once these conditions are revealed during construction. The assessment of site environmental conditions for the presence of pollutants in the soil, rock, and groundwater of the site was beyond the scope of services for this project.

APPENDIX A – Drawings & Reports

Site Location Diagram Boring Location Diagram

Source: Google Earth (2020) Scale: Not to Scale

Boring Location

Boring Location Plan Emergency Bridge Package 2020-1 S-174 (Timms Mill Rd) Bridge over Six & Twenty Cr Anderson County, South Carolina ECS Project No.: 14:9922

APPENDIX B – Field Operations

Reference Notes for Boring Logs Boring Logs (Borings B-1, B-2, B-3, B-2, B-4) Rock Core Photo Log (Borings B-1, B-2, B-3, B-4) Photo Log

ECS REFERENCE NOTES FOR SCDOT BORING LOGS - SOIL DESCRIPTIONS

The descriptions noted on the boring logs generally conform to the SCDOT GDM format.

DESCRIPTION FORMAT

GEOLOGIC ORIGIN* - Relative density/consistency, moisture condition, color, angularity, hcl reaction, cementation, secondary component (adj.), particle-size range, PRIMARY COMPONENT (noun), USCS, AASHTO, contains, other

*Such as FILL, ALLUVIUM, RESIDUUM, PARTIALLY WEATHERED ROCK, etc. In Coastal Plain areas, name of formation may be used. Geologic origin is cited only for first sample of geologic type.

RELATIVE DENSITY/CONSISTENCY

SANDS A	ND GRAVELS	SILTS AND CLAYS		
SPT	Density description	SPT	Consistency Description	
0 - 4 5 - 10 11 - 30 31 - 50 > 50	Very loose Loose Medium Dense Dense Very Dense	0 - 2 3 - 4 5 - 8 9 - 15 16 - 30 >30	Very Soft Soft Firm Stiff Very Stiff Hard	

MOISTURE CONDITION

Dry	Dusty, dry to touch
Moist	Moisture can be felt but not visible
Wet	Water is visible

COLOR

Basic colors (when moist) using the Munsell color chart Mottled, indicates splotches of various colors Variegated, indicates thin layers of various colors

ANGULARITY

Angular	Particles have sharp edges and relatively plane sides with unpolished surfaces
Subangular	Particles are similar to angular description but have rounded edges
Subrounded	Particles have nearly plane sides but have well-rounded corners and edges
Rounded	Particles have smoothly curved sides and no edges

HCL REACTION

None Reactive	No visible reaction
Weakly Reactive	Some reaction, with bubbles forming slowly
Strongly Reactive	Violent reaction, with bubbles forming immediately

CEMENTATION

Weakly Cemented	Crumbles or breaks with handing or little finger pressure
Moderately Cemented	Crumbles or breaks with considerable finger pressure
Strongly Cemented	Will no crumble or break with finger pressure

PARTICLE-SIZE RANGE

SIZE:	12	2"	3" 3	4"	#4 #	10	#40	#200
DESCRIPTION:	BOULDER	COBBLE	GRA	VEL		SAND		SILT to CLAY
RANGE:			Coarse	Fine	Coarse	Medium	Fine	
EXAMPLE:	basketball	softball	golf ball	marble	pea	sugar	beach	flour
			1	I	יו		' sand	I

USCS SOIL DESIGNATION

USCS classification per ASTM D 2487 and D 2488

AASHTO SOIL DESIGNATION

AASHTO classification per AASHTO M 145 and ASTM D 3282

CONTAINS

Contains is used to describe non-ASTM components such as roots, construction debris, asphalt concrete, etc. "contains slight" is used for occasional particles, "contains" is used for about 10% to 30% particles, "contains significant" is used for > 30% particles

ECS REFERENCE NOTES FOR SCDOT BORING LOGS - ROCK DESCRIPTIONS

The descriptions noted on the boring logs generally conform to the SCDOT GDM format.

DESCRIPTION FORMAT

Rock origin, TYPE, color, texture, grain size and shape, weathering / alteration, strength, hardness, strike and dip, discontinuity type, discontinuity width, amount of infilling, type of infilling, surface shape of joint, discontinuity spacing, roughness of surface, other

Descriptions are typically provided for each run. When portions of an individual run are notably different, the run may be subdivided into sub-runs with appropriate descriptions provided.

ROCK ORIGIN AND TYPE

Sedimentary:Breccia, sandstone, siltstone, mudstone, shale, coal, conglomerate, limestone, chert, dolomite, etc.Metamorphic:Schist, phyllite, gneiss, marble, metaquartzite, slate, amphibolite, hornfels, serpentine, metatuff, etc.Igneous:Granite, syenite, diorite, gabbro, periodite, diabase, basalt, pegmatite, etc.

COLOR

Basic colors (when moist) using the Munsell color chart Mottled, indicates splotches of various colors Variegated, indicates thin layers of various colors

TEXTURE

Very Thickly Bedded	> 1.0 m
Thickly Bedded	0.5 to 1.0 m
Thinly Bedded	50 to 500 mm
Very Thinly Bedded	10 to 50 mm
Laminated	2.5 to 10 mm
Thinly Laminated	< 2.5 mm

GRAIN SIZE AND SHAPE

<u>Size</u>		
Very coarse grained	> 4.75	Grain sizes greater than popcorn kernels
Coarse grained	2.00 - 4.75	Individual grains easy to distinguish by eye
Medium grained	0.425 - 2.00	Individual grains distinguished by eye
Fine grained	0.075 - 0.425	Individual grains distinguished with difficulty
Very fine grained	<0.075	Individual grains cannot be distinguished by unaided eye
Shape		

Shows little wear; edges and corners are sharp
Shows definite effects of wear; edges and corners are slightly rounded off
Shows considerable wear; edges and corners are rounded to smooth curves
Shows extreme wear; edges and corners are smoother to broad curves
Completely worn; edges and corners are not present

WEATHERING / ALTERATION

Residual Soil	Original minerals of rock have been entirely decomposed to secondary minerals, and original rock fabric is not apparent; material can be easily broken by hand
Completely Weather / Altered	Original minerals of rock have been almost entirely decomposed to secondary minerals, although the original fabric may be intact; material can be granulated by hand
Highly Weathered / Altered	More than half of the rock is decomposed; rock is weakened so that a minimum 1-7/8 inch diameter sample can be easily broken readily by hand across rock fabric
Moderately Weathered / Altered	Rock is discolored and noticeably weakened, but less than half is decomposed; a minimum 1-7/8 inch diameter sample cannot be broken readily by hand across rock fabric

Slightly Weathered / Altered Fresh

STRENGTH

Extremely Weak Rock Very Weak Rock Weak Rock Medium Strong Rock Strong Rock Very Strong Rock Extremely Strong Rock Can be indented by thumbnail Can be peeled by pocket knife Can be peeled with difficulty by pocket knife Can be indented 3/16 inch with sharp end of pick Requires one hammer blow to fracture Requires many hammer blows to fracture Can only be chipped with hammer blows

Rock is slightly discolored, but not noticeably lower in strength than fresh rock

Rock shows no discoloration, loss of strength, or other effect of weathering / alteration

HARDNESS

Very Soft	Can be deformed by hand
Soft	Can be scratched with a fingernail
Moderately Hard	Can be scratched easily by a knife
Hard	Can be scratched with difficulty by a knife
Very Gard	Can not be scratched with a knife

STRIKE AND DIP

Dip of fracture surface measured relative to horizontal with bearing and direction.

DISCONTINUITY TYPE

- F Fault
- J Joint
- Sh Shear
- Fo Foliation
- V Vein
- B Bedding

DISCONTINUITY WIDTH (MM)

- W Wide (12.5 50)
- MW Moderately Wide (2.5 12.5)
- N Narrow (1.25 2.5)
- VN Very Narrow (<1.25)
- T Tight (0)

AMOUNT OF INFILLING

- Su Surface Stain
- Sp Spotty
- Pa Partially Filled
- Fi Filled
- No None

TYPE OF INFILLING

- Cl Clay
- Ca Calcite
- Ch Chloride
- Fe Iron Oxide Gv - Gvpsum/Tale
- Gy Gypsum/Tale H - Healed
- H Heale No - None
- Py Pyrite
- Qz Quartz
- Sd Sand

SURFACE SHAPE OF JOINT

Wa - V	Wavy
--------	------

- Pl Planar
- St Stepped
- Ir Irregular

DISCONTINUITY SPACING (FT)

- Ew Extremely Wide (>65)
- W Wide (22 65)
- M Moderate (7.5 22)
- C Close (2 7.5)
- VC Very Close (<2)

ROUGHNESS OF SURFACE

- Slk Slickensided (surface has smooth, glassy finish with visual evidence of striations)
- S Smooth (surface appears smooth and feels so to the touch)
- SR Slightly Rough (asperities on the discontinuity surfaces are distinguishable and can be felt)
- R Rough (some ridges and side-angle steps are evident; asperities are clearly visible, and discontinuity surface feels very abrasive)
- VR Very Rough (near-vertical steps and ridges occur on the discontinuity surface)

REC and RQD

Rock Recovery, expressed as REC, is the percentage of the total length or rock recovered divided by the length of the core run. The Rock Quality Designation, expressed as RQD is the percentage of the total length of the rock pieces 4 inches in length or greater divided the length of the rock core run. Mechanical breaks are neglected in determining the RQD.

SOIL CLASSIFICATION CHART

м	AJOR DIVISI	ONS	SYME GRAPH	BOLS LETTER	TYPICAL DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				MH	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HI	GHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

Site Des Eng./Ge		Garrick	-	- Ť	<u> </u>	Packa -ocatio	<u> </u>			(Offs	set:				Alie	Rout			
lev.:	723.4	ft Latit	ude:	-		56064		ongit	ude:	-82	2.64	113	6	Dat	e Sta	rted:		3/3/	2020	
otal D	epth:	29 ft	Soi	l Dept	:h:	14			re De	pth:	2	9 ft		Dat	e Cor	nplet	ted:	3/3/	2020	
Bore Ho	ole Dia	meter (in):	8		Sam	pler C	onfig	uratio	n	Line	ər R	lequ	irec	:	Y (N)	Line	r Used	l: Y	(
Drill Ma	chine:	CME 75		Drill	Meth	od:	Wash	n Rota	ary	Hamme	er T	ype	: A	utom	atic	E	nergy	Ratio	: 73%	
Core Siz	ze:	HQ		Drille	er:	Bett			-	Ground				ЭΒ	N/A			4HR	6.5 f	t
		-																		
Elevation (ft)	0. Depth 0. (ft)	MATE	RIAL	DES	CRIP	TION		Graphic Log	Sample Depth (ft)	Sample No./Type	1st 6"	2nd 6"	3rd 6"	4th 6" N Vicinio		< الم ان	PL FINES RQD (%	b) 🔳	UE ● <u>LL</u> ENT (%) REC (%) 0 70 80)
	0.8	Asphalt = 5",	Stone	= 5"					1.0											
_	_	FILL Firm to Stiff, Orangish Bro							1.0 3.0	- SS-1	6	5	4	5 9						
- 718.4 -	_	(A-7-5(6)) LL=55, PL=4 %200=50	0, PI=′	15, NM	C=25	.1,			5.0	- SS-2	8	4	3	4 7	•					
-	7.0								7.0	- SS-3	4	3	2	3 5	•	(с ж	_ *×		
-	-	RESIDUAL Very Stiff, Me Medium San	dy SIL	T (ML),	(A-7-	-6(7))	o		9.0	- SS-4	8	9	8	10 1	7	•				
713.4-	_	LL=44, PL=2 %200=53	7, PI=′	17, NM	C=21	.4,				- SS-5	4	7	10	9 1	7		×	×		
-	12.0	Very Dense, Medium SAN	Moist, D (SN	Gray, 5 I), (A-2	Silty F -4)	ine to			40 5	-										
	14.0								13.5 14.0		50/1				0		: :		: :	
708.4 - - -	-	GNEISS, Bla Fresh, Strong %REC=100, 1.4 min/ft, qu	g Rock RQD=	100, G		-				HQ-1					RE	C=100	0%, RC	D=100	%	
- 703.4 - - - -	-	%REC=100, 2.2 min/ft, qu			SI=65	5, RMR=	=77,		19.0 24.0	HQ-2					RE	C=100	0%, RG	D=100 ^s	%	
- 698.4 - - -	-	%REC=100, 2.5 min/ft, qu			SI=65	ō, RMR=	=77,		24.0	HQ-3					RE	C=100	0%, RC	D=100	%	
_	29.0	Boring Termi	nated	@ 29.0)'															
								LEO	GEND)										
SS - S UD - L		SAN on ed Sample		TYPE NQ - Ro CU - Co		ore, 1-7/	8"			A - Hollo A - Cont				r		RW -	DD Rotary Rock			

Site Des Eng./Ge			Eme Ck		- 1		ocati					Off	set:					Alig	Rou nm		_	4-174	
	723.1		Latit	ude:	1		56097		ongit	ude:	-8		4112		C)ate 3	Start					2020	
otal De		29		-	I Dept		14			ore De			29 ft		_		Com		ed:			2020	
Bore Ho				8			pler C				•		Req			Y	(N)				lsed:		(
Drill Ma			/E 75		Drill		-		h Rota		Hamr						\sim				atio:		
Core Siz		HQ			Drille		Bet		111010	лу	Grou		_	_	OB		V/A		_	24H		7.1 ft	
	20.	ΠQ			Drine	71.	Det	13			Grou		ater	• •		, 11				2711	<u>N</u>	<u> / . n</u>	
																			SE	т N	VALU		
																		PL			1C	LL	
Elevation (ft)	_								.c	ے ہے	Sample No./Type	.				e		×		(Э	—×	
(ft)	Depth (ft)		MATE	RIAL	DES		TION		Graphic Log	Sample Depth		` ا <u>ب</u>	.0	50	5	Value						NT (%)	
Ele	0.0	Aspha							<u>م</u> _	So	S S	1st 6"	pu	3rd 6"	Ļ	Z	0 10					REC (%) 70 80	
	-		alt = 5'',	Stone	= 5"						_	-	~	(1)	7		<u>0 10</u>	20 .	30 4	+0 0	0 00	10 80) 8
_	0.8	FILL			-				XXXX	1.0								÷	÷	÷	: :	: :	
			Maiat I	Doddia	h Drou	in to C	Jronaio	h					2	4		7							
1	1		Moist, F ı, Elasti					11			- SS-8	5	3	4	4	7		0	: ×	:			
-	-		3, PL=3							3.0	+	+						÷	÷	÷	: :	: :	
_	_	%200		-, • • •	,		-,				- ss-9	4	3	4	3	7		:	÷	÷	: :	÷	
740.4										5.0			-		-			-		-	:		
718.1-	1									5.0								-	:	:			
-	-										- SS-1	0 4	3	4	4	7		-	:	÷		: :	
_	7.0									7.0								÷	÷	÷	:	: :	
		RESI	-				D						~	40	10	40	:	÷		÷	:	: :	
1	1		to Mec , Silty F								- SS-1	1 4	6	12	10	18		•	4				
-	-	(A-4)	i, Siity i		Cuars	e SAF		ı <i>)</i> ,		9.0													
713.1-	_	. ,	=19.0, %	6200=	38						- SS-1	2 4	4	5	6	9	÷		:	:	<u>. :</u>		
			-,,,								.	.	•	-	-	-		÷		-			
1																			:	-			
-	12.0	Verv I	Dense,	Moist	Grav	Siltv F	ine to				-							÷	÷	-	: :		
-	-	Mediu	m SAN	D (SN	I), (A-2	-4)				10 F	-							-	:	÷			
	14.0									13.5 14.0	- SS-1	3 5 0/	1			100			÷	÷	: :	: :	
]	T		SS, blac		white,	thinly	bedde	d,										-		-			
708.1-			strong		~ ~			74			-								:				
-	-		C=100, in/ft, qu			51=65,	RMR=	74,			-							-	:	:	:		
		2.0 m									HQ-						REC	=100	%, R	QD=	80%	•	
																		÷	:	-			
-	-										1							÷	÷	÷	:		
-	-									19.0	+	+						÷	:	-	:		
703.1-	_										_										<u> </u>		
																		÷	÷	÷			
1	1		-400		100 0	0. 0-					- НQ-2	2					REC	=100	: %, R	QD=	=100%	5	
-	-		C=100, in/ft, qu			51=65	, RIVIR	<i>≓11</i> ,			-							÷		÷			
4	_		, yu								-							÷	:	-	:		
										24.0													
1]												_	_	Ī	_		÷	÷	÷	:	: :	
698.1-	-										1						÷		:	:	<u> </u>	<u> </u>	
-	-										-									_			
			C=100,			SI=65	, RMR	=77,			HQ-:	3					REC	=1:00	%, R	QD=	=100%)	
			in/ft, qu															÷	:	-	: :		
-	-										1								-	-	:		
4	29.0	Doring	g Termi	natad	<u>@ </u>	יו												÷	:	-			
		DOUID	y remi	ialeu	يو ٢٩.٢	,			1										:	:	<u> </u>	<u> </u>	
									LE	GEND)												
	Split Spo		SAN	1PLER	TYPE										DF	RILLIN	IG ME	THO	D				

Site De				ergen	1				20-1			<u> </u>			1		-			_	-4-174		
-		. Garric			Bo							Offs					_		men				
Elev.:				_						ude:		2.64			-	e Sta				_	2020		
Fotal D		46 f								ore De	-	_	6 ft		-	e Col					2020		
		meter		6			-							uirec		`	N)			Usec		N	
Drill Ma			IE 75						Rot		Hamm							Ene	_		: 73%		
Core Si	ze:	HQ			Drill	er:	Betts				Groun	dwa	ater		DB	N/A			24	HR	8.4	rt	
												1						_	ODT I	N VAL			
																		PL					
Elevation (ft)	ч								jc	e c	be be				l e			×		-	——————————————————————————————————————		
(ft)	Depth (ft)	ſ	MATE	RIAL	DES	CRIP ⁻	TION		Graphic Log	Sample Depth	Sample No./Type	0	.9	.9	th 6" N Value						ENT (%) REC (%		
Ш	0.0	0 Grass Shoulder				LL bose to Medium Dense, Moist, Reddish rown to Orangish Brown, Silty Fine to barse SAND (SM), (A-2-4) MC=14.6, %200=27 MC=22.6, %200=49 MC=22.5, %200=38 MC=22.5, %200=38 ESIDUAL ense to Very Dense, Moist, Grayish rown, Fine to Coarse SAND with Silt (SP), t-1-b) MC=8.1, %200=15	G	ып		1st	2nd	3rd 6"	tt Z	0 1					0 70 8				
		FILL	ss Shoulder se to Medium Dense, Moist, Reddish wn to Orangish Brown, Silty Fine to rse SAND (SM), (A-2-4) C=14.6, %200=27 C=22.6, %200=49 C=22.5, %200=38 SIDUAL se to Very Dense, Moist, Grayish wn, Fine to Coarse SAND with Silt (SP), -b) C=8.1, %200=15		$\times\!\!\times\!\!\times$	0.0																	
-	-								\bigotimes		- SS-15	9	9	7	7 16	;					:		
-	-	Brown	to Ura e SANF	ngish) (SM	Brown	, Silty I -4)	rine to		>>>>	2.0	-					\dashv	-						
_	_			•		•,			\otimes		- SS-16	4	4	4	5 8		:						
			Latitude: 34.656075 t Soil Depth: 31 ft (in): 6 Sampler Config ME 75 Drill Method: Was Driller: Betts MATERIAL DESCRIPTION Shoulder to Medium Dense, Moist, Reddish to Orangish Brown, Silty Fine to e SAND (SM), (A-2-4) :14.6, %200=27 :22.6, %200=49 :22.5, %200=38 :22.5, %200=38 :22.5, %200=38 :0UAL :to Very Dense, Moist, Grayish , Fine to Coarse SAND with Silt (SP),) :8.1, %200=15		>>>>	4.0							:										
1		NMC=	22.6, %	6200=	49												-		-				
717.3-	-										- SS-17	3	2	3	2 5		-	0		A			
-	-								\otimes	6.0	+					\neg					÷		
-	-										- SS-18	3	2	3	5 5								
_	_	_	Brown to Orangish Brown, Silty Fine to Coarse SAND (SM), (A-2-4) NMC=14.6, %200=27 NMC=22.6, %200=49								8.0							:			-		
		¥NMC=		.5, %200=38							00.40		_	•									
-	-											- SS-19	3	5	2	3 7	-		0				
712.3-	_	Dense to Very Dense, Moist, Gravish															:						
-	-					-						-											
_	12.0_			RESIDUAL	ESIDUAL							_										:	
		-										-											
		Brown	. Fine t	y Den o Coa	se, ivic irse SA	ND wi	ayısn ith Silt (S	P).		13.5		-				_							
-	_						(-	,,			SS-20	12	13	15	28	8 C		•					
707.3-	-	NMC=	8.1, %2	200=1	5							-			_	-	:	· ·			:	<u> </u>	
_	-	_	,					-						-									
_	_										_						:		÷				
																	:			-			
										18.5						_							
-	-										SS-21	8	15	24	39				٠				
702.3-	-										+	-			_	+	:						
-	-										-												
_	_										_						:						
																	-						
1			160 0/	200-	10					23.5						_			-		:		
-	-		NMC=16.0, %200=19				SS-22	27	12	28	40)	Q		۲								
697.3-	_						+	+				+	-										
-	-						-						•		÷								
_	_						_						-										
													:										
1						28.5		00	E0/0				-										
-	-							- SS-23	32	50/3	•	10		-	: :								
									<u> </u>	GENE	<u>ו</u>							. :	: Cor	tinuc	d Nex	+ D~	
			SAM	PLFR	TYPE						,				DRILL	ING N		HOD	001	unue		ι Γ'd	
SS - S UD - L	Split Spc	on					ore, 1-7/8			L HS	A - Hollo	w S	tem	Aure					otarv	Wash			

Site De				dge Packag							Route		174	
_		Garrick		ring Locatio				Offset:			lignment			
	722.3			34.656075		itude:		2.641422		Starte		3/5/20		
Total D		46 ft	Soil Dept	t h: 31 f	t C	ore De	pth:	46 ft	Date	Comp	leted:	3/5/20	20	
Bore Ho	ole Dia	meter (in):	6	Sampler Co	onfigurat	ion	Line	er Required	1: Y	N	Liner l	Jsed:	Y	(
Drill Ma	chine:	CME 75	Drill	Method: \	Nash Ro	tary	Hamme	er Type: A	utomat	ic	Energy F	Ratio:	73%	
Core Si	ze:	HQ	Drille	er: Bette	5		Ground	dwater: T	OB	N/A	24	HR 8	3.4 ft	
c				`	0		a 0				● SPT N PL N ×			
Elevation (ft)	Depth (ft)	MATE	RIAL DES	CRIPTION	Graphic	Sample Depth (ft)	Sample No./Type	1st 6" 2nd 6" 3rd 6"	4th 6" N Value		▲ FINES C ✿ RQD (%) 20 30 40	RE	C (%)	9
	31.0					31.0								
	T	GNEISS, blac		thinly bedded	, 🔣									
-	-	fresh, strong i %REC=100, F			_ <i>∭</i>		HQ-1			RFC=	100%, RQD	=77%	•	
-	-	%REC=100, i 1.9 min/ft, qu=		n−00, RIVIR=/	-, 🕅									
_	_		I			34.0				4	: : :	: :		
687.3-						Š.						<u> </u>		_
001.3-	1													
-	-						HQ-2			RFC=	100%, RQD	=96%		
-	-	%REC=100, F	RQD=96, GS	SI=75, RMR=8	2, 🕅							0070		
		2.6 min/ft, qu=	- 10224.0 PSI			8	4							
						39.0								
-	-									1				
682.3-	-						-				· · · ·			
_	_						4							
		%REC=100, F	RQD=80. GS	6I=75, RMR=7	9, 🕅	X	HQ-3			REC=	100%, RQD	=80%	•	
1	7	2.3 min/ft, qu=								:				
-	-						1							
-	-					44.0								
677.3-	_				. 🚿		HQ-4			REC=	100%, RQD	=75%	•	
-	46.0	%REC=100, F _2.6 min/ft, qu=			4,									
7	T	Boring Termir			-1									
-	-	Bonny remin	iaieu @ 40.(,			1							
-	-						-							
_	_						4			:				
670.0														_
672.3-	1									:	: :			_
-	-						1							
-	-						-							
-	-						1							
667.3-	-						-							
-	-						-							
]]									:	: : :			
-	-						1							
-	-						-			:				
										:	: : :	: :	: :	
		0 4 4 4			LE	EGEND)		יי ו ווסס					
SS - S	Split Spo		PLER TYPE NQ - R	ock Core, 1-7/8	3"	HS	A - Hollo	w Stem Auge	DRILLIN	NG MET RM	HOD / - Rotary V	Vash		
		ed Sample e, 1-1/8"	CU - C					inuous Flight			- Rock Co			

Site Des			nerger			ackage 2	020-1			<u></u>						Rou		S-4-1	74	
_		Garrick				ocation:				Offs			D (nme			~~	
	721.8		itude:		34.65		Longi			2.64		1		Start				6/202		
Total D		44 ft		il Dept		24 ft		ore De	•	_	4 ft			Com	· · · · ·			6/202	20	
Bore Ho	ole Dia	meter (in):	6		Samp	oler Confi	gurati	on	Line	er R	equ	iired	: Y	N		Line	er Use	ed:	Y	(
Drill Ma	chine:	CME 75	5	Drill I	Vetho	d: Wa	sh Rota	ary	Hamme	er T	ype	: Au	Itoma	tic	Er	nergy	y Rati	o: 7	3%	
Core Si	ze:	HQ		Drille	r:	Betts			Ground	dwa	ter:	TC)B	N/A		2	4HR	9).7 ft	
															•	SP'	T N VA	LUE	•	
_															PL	.			LL —X	
, tio	_ t						ghic	the	ble /				Value		A			TENT		
Elevation (ft)	Depth (ft)	MAT	ERIAL	DESC	CRIPT	ION	Graphic Log	Sample Depth	Sample No./Type	.0	1 G"	3rd 6"					%)			
	0.0	Grass Shou	lder				0	0	°,ž	1st 6"	2nd 6"	3rd 6"	Z	0 10			0 50			g
		FILL						0.0												
-	-	Medium De							- SS-25	8	11	10 1	0 21		۲		÷			
_	_	Orangish Br						2.0	+				_	4	÷		÷			
		SAND with	-		, ,	,			00.00	_	~	~					÷		÷	
1	-	LL=35, PL=	25, PI=	10, NM(C=17.8	в,			- SS-26	5	6	5 4	11		O¦.×	÷ 🎽	÷	: :	÷	
-	-	%200=36						4.0	+						÷		÷		÷	
716.8-									- SS-27	4	3	3 3	3 6							
	6.0							6.0		·	•				:		÷			
-	0.0	RESIDUAL						0.0						1 :	÷	:	÷	-	÷	
-	-	Medium De	nse to \	/ery De	nse, M	oist,			- SS-28	6	11	21 2	3 32		:	•	÷	-	÷	
	_	Grayish Bro	wn, Silf	ty Fine t	to Medi	ium SAND		8.0									:		÷	
		(SM), (A-2-4										_					:			
-	-	NMC=17.5,	%200=	38					- SS-29	8	14	8 1	2 22		C) :		:		:	
711.8-	-	÷							+				_		:	:	:			
									_						÷	: :	÷	: :	÷	
														1	÷		÷		:	
-	-								-						÷		÷		÷	
_	_							13.5	-											
								13.5						1						
1	7								SS-30	16	42	38	80	1	÷	-	÷		•	
706.8-	-								+						÷		:			
_	_								_					1	÷	-	÷		÷	
	17.0																:		÷	
1		Loose, Wet	, Orang	ish Brov	wn, Silt	ty Fine to			1						÷		:			
-	-	Coarse SAN	ND (SM), (A-2-4	4)			18.5	-											
_		NMC=12.4,	%200=	31						2	^		_		÷		÷		:	
704.0									SS-31	2	3	4	7		÷	.	÷	: :	÷	
701.8-	-																:		- :	
-	-								-						÷		:			
_	22.0			<u> </u>		.			4						÷		÷	:	:	
		Very Dense Fine to Coa													÷		÷		÷	:
-	-		ISC SAI	ואופ) חוי), (A-2-	- -)		23.5	- 	50/1			100		÷				:	
-	24.0	GNEISS, BI	ack and	1 White	Thinly	Bedded		24.0	+				00	-						
696.8-	_	Moderately							4						:					
		Rock		,		5									÷		÷		÷	
-	-	%REC=70,	RQD=5	50, GSI=	=45, RN	MR=26,			- HQ-1					REC	: =7∩%		: D= © 9%	: : (:∎		
-	-	2.0 min/ft							-							, i vu			•	
	_								1								:			
								29.0												
-	-							29.0	+					1	:		÷		:	
									<u> </u>					:	:	: :	:	: :	:	_
		04	MPLER				LE	GENE	J				DRILLI				ontinu	ied N	lext	<u>P</u>
SS - S	Split Spo				ock Cor	e, 1-7/8"		HS	A - Hollo	w St	tem /						y Was	h		
UD -L	Indistur	ed Sample		CU - Cu	uttinas			CF	A - Cont	inuo	us Fl	liaht A	ugers	R	с -	Rock	Core			

Site De			rgency Br	-	-	2020-1						Route		-174	
_		. Garrick		-	ocation:				Offset:			Alignmen			
lev.:				34.65		Longit			.641431		Starte		3/6/2		
Total D		44 ft	Soil Dep		24 ft		ore De		44 ft		Comp		3/6/2		
		meter (in):	6	-	ler Conf	-			er Require		\sim		Used:	Y	C
Drill Ma				Metho		sh Rota	-		er Type: /			Energy			
Core Si	ze:	HQ	Drille	er:	Betts			Jround	water:	ГОВ	N/A	24	HR	9.7 ft	
Elevation (ft)	Depth (ft)	MATE	RIAL DES	CRIPT	ION	Graphic Log	Sample Depth (ft)	Sample No./Type	1st 6" 2nd 6" 3rd 6"	tth 6" N Value	0 10) 🔳 RI	LL —X NT (%) EC (%)	 Q(
-	- - 34.0	%REC=82, R(1.4 min/ft	QD=34, GSI	=55, RN	1R=44,			HQ-2				-82%, @ QD			
- 686.8-	34.U_ -	Moderately to	5, Black and White, Thinly Bedded, tely to Slightly Weathered, Strong				- 34.0 -								
-	-	Rock %REC=88, RQD=64, GSI=55, RMR=52, 2.1 min/ft, qu=9038.1 psi					-	HQ-3			REC=	88%, RQD	=64% 🗗		
-	_ 39.0_	GNEISS, Blac	k and White	, Thinly	Bedded,		- 39.0_								-
681.8-	-	Fresh, Strong %REC=100, F 3.1 min/ft, qu=	Rock RQD=100, G	SI=65,			-	HQ-4			REC=	=100%, RQI	D=100%		
- 676.8- -	44.0_ _ _	Boring Termin	ated @ 44.)'			-	-			_				
- - 671.8- - -	-						-	-							
- 666.8 - - -	-						-	-							
	-						-						· · ·	· · ·	
SS - S	Split Spo			ock Core	a 1.7/8"	LE	GEND		w Stem Aug		NG ME	THOD V - Rotary	Wash		

ROCK CORE PHOTO LOG

Boring B-1

Project Name: 2020-1 SCDOT Emergency Bridge Package Bridge Replacement over Six and Twenty Creek on Timms Mill Road

Project Number: 14:9922

Project Location: Anderson County, South Carolina

Date: 3/9/2020

Begin HQ-1 14.0 ft

End HQ-2 15 3 15 .4 15 .5 15 .6 15 .7 15 .8 15 .9 15 **2** F 10^{.9}11 1 F 0.0.0 24.0 ft End HQ-3 29.0 ft 0.0 0.4 0.8 1.0 1.2 0.2 0.6 1.4 1.6 1.8 2.0 SCALE IN FEET

Begin HQ-3 24.0 ft

ROCK CORE PHOTO LOG

Boring B-2

Project Name: 2020-1 SCDOT Emergency Bridge Package Project Number: Bridge Replacement over Six and Twenty Creek on Timms Mill Road 14:9922 Project Location: Anderson County, South Carolina Date: 3/9/2020 Begin HQ-1 ⁹11["]2 F 14.0 ft Begin HQ-2 19.0ft 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.4 1.6 1.8 2.0 SCALE IN FEET 11"2 F 000 Begin HQ-3 24.0 ft End HQ-3 29.0 ft 0.0 0.2 0.4 0.8 1.0 1.2 0.6 1.4 1.6 1.8 2.0 SCALE IN FEET

ROCK CORE PHOTO LOG

Boring B-3

ROCK CORE PHOTO LOG

Boring B-4

PHOTO LOG

Project Name: Emergency Bridge Package 2020-1Project Number:S-174 Bridge on Timms Mill Road over Six & Twenty Creek14:9922Project Location: Anderson County, South CarolinaDate: 03/20/2020

Photo 1: Drill Rig at Boring B-1

Photo 2: Drill Rig at Boring B-2

PHOTO LOG

Project Name: Emergency Bridge Package 2020-1	Project Number:
S-174 Bridge on Timms Mill Road over Six & Twenty Creek	14:9922
Project Location: Anderson County, South Carolina	Date: 03/20/2020

Photo 3: Drill Rig at Boring B-3

Photo 4: Drill Rig at Boring B-7

APPENDIX C – Laboratory Testing

Summary of Laboratory Results Atterberg Limits Results Laboratory Data Sheets (15 sheets) Rock Core Summary Uniaxial Compressive Strength Reports (12 sheets)

SUMMARY OF LABORATORY RESULTS

PAGE 1 OF 1

PROJECT ID N/A

PROJECT NAME _ Emergency Bridge Package 2020-1

PROJECT COUNTY Anderson											
Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Dry Density (pcf)	Satur- ation (%)	Void Ratio
B-1	5.0	55	40	15	4.76	50	MH	25.1			
B-1	9.0	44	27	17	4.76	53	ML	21.4			
B-2	0.8	58	35	23	4.76	61	MH	22.9			
B-2	7.0				4.76	38	SM	19.0			
B-3	0.0				2	27	SM	14.6			
B-3	4.0				4.76	49	SM	22.6			
B-3	8.0				4.76	38	SM	22.5			
B-3	13.5				2	15	SP	8.1			
B-3	23.5				2	19	SP	16.0			
B-4	2.0	35	25	10	4.76	36	SM	17.8			
B-4	8.0				2	38	SM	17.5			
B-4	18.5				4.76	31	SM	12.4			

									r			
		TIMEL			1874 Forge Street Tucker, GA 30084 Phone: 770-938-8233							
	<u>T.E. L S.T.</u>	Engini	EERING					$\mathbf{\Delta}$	Tested By	EB		
		Soil			Fax: 770-923-8973				Date	03/16/20		
	TESTS, LLC				Web: <u>www.test-llc.com</u>			SHID	Checked By	18		
Client Pr. #			9922			Lab. PR. #	2003	2020	B-03-1	-0		
Pr. Name	E	mergency Bridg	je Package 20	20-1		S. Type			omposite)			
Sample ID		33464/SS	-15 & SS-18			Depth/Elev.		0	-8'			
Location		E	3-3			Add. Info			-			
	ASTM G 57/G187/AASHTO T 288 Standard Test Method for Determining Minimum Laboratory Soil Resistivity											
	Stan			etermini	y winning i		y Son Resis	Strvity				
		Determ	ination of R	esistivity a	t as-receive	d moisture o	content					
	As-received Moistu	ire Content				Rem	narks		-			
Mass of We	t Sample & Tare, g											
Mass of Dry	Sample & Tare, g											
Mass of Tar	e, g											
Moisture Co	ntent, %		NA						-			
				TEST	DATA							
Mass of Soi	Box, g	-		Meter	Dial Reading	g, ohms	-					
	l Box + Soil, g	-										
Mass of Soi	-	-	- Measured Resistance, ohms NA									
	olume of Soil Box, ft ³	0.0027	0.0027 Calibrated Soil Box Multiplier, cm 1.0									
	of as-placed Soil, pcf	-										
-	of as-placed Soil, pcf	_	- Reported Soil Resistivity, ohms-cm NA									
] .		•							
			Determina	ntion of Min	imum Soil I	Resistivity						
				TEST	DATA							
						arious Moistu	ure Content					
	TRIAL #	1	2	3	4	5	6	7	8	9		
Meter	Dial Reading, ohms	12.4	11.6	10.4	9.12	9.12						
	Meter Range Multiplie		к	к	к	к						
-	ed Resistance, ohms	12400	11600	10400	9120	9120						
	Soil Box Multiplier, cm	-	1.0	1.0	1.0	1.0						
	d Resistivity, ohms-cm		11600	10400	9120	9120						
Measuree	rteolotivity, onno om	12400	11000	10400	0120	0120						
Reported Soil Minimum Resistivity, ohms-cm 9120												
Note: Materi	ial passed # 10 sieve u	used for testing]									
Over	Oven ID # 496/610				Description							
Balano	Balance ID # 563/700				NA							
Soil Bo	Soil Box ID # 612/613/707											
Resistivity	Meter ID # 706											
					USCS (D2487; D2488) NA							
			AASHTO (M145) NA									

	•	TIMELY		1874 Forge S	Street Tucker, GA	30084		
	T.E.	ENGINE	Phone: 770-9	38-8233		Tested By	EB	
		SOIL		Fax: 770-923	-8973	$\langle \langle \rangle \rangle$	Date	03/16/20
		Tests, l	LC	Web: <u>www.te</u>		AASHID	Checked By	18
Client Pr. #			:9922		Lab. PR. #	2020B-	-	-0
Pr. Name			ge Package 2020-1		S. Type	Bulk (Com		
Sample ID Location			8-15 & SS-18 B-3		Depth/Elev. Add. Info	0-8		
20004.011								
		Standard Test Me	AS thod for Determinir	TM G51 ng pH of Sc	il for Use in	Corrosion Testing		
			SAMPLE I	PREPARATIC	DN			
Roots, Stone	es, Gravel an	d other deleterious mate	erial was removed prior to	o testing	1			
Measuremer	nts performe	d ar room temperature o	ondition:		18.9 ^o	С		
			TES	ST DATA				
T.E.S.T. S	ample ID	Client Sample ID	pH meter Reading #1	pH meter	Reading #2	pH meter Reading #3	Reported	pH value
334		See Above	6.09		.10	6.08	6.1	
	-				-			
		NIST TRACEABLE BUF CALIBRATION of pH MI	REMARKS FER SOLUTIONS (4.0; ETER prior to testing.	7.0; 10.0 pH)	were used for	pH Meter ID	375/732/733]

	•	TIMELY		1874 Forge Street Tucker, GA 30084					
	TE ST. ENGINEERING			Phone: 770			Tested By KP		
	Soil			Fax: 770-92			Date 03/18/20		
	\square	Tests, l	LC	Web: <u>www.</u>		AASHID	Checked By		
Client Pr. #			2 & 08:14113		Lab. PR. #	2020B-			
Pr. Name			e Package 2020-1		S. Type				
Sample ID Location		Various (see below) -		Depth/Elev. Add. Info		e below)		
			A 1 / 1 -	<i>.</i>					
		Water Solub	Analytical Tes le Chloride Ion Cont			AASHTO T291)			
T.E.S.T. S	ample ID	Client Sample ID	Sample Depth/Elevation, ft	Result,	mg/kg-dry	Rema	ırks		
334		B-3 (SS-15, SS-18)	0-8	36.3					
335		B-6 (SS-34, SS-38)	0-10		12.8				
333	<u>~ 1</u>	2 0 (00 01, 00 00)	0-10	1	12.0				

	٠	TIMELY		1874 Forge Street Tucker, GA 30084						
	T.E.S.T.ENGINEERINGSOILTests, LLC		ERING	Phone: 770			Tested By KP			
			Soil		23-8973	$\overline{\langle A}$	Date 03/20/20			
			LC	Web: <u>www.</u>		AASHID	Checked By			
Client Pr. #	14:9922			WED. <u>WWW</u> .	Lab. PR. #	2020B-				
Pr. Name		Emergency Bridg	e Package 2020-1		S. Type	Ba	g			
Sample ID		Various (s	see below)		Depth/Elev.	Various (se	e below)			
Location					Add. Info	-				
		Water Solut	Analytical Tes			AASHTO T290)				
T.E.S.T. Sa	ample ID	Client Sample ID	Sample Depth/Elevation, ft	Result,	mg/kg-dry	Rema	ırks			
334		SS-15 & SS-18	0-8	10						
335		SS-34 & SS-38	0-10		<5					
					-					
				1						
				1						
						1				
SCEƏT

INDEX PROPERTIES VERSUS DEPTH

PROJECT ID N/A

INDEX PROPS S-4-174_ANDERSON COUNTY.GPJ SCDOT_DATATEMPLATE.GDT 3/22/20

PROJECT NAME Emergency Bridge Package 2020-1

INDEX PROPS S-4-174_ANDERSON COUNTY.GPJ SCDOT_DATATEMPLATE.GDT 3/22/20

SCECTID N/A SURFACE ELEVATION: 722.3

INDEX PROPS S-4-174_ANDERSON COUNTY.GPJ SCDOT_DATATEMPLATE.GDT 3/22/20

INDEX PROPERTIES VERSUS DEPTH

PROJECT NAME Emergency Bridge Package 2020-1

Tested By: CER

Tested By: CER

Rock Coring Summary PAGE 1 OF 1

PROJECT NAME _Emergency Bridge Package 2020-1

PROJECT ID N/A

					PROJECT COUNTY Anderson					
Borehole	Core Run Number	Core Run Top Depth	REC (%)	RQD (%)	q _u (psi)	Poisson's Ratio	Secant Modulus (ksi)	Unit Weight (pcf)	RMR	GSI
B-1	HQ-1	14.0	100	100	7360	0.18	2474	154	77	65
B-1	HQ-2	19.0	100	100	13605	0.17	4470	168	77	65
B-1	HQ-3	24.0	100	100	7948	0.29	3195	171	77	65
B-2	HQ-1	14.0	100	80	11317	0.14	4102	170	74	65
B-2	HQ-2	19.0	100	100	7592	0.24	4268	170	77	65
B-2	HQ-3	24.0	100	100	9626	0.21	5635	173	77	65
B-3	HQ-1	31.0	100	77	9814	0.15	3698	170	74	65
B-3	HQ-2	34.0	100	96	16224	0.11	5151	166	82	75
B-3	HQ-3	39.0	100	80	16485	0.20	4850	165	79	75
B-3	HQ-4	44.0	100	75	12731	0.27	2788	164	74	65
B-4	HQ-1	24.0	70	50					26	45
B-4	HQ-2	29.0	82	34					44	55
B-4	HQ-3	34.0	88	64	9038		4192	165	52	55
B-4	HQ-4	39.0	100	100	17311	0.21	3958	165	82	65

APPENDIX D – Supplemental Report Documents

Hammer Calibration

Betts Environmental 361 Airport Square Adel, Georgia 31620

April 18, 2019

Offices In: Daytona Beach, FL Fort Myers, FL Fort Pierce, FL Gainesville, FL Jacksonville, FL Leesburg, FL · Miami, FL · Norcross, GA · Ocala, FL Orlando, FL Palm Coast, FL Panama City, FL Pensacola, FL Rockledge, FL · Sarasota, FL St. Augustine, FL Tampa, FL · West Palm Beach, FL

Subject: Dynamic Testing Report SPT Hammer Energy Measurement- CME-75 (S/N 164447) 156 N Johnson Street Newborn, Georgia 30056 UES Project 0950.1900024.0000

UES has completed the high strain dynamic (i.e. PDA) testing for the Soil Test Boring drill rig designated CME-75 in use at the above referenced project. Dynamic monitoring was conducted during performance of a soil test boring in order to determine energy transferred by the Standard Penetration Test hammer to the drill rods during split spoon sampling. The dynamic testing was conducted using the Pile Driving AnalyzerTM (PDA) Model 8G, which records, digitizes, and processes the force and acceleration signals. The dynamic testing was carried out in accordance with ASTM D4945 *Standard Test Method for High Strain Dynamic Testing of Piles and* ASTM D4633 *Standard Test Method for Energy Measurement for Dynamic Penetrometers*.

PROJECT DESCRIPTION

Overview

The SPT hammer calibration testing was performed on site at the property located at 156 N Johnson Street in Newborn, Georgia. The SPT hammer calibration testing was performed at five (5) depths during sampling of an SPT Test Boring on April 12, 2019. The SPT hammer calibration testing was performed the following sampling depths; 33.5 to 35.0 feet (Sample 1), 38.5 to 40.0 feet (Sample 2), 43.5 to 45.0 feet (Sample 3), 48.5 to 50.0 feet (Sample 4), and 53.5 to 55.0 feet (Sample 5).

SPT Testing Overview

Numerous technical publications exist regarding the Standard Penetration Test (SPT). Of these publications, ASTM D1586 *Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils* is considered to be the industry standard. This standard was last approved in January, 1999. In addition, U.S. Army Corp of Engineers Engineering Technical Letter (ETL) 1110-1-138 (dated March, 1988) is also a commonly used standard reference.

The Standard Penetration Test (SPT) consists of a drive weight assembly (i.e. hammer and anvil), split spoon sampler, and drill rods. The drive weight system consists of a 140 lb hammer raised by a number of mechanical means. The split spoon sampler is placed at the end of the drill rods in a borehole. The 140 lb hammer is raised 30 inches and then dropped to impact the drill rods. This procedure is repeated until the sampler has penetrated 18 inches into the underlying soil. The number of blows required to advance the split spoon sampler 12 inches is recorded as the "N" value for the test. Typically, the test is performed every 2 $\frac{1}{2}$ ft for the upper 10 ft of a boring and then at 5 ft intervals thereafter. The standard dimensions of the split spoon sampler are shown in Figure 1, while a typical SPT setup is presented in Figure 2.

Figure 1. Split Spoon Sampler (after Rogers, 2004, adapted from ASTM D1586).

There are three (3) types of SPT hammers currently used in drilling practice today: the donut hammer, the automatic hammer, and the safety hammer. In addition, there are three (3) main types of hammer lifting mechanisms: cathead-rope system, spooling wench, or chain driven systems. Drill rods vary from AW (1 ³/₄ in O.D.) to NW (2 5/8 in O.D.), with drill rod lengths varying between 2 ft to 10 ft increments. Methods for advancing boreholes for the SPT test include mud rotary drilling, hollow stem augers, and water drilling with steel casing.

Figure 2. Typical SPT Setup.

SPT Energy Measurements

A number of factors can influence the SPT test and the subsequent N value. These include but are not limited to the following:

- Hammer
- Hammer Lifting System
- Operator Field Procedures
- Drill Rod Diameter and Length
- Borehole Drilling Method and Size
- Spilt Spoon Sampler

A graphical representation of various SPT system variables is provided in Figure 3.

Figure 3. SPT Testing System Variables (after Lamb, 1997).

In order to account for these system variables, standardized SPT corrections have been developed. The corrected blow count is referred to as the N_{60} value. The N_{60} value is derived from the assumed efficiency of the original SPT (Mohr) hammer (Rogers, 2004). The following equation defines N_{60} values:

$$N_{60} = C_{60}C_bC_sC_rN$$

Where:

 $N_{60} = SPT N$ Value corrected for field procedures and apparatus

 C_{60} = Hammer Efficiency Correction

 C_b = Borehole Diameter Correction

 $C_s =$ Sample Barrel Correction

 $C_r = Rod Length Correction$

N = Raw SPT value

In addition, the N value is influenced by the overburden pressure. Laio and Whitman (1986) proposed the following overburden correction for N_{60} , termed $(N_1)_{60}$:

$$(N_1)_{60} = N_{60} \frac{\sqrt{2000 \, psf}}{\sigma'_{v}}$$

Where: $\sigma'_{v} =$ Effective vertical overburden stress

The hammer efficiency correction (C_{60}) is based on the Energy Transfer Efficiency (ER_i) and the 60% of the theoretical transferred hammer energy of 350 ft-lbs (i.e. 140 lbs multiplied by a 30 inch drop). The following equations show the derivation of C_{60} :

$$ER_i = \frac{E_i}{E_{th}}$$

Where:

 $ER_i = Energy$ Transfer Efficiency $E_i = Measured$ Transferred Energy $E_{th} = Theoretical$ Transferred Energy (i.e. 350 ft-lb)

and

$$C_{60} = \frac{ER_i}{60\%}$$

For liquefaction analysis using SPT N values, transferred energy measurements are required to determine $(N_1)_{60}$. The methods for determining the normalized penetration resistance for liquefaction potential are presented in ASTM D6066 *Standard Practice for Determining the Normalized Penetration Resistance of Sands for Evaluation of Liquefaction Potential*.

Transferred (i.e. delivered) energy measurements of SPT testing (i.e. the energy delivered by the hammer to the drill rods) are commonly taken in engineering practice through the use of several types of instruments. The most common of these is the Pile Driving Analyzer (PDA), developed and marketed by Pile Dynamics Inc. of Cleveland, Ohio. The PDA is a computer fitted with a data acquisition and a signal conditioning system and is typically used to conduct high strain dynamic load testing of driven piles, which is analogous to the SPT test. Strain gages and accelerometers which are connected to the PDA are attached to the pile or drill rods (for SPT testing). During pile driving or SPT testing, the strain and acceleration signals are recorded and processed for each hammer blow. The strain signal is converted to a force record and the acceleration signal is converted to a velocity record. The PDA saves selected hammer blows containing this information to disk and determines the compressive stresses, displacement, and

energy at the point of measurement (pile top). The maximum transferred energy (EMX) is derived from the dynamic measurements using the following equation:

$$EMX = \int_{b}^{a} F(t)V(t)dt$$

Where:

a = Time Energy Transfer Begins

b = Time Energy Transfer End

F = Force

V = Velocity

t = Time

Refer to Abou-matar and Goble (1997) for additional details of SPT energy measurements using the PDA. Literature regarding the PDA is provided in the Appendix.

SPT Rig/Hammer System

The tested drill rig is designated CME-75 and is manufactured by Central Mine Equipment, Inc. The drill rig was parked on existing grade in a grassy area for this project. We understand that the drill rig was built on October 29, 1984 and is identified with Serial Number 164447. The CME-75 drill rig is fitted with an automatically operated hammer system. The drill rig and SPT hammer were operated by Mr. Chris Golden.

The method of drilling for the rig during testing was hollow stem auger (HSA), with Standard Penetration Testing being performed with AWJ drill rods. AWJ drill rod sections have nominal outside diameter of 1-5/8 inches and wall thickness of 3/16 inches. The instrumented sub-assembly (i.e. where gauges were attached) consisted of a two feet long section of AWJ rod that was threaded into the top drill rod at each testing interval.

Dynamic Load Test Instrumentation

The dynamic pile testing instrumentation consisted of a 2-feet long AWJ instrumented drill rod which is fitted with two strain gauges by Pile Dynamic Inc., in addition two (2) accelerometer transducers are attached a distance of approximately 1 foot below the top (i.e. in the center) of a two feet long instrumented AWJ drill rod. One strain gauge and one accelerometer are on opposite faces of the sub-assembly to minimize the effects of uneven hammer impact and rod bending.

A Model 8G Pile Driving AnalyzerTM (PDA), manufactured by Pile Dynamics Inc., was used to collect the instrumentation data. The PDA is a computer fitted with a data acquisition and a

signal conditioning system. During driving, the strain and acceleration signals are recorded and processed for each hammer blow. The strain signal is converted to a force record and the acceleration signal is converted to a velocity record. The sampling frequency used during the SPT Energy Measurement Testing was 20,000 hertz (20 kHz). The PDA saves selected hammer blows containing this information to disk and determines the energy at the point of measurement.

DYNAMIC TESTING RESULTS

Hammer Performance

The transferred energy monitored during the sampling is summarized in Table 1. Note that the values are those recorded during the second and third 6-inch sampling interval at each depth. Hammer Efficiency is based on measured transferred energy divided by the energy generated with a 140 pound hammer dropping 30 inches (0.35 kip-ft).

SPT 1 Sample Depth	SPT Blow Count	Hammer Efficiency (%)							
(feet)	(Per 6 inch)	Min	Max	Average	Standard Deviation				
33.5 to 35.0	3-4-4	73.70	75.96	75.02	0.71				
38.5 to 40.0	5-12-14	70.58	74.11	72.25	0.92				
43.5 to 45.0	5-12-21	70.22	74.76	71.98	1.13				
48.5 to 50.0	8-12-25	71.29	74.62	72.84	0.80				
53.5 to 55.0	20-22-29	70.49	74.32	72.31	0.78				
OVERA	ALL ¹ :	71.26	74.75	72.88	0.87				

Table 1. CME-75 Rig SPT Energy Measurement Summary

The following figure shows the SPT rig tested.

Figure 1: SPT drill rig.

SPT Energy Report CME-75 (S/N 164447) Newborn, FL UES Project No. 0950.1900024.0000 April 18, 2018 Page 9 of 9

CONCLUSIONS AND RECOMMENDATIONS

It is our opinion that the SPT hammer on the drill rig designated CME-75 is operating within a normal range for a semi-automatic SPT hammer.

UES appreciates the opportunity to provide this report. This report is for the sole use of this project and should not be relied upon otherwise. Should the project change significantly, we can review and modify our recommendations as needed. If you have questions concerning the contents herein, please contact us.

Sincerely,

UNIVERSAL ENGINEERING SCIENCES, INC. Universal Florida Certificate of Authorization No. 549

Joshua C. Adams

Deep Foundation Engineer HSDPT Certified – Master Level

Attachments: PDA Data Output (PDIPLOT Graphs and Tables)

Universal Engineering Sciences, Inc. - PDIPLOT2 Ver 2017.2.58.3 - Case Method & iCAP® Results Printed: 18-April-2019 Test started: 12-April-2019

Page 1 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019

Georg OP: N	gia SPT - S	PT 2 Sa	mple1			Rod of area 1.18 square inches on CME 75 Date: 12-April-2019						
AR:	1.18 ir	2									192 k/ft ³	
LE:	44.00 ft											
	16,807.9 f/						EM: 30,000 ksi JC: 0.60					
			thad Car	a aity (IC	\ \	COD	Compre	nation St				
	Maximum)				ress at Bo		lie	
	Compress				d Saarah		: Maximu			ing Corr	action)	
	Tension S		ximum - r	ull Reco	d Search				ude Damp		ection)	
	Hammer			بريام مرا	idual Cana		. Energy	Transfer	Ratio - Ra	aleu		
CSI:					idual Sens		001			050		
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR	
	ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)	
1	33.64	7	6.6	20.8	11.6	0.00	20.8	15.0	1.88	3	74.72	
2	33.77	7	7.2	20.8	11.9	0.00	21.0	14.5	1.69	4	74.72	
3	33.91	7	7.9	20.6	11.4	0.00	21.1	15.1	1.90	4	75.75	
4	34.05	7	7.3	20.8	11.7	0.00	21.1	14.6	1.80	4	75.86	
5	34.18	7	6.8	20.9	11.7	0.00	21.1	14.6	1.64	3	75.54	
6	34.32	7	6.1	20.8	11.7	0.00	21.1	15.0	1.76	2	75.96	
7	34.45	7	6.8	21.0	11.2	0.00	21.3	15.3	1.64	3	73.70	
8	34.59	7	5.7	20.7	10.9	0.00	21.0	14.7	1.64	2	75.25	
9	34.73	7	5.6	20.5	10.6	0.00	20.8	14.6	1.64	2	74.95	
10	34.86	7	6.3	20.6	9.9	0.00	20.9	14.4	1.64	3	73.99	
11	35.00	7	6.1	20.5	9.9	0.00	20.8	14.6	1.64	3	74.78	
	A	verage	6.6	20.7	11.1	**	21.0	14.8	1.71	3	75.02	
		d. Dev.	0.7	0.2	0.7	**	0.1	0.3	0.10	1	0.71	
		ximum	7.9	21.0	11.9	**	21.3	15.3	1.90	4	75.96	
					9.9	**	20.8	14.4	1.64	2	73.70	
					mber of blo	ows analy			-		-	

IY.

BL# Sensors

1-11 F1: [357AWJ1] 212.0 (1.02); F4: [357AWJ2] 211.2 (1.02); A2: [55385] 915.0 (0.98); A3: [50148] 1065.0 (0.98)

BL# Comments

11 End of Set 1. n=10

Time Summary

Drive 13 seconds 1:46 PM - 1:46 PM BN 1 - 11

Universal Engineering Sciences, Inc. - PDIPLOT2 Ver 2017.2.58.3 - Case Method & iCAP® Results Printed: 18-April-2019 Test started: 12-April-2019

	rsal Engine Method & i			с.		Page 1 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019						
Georg <u>OP: N</u>	ia SPT - S VT	PT 2 Sa	mple 2			Rod of area 1.18 square inches on CME 75 Date: 12-April-2019						
AR:	1.18 in	2									92 k/ft ³	
LE:	50.00 ft									EM: 30,0	00 ksi	
WS: 1	6,807.9 f/s	6									60	
RMX:	Maximum	Case Me	thod Cap	acity (JC)		CSB:	: Compre	ession Str	ess at Bo	ttom of P	lile	
CSX:	Compress	ion Stres	s Maximu	im			: Maximu					
TSX:	Tension S	tress Ma	ximum - F	ull Recor	d Search				ude Damp	oing Corre	ection)	
STK:	Hammer S	Stroke				ETR:	Energy	Transfer	Ratio - Ra	ated		
CSI:	Compress	ion Stres	s Maximu	ım - Indivi	dual Sens	or						
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR	
	ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)	
1	38.55	21	7.2	20.8	13.8	0.00	20.9	15.4	1.31	3	71.76	
2	38.60	21	7.1	20.6	11.3	0.00	20.6	14.9	0.82	3	72.14	
3	38.65	21	7.1	20.2	10.8	0.00	20.5	14.7	0.74	3	71.63	
4	38.69	21	6.4	20.1	10.2	0.00	20.3	14.2	0.67	3	71.53	
5	38.74	21	6.9	20.1	9.8	0.00	20.3	14.5	0.58	3	71.16	
6	38.79	21	6.6	20.6	9.5	0.00	20.9	14.4	0.58	3	73.06	
7	38.84	21	6.7	20.4	8.8	0.00	20.4	14.7	0.58	3	73.52	
8	38.89	21	6.6	20.1	8.5	0.00	20.1	13.9	0.58	3	72.45	
9	38.94	21	7.5	20.4	7.9	0.00	20.4	14.3	0.58	3	70.58	
10	38.98	21	6.9	20.8	8.3	0.00	21.0	14.9	0.58	3	72.72	
11	39.03	21	6.6	20.9	7.7	0.00	21.0	14.7	0.58	3	72.58	
12	39.08	21	6.6	21.0	7.9	0.00	21.2	14.8	0.58	3	72.44	
13	39.13	21	6.4	21.1	7.6	0.00	21.1	14.7	0.58	3	74.07	
14	39.18	21	6.4	21.0	7.7	0.00	21.2	14.4	0.58	3	71.92	
15	39.23	21	6.1	21.3	7.6	0.00	21.3	14.8	0.58	3	72.94	
16	39.27	21	6.3	20.9	7.7	0.00	21.2	15.0	0.58	2	74.11	
17	39.32	21	6.4	20.7	7.3	0.00	20.8	14.4	0.58	3	71.63	
18	39.37	21	6.8	21.1	6.9	0.00	21.1	15.2	0.58	3	71.24	
19	39.42	21	6.9	20.2	6.8	0.00	20.4	14.9	0.58	3	70.74	
20	39.47	21	6.4	21.0	6.7	0.00	21.0	15.1	0.58	3	73.12	
21	39.52	21	6.9	20.9	6.3	0.00	21.0	15.2	0.58	3	71.50	
22	39.56	21	7.0	21.1	6.1	0.00	21.3	15.1	0.58	3	71.65	
23	39.61	21	6.3	20.9	5.9	0.00	21.0	15.0	0.58	3	72.81	
24	39.66	21	6.6	20.9	6.0	0.00	21.0	15.0	0.58	3	72.22	
25	39.71	21	7.3	20.4	5.7	0.00	20.7	14.9	0.58	3	72.04	
26	39.76	21	6.1	19.9	5.8	0.00	20.0	14.2	0.58	2	72.76	
27	39.81	21	6.4	20.2	5.5	0.00	20.5	14.8	0.58	3	70.77	
28	39.85	21	6.5	20.3	5.3	0.00	20.5	14.7	0.58	3	73.48	
29	39.90	21	6.8	21.1	5.2	0.00	21.3	15.2	0.58	3	73.35	
30	39.95	21	6.6	20.3	5.2	0.00	20.6	14.3	0.58	3	71.99	
31	40.00	21	7.2	20.7	5.3	0.00	20.9	15.1	0.58	3	71.85	
	A	verage	6.7	20.6	7.6	**	20.8	14.8	0.62	3	72.25	
		d. Dev.	0.3	0.4	2.0	**	0.4	0.4	0.14	0	0.92	
		ximum	7.5	21.3	13.8	**	21.3	15.4	1.31	3	74.11	
	Mii	nimum	6.1	19.9	5.2	**	20.0	13.9	0.58	2	70.58	
				Total nun	nhor of hic	we analy	12 ·hazı					

Total number of blows analyzed: 31

BL# Sensors

1-31 F1: [357AWJ1] 212.0 (1.12); F4: [357AWJ2] 211.2 (1.12); A2: [55385] 915.0 (0.88); A3: [50148] 1065.0 (0.88)

Georgia SPT - SPT 2 Sample 2 OP: NVT

BL# Comments

31 end of set 2. N=28

Time Summary

Drive 41 seconds 1:56 PM - 1:56 PM BN 1 - 31

Page 2 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019

Rod of area 1.18 square inches on CME 75 Date: 12-April-2019

Universal Engineering Sciences, Inc. - PDIPLOT2 Ver 2017.2.58.3 - Case Method & iCAP® Results Printed: 18-April-2019 Test started: 12-April-2019

	rsal Engine Method &			С.		Page 1 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019							
Georg OP: N	gia SPT - S IVT	PT 2 Sa	mple 3			Rod of area 1.18 square inches on CME 75 Date: 12-April-2019							
AR:	1.18 ir	2				SP: 0.492 k/ft ³							
LE:	55.00 ft					EM: 30,000 ksi							
	6,807.9 f/					JC: 0.60							
	Maximum		athod Can	acity (IC)	1	CSB	Compre	ssion Str	ess at Bo				
	Compress						: Maximu						
	Tension S				d Search				ude Damp	ning Corr	ection)		
	Hammer								Ratio - Ra				
	Compress		s Maximi	ım - Indivi	dual Sens		Linergy	Transfer					
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR		
DL#	ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)		
1	43.54	24	4.9	21.1	11.4	0.00	21.6	13.3	1.10	3	73.56		
2	43.58	24	3.7	20.8	11.4	0.00	21.3	12.7	1.14	2	74.69		
2	43.63	24	6.7	20.8	11.6	0.00	21.3	14.4	1.14	2	74.09		
									1.14				
4	43.67	24	6.7	20.8	10.9	0.00	21.4	13.9		4 3	73.33		
5	43.71	24	6.5	20.4	11.4	0.00	20.9	13.8	1.12		74.76 73.27		
6	43.75	24	7.4	20.9	9.8	0.00	21.5	14.5	0.83	4			
7	43.79	24	7.7	21.0	8.8	0.00	21.6	14.4	0.54	4	71.45		
8	43.83	24	7.8	20.7	7.1	0.00	21.3	14.5	0.50	4	72.71		
9	43.88	24	7.5	20.6	6.4	0.00	21.2	14.7	0.50	3	72.31		
10	43.92	24	7.4	21.0	6.1	0.00	21.6	14.8	0.50	3	72.14		
11	43.96	24	7.8	20.7	6.5	0.00	21.4	14.8	0.50	4	72.51		
12	44.00	24	8.3	21.1	6.2	0.00	21.9	15.1	0.50	4	72.92		
13	44.04	24	7.9	20.3	5.9	0.00	20.8	14.8	0.50	4	72.14		
14	44.08	24	7.7	20.5	5.6	0.00	21.2	14.6	0.50	4	71.40		
15	44.13	24	7.4	20.5	5.4	0.00	21.3	14.9	0.50	3	72.12		
16	44.17	24	7.0	20.7	5.6	0.00	21.4	14.6	0.50	3	71.96		
17	44.21	24	7.9	20.8	5.4	0.00	21.5	15.1	0.50	4	71.86		
18	44.25	24	7.9	20.2	4.5	0.00	20.7	14.4	0.50	4	71.91		
19	44.29	24	7.3	20.7	4.4	0.00	21.5	14.2	0.50	4	71.45		
20	44.33	24	7.2	20.2	4.2	0.00	20.7	14.2	0.50	3	71.52		
21	44.38	24	7.4	20.4	3.6	0.00	21.1	14.4	0.50	4	71.86		
22	44.42	24	7.6	20.7	3.8	0.00	21.3	14.4	0.50	4	70.36		
23	44.46	24	7.8	20.5	3.0	0.00	21.4	14.7	0.50	4	72.62		
24	44.50	24	7.7	20.3	2.6	0.00	20.9	14.1	0.50	4	70.92		
25	44.54	24	7.7	20.2	2.6	0.00	20.8	13.9	0.50	4	71.70		
26	44.58	24	7.7	20.4	2.4	0.00	21.1	14.3	0.50	4	70.31		
27	44.63	24	7.3	20.1	2.1	0.00	20.8	14.0	0.50	4	71.44		
28	44.67	24	7.9	20.2	2.3	0.00	20.7	14.0	0.50	4	70.22		
29	44.71	24	7.6	20.3	2.3	0.00	20.9	14.2	0.50	4	71.23		
30	44.75	24	7.2	20.1	2.7	0.00	20.7	14.1	0.50	4	71.27		
31	44.79	24	7.3	20.0	2.4	0.00	20.6	13.8	0.50	4	71.10		
32	44.83	24	7.7	20.2	2.5	0.00	20.8	14.3	0.50	4	70.64		
33	44.88	24	7.4	20.1	2.6	0.00	20.7	13.8	0.50	4	71.58		
34	44.92	24	8.0	20.0	2.7	0.00	20.5	14.0	0.50	4	70.62		
35	44.96	24	8.2	20.1	2.6	0.00	20.7	14.2	0.50	4	71.18		
36	45.00	24	8.1	20.2	2.8	0.00	20.6	14.3	0.51	4	71.80		
		verage	7.4	20.5	5.3	**	21.1	14.3	0.60	4	71.98		
		d. Dev.	0.9	0.3	3.1	**	0.4	0.5	0.23	0	1.13		
		ximum	8.3	21.1	11.6	**	21.9	15.1	1.21	4	74.76		
	IVII	nimum	3.7	20.0 Total pur	2.1 ober of blo		20.5	12.7	0.50	2	70.22		

Total number of blows analyzed: 36

Page 2 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019

Rod of area 1.18 square inches on CME 75

Date: 12-April-2019

Georgia SPT - SPT 2 Sample 3 OP: NVT

BL# Sensors

1-36 F1: [357AWJ1] 212.0 (1.12); F4: [357AWJ2] 211.2 (1.12); A2: [55385] 915.0 (0.88); A3: [50148] 1065.0 (0.88)

BL# Comments

36 End of Set 3. n=33

Time Summary

Drive 49 seconds 2:14 PM - 2:14 PM BN 1 - 36

Universal Engineering Sciences, Inc. - PDIPLOT2 Ver 2017.2.58.3 - Case Method & iCAP® Results

	ersal Engin Method &			IC.	Page 1 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019							
Georo OP: N	gia SPT - S IVT	SPT 2 Sai	mple 4			Rod of area 1.18 square inches on CME 75 Date: 12-April-2019						
AR: LE:	1.18 ir 55.00 ft					SP: 0.492 k/ft³ EM: 30,000 ksi						
	16,807.9 f/	's								JC: 0	.60	
	Maximum								ress at Bo	ttom of P	lie	
	Compres				d Coorob		: Maximu			ing Corr	ootion)	
	Tension S Hammer		ximum - r	-ull Recor	u Search				ude Damp Ratio - Ra		ection)	
CSI:		sion Stres	s Maximu	um - Indivi	dual Sens		. Energy	Transier				
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR	
	ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)	
1	48.53	30	4.6	21.3	10.7	0.00	21.5	15.0	1.17	1	72.09	
2	48.57	30	4.8	20.9	9.8	0.00	21.1	13.1	0.91	2	72.78	
3	48.60	30	4.8	21.0	9.2	0.00	21.0	13.8	0.74	2	72.83	
4	48.63	30	4.7	21.2 21.2	8.7	0.00	21.2	14.1	0.62	2	71.63	
5 6	48.67 48.70	30 30	4.5 4.3	21.2	8.3 8.6	0.00 0.00	21.2 21.1	14.6 14.3	0.62 0.63	1 2	72.96 73.93	
7	48.70	30	4.3 5.6	21.0	8.2	0.00	21.1	14.3	0.60	2	73.49	
8	48.77	30	6.0	21.0	8.0	0.00	21.0	15.2	0.54	2	72.26	
9	48.80	30	5.0	21.4	7.8	0.00	21.5	14.4	0.56	2	74.62	
10	48.83	30	7.3	21.1	7.6	0.00	21.2	15.6	0.53	3	72.65	
11	48.87	30	6.8	21.4	7.1	0.00	21.4	15.6	0.51	3	72.17	
12	48.90	30	7.3	21.4	7.0	0.00	21.5	15.8	0.52	3	72.82	
13	48.93	30	6.6	21.4	6.6	0.00	21.5	15.5	0.50	2	72.61	
14	48.97	30	6.6	20.8	6.7	0.00	20.9	15.4	0.49	2	71.29	
15	49.00	30	6.9	20.9	6.5	0.00	21.0	15.8	0.50	2	73.55	
16	49.03	30	7.4	21.0	6.1	0.00	21.1	15.7	0.46	3	72.67	
17 18	49.07 49.10	30 30	7.2 7.1	21.1 21.5	5.9 6.0	0.00 0.00	21.2 21.7	15.9 15.8	0.47 0.46	3 3	73.71 74.24	
19	49.10	30	6.9	21.3	6.1	0.00	21.7	15.3	0.40	2	73.00	
20	49.17	30	7.1	21.1	5.8	0.00	21.1	15.9	0.40	2	73.21	
21	49.20	30	7.3	21.2	5.9	0.00	21.3	16.0	0.41	2	73.71	
22	49.23	30	7.2	21.3	5.5	0.00	21.5	15.9	0.40	2	72.58	
23	49.27	30	7.2	21.0	5.0	0.00	21.1	15.9	0.40	2	73.35	
24	49.30	30	7.2	21.2	4.6	0.00	21.2	16.1	0.41	2	73.66	
25	49.33	30	7.5	21.1	4.0	0.00	21.1	15.8	0.42	3	73.49	
26	49.37	30	8.0	21.2	3.3	0.00	21.4	14.8	0.40	3	71.73	
27 28	49.40 49.43	30 30	8.0 8.0	21.3 21.1	3.0 3.2	0.00 0.00	21.4 21.1	15.8 15.8	0.40 0.40	3 3	72.73 73.24	
20 29	49.43	30	8.0 8.9	21.1	2.9	0.00	21.1	16.0	0.40	3	73.44 73.44	
30	49.50	30	8.3	20.9	3.2	0.00	21.0	15.8	0.40	3	73.26	
31	49.53	30	8.4	21.2	2.8	0.00	21.2	15.5	0.40	3	71.45	
32	49.57	30	8.7	21.5	2.8	0.00	21.7	15.7	0.40	3	73.66	
33	49.60	30	8.6	21.5	2.8	0.00	21.8	16.2	0.40	3	72.79	
34	49.63	30	8.8	21.1	3.0	0.00	21.3	15.8	0.40	3	72.19	
35	49.67	30	9.2	21.3	2.9	0.00	21.6	15.2	0.40	4	71.50	
36	49.70	30	9.0	21.0	3.0	0.00	21.2	15.9	0.40	3	74.18	
37	49.73	30	9.2	21.2	3.0	0.00	21.2	15.7	0.40	3	72.21	
38 39	49.77 49.80	30 30	9.3 9.6	21.2 21.4	2.9 2.8	0.00 0.00	21.4 21.6	15.9 15.9	0.40 0.40	4 4	72.74 72.69	
39 40	49.80 49.83	30 30	9.6 10.3	21.4 21.5	2.8 2.7	0.00	21.6 21.8	15.9 15.9	0.40	4	72.69 71.86	
40	49.87	30	10.3	21.5	3.1	0.00	21.3	16.2	0.40	4	72.14	
42	49.90	30	10.5	21.5	3.1	0.00	21.7	15.8	0.40	4	73.82	
43	49.93	30	11.0	20.5	3.1	0.00	20.6	15.9	0.40	4	71.92	
44	49.97	30	10.7	21.5	3.0	0.00	21.6	16.4	0.40	4	71.82	
45	50.00	30	11.0	21.0	3.2	0.00	21.1	15.8	0.40	4	72.92	

Page 2 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019

Georg	jia SPT - S	PT 2 Sa	mple 4		Rod of area 1.18 square inches on CME 75							
OP: N	VT		-			Date: 12-April-2019						
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR	
	ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)	
	Average		7.6	21.2	5.2	**	21.3	15.5	0.48	3	72.84	
	Std. Dev.		1.8	0.2	2.3	**	0.3	0.7	0.15	1	0.80	
	Maximum		11.0	21.5	10.7	**	21.8	16.4	1.17	4	74.62	
	Mi	nimum	4.3	20.5	2.7	**	20.6	13.1	0.40	1	71.29	
				Total nur	nhar of hl	owe analy	170d. 15					

Total number of blows analyzed: 45

BL# Sensors

1-45 F1: [357AWJ1] 212.0 (1.12); F4: [357AWJ2] 211.2 (1.12); A2: [55385] 915.0 (0.88); A3: [50148] 1065.0 (0.88)

BL# Comments

45 end of set 4. n=39

Time Summary

Drive 1 minute 2 seconds 2:27 PM - 2:28 PM BN 1 - 45

Universal Engineering Sciences, Inc. - PDIPLOT2 Ver 2017.2.58.3 - Case Method & iCAP® Results

	ersal Engine Method &			C.	Page 1 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019							
Georg OP: N	gia SPT - S IVT	SPT 2 Sa	mple 5			Rod of area 1.18 square inches on CME 75 Date: 12-April-2019						
AR: LE: WS: 2	1.18 ir 60.00 ft /16,807.9 f					SP: 0.492 k/ft ³ EM: 30,000 ksi JC: 0.60						
RMX:	Maximum	Case Me							ess at Bo			
	Compress Tension S				d Search		: Maximu Skin Fri		cement ude Damp	ina Corre	ection)	
	Hammer								Ratio - Ra		outony	
<u>CSI:</u>	Compress								510/	0.55		
BL#	Depth ft	BLC bl/ft	RMX kips	CSX ksi	TSX ksi	STK ft	CSI ksi	CSB ksi	DMX in	SFR kips	ETR (%)	
1	53.52	47	6.4	21.7	8.8	0.00	21.8	17.7	1.47	кірз 1	72.27	
2	53.54	47	7.4	21.4	10.0	0.00	21.5	15.4	1.55	3	72.51	
3	53.56	47	8.1	21.4	9.6	0.00	21.4	15.5	1.55	4	71.52	
4	53.58	47	8.2	21.6	9.6	0.00	21.6	16.4	1.31	3	72.20	
5 6	53.61 53.63	47 47	8.7 9.0	21.0 21.0	8.1 6.1	0.00 0.00	21.2 21.2	15.8 16.1	0.66 0.54	4 3	72.13 71.12	
7	53.65	47	8.5	21.0	5.2	0.00	21.2	16.4	0.54	3	71.64	
8	53.67	47	8.6	21.0	5.2	0.00	21.2	16.6	0.54	3	72.37	
9	53.69	47	8.4	21.2	5.7	0.00	21.4	16.1	0.55	3	72.11	
10	53.71	47	8.9	21.2	5.2	0.00	21.3	16.7	0.49	3	71.46	
11 12	53.73 53.75	47 47	9.0 9.0	21.2 21.0	5.0 4.6	0.00 0.00	21.5 21.2	16.8 16.7	0.46 0.45	3 3	71.39 72.71	
13	53.77	47	8.5	21.0	4.2	0.00	21.2	16.0	0.43	3	72.38	
14	53.80	47	8.2	21.6	3.6	0.00	21.6	16.8	0.42	3	73.49	
15	53.82	47	8.0	21.5	2.7	0.00	21.6	16.6	0.40	3	73.30	
16	53.84	47	8.2	21.6	2.5	0.00	21.6	16.6	0.39	3	73.22	
17 18	53.86 53.88	47 47	8.4 8.9	21.3 21.0	2.2 2.0	0.00 0.00	21.3 21.1	16.0 16.8	0.38 0.37	3 3	72.54 72.52	
19	53.90	47	8.2	21.0	2.0	0.00	21.1	16.6	0.36	3	71.99	
20	53.92	47	9.0	21.2	2.0	0.00	21.5	16.7	0.36	3	72.82	
21	53.94	47	8.9	21.5	1.9	0.00	21.7	16.7	0.35	3	72.80	
22	53.96	47	8.9	21.3	2.2	0.00	21.6	16.5	0.34	3	71.30	
23 24	53.99 54.01	47 47	8.7 8.8	21.3 21.3	2.2 2.4	0.00 0.00	21.4 21.4	16.5 16.4	0.33 0.36	3 3	71.79 73.37	
25	54.03	47	8.9	21.3	3.0	0.00	21.4	16.8	0.32	3	71.17	
26	54.05	47	8.9	21.3	3.2	0.00	21.5	16.6	0.33	3	71.61	
27	54.07	47	8.8	21.4	3.1	0.00	21.4	17.5	0.35	2	73.06	
28 29	54.09 54.11	47 47	8.5 8.8	21.5 21.6	3.2 3.3	0.00 0.00	21.5 21.7	16.7 16.8	0.33 0.32	3 3	72.63 71.40	
30	54.13	47	8.7	21.6	3.1	0.00	21.7	16.6	0.32	3	72.10	
31	54.15	47	8.7	21.5	3.3	0.00	21.7	16.9	0.33	3	72.38	
32	54.18	47	8.9	21.7	3.6	0.00	21.8	17.1	0.33	3	73.15	
33	54.20	47	8.8	21.5	3.4	0.00	21.6	17.1	0.33	3	72.04	
34 35	54.22 54.24	47 47	8.9 9.5	21.5 21.2	3.3 3.2	0.00 0.00	21.6 21.5	16.8 16.8	0.33 0.30	3 3	72.75 71.13	
36	54.26	47	9.5	21.5	3.5	0.00	21.6	17.0	0.33	3	72.73	
37	54.28	47	9.7	21.3	3.4	0.00	21.5	16.8	0.31	3	71.44	
38	54.30	47	9.9	21.5	3.4	0.00	21.7	16.4	0.30	4	71.71	
39 40	54.32 54.35	47 47	9.9 10.2	21.4 21.2	4.0 3.6	0.00 0.00	21.4 21.3	17.0 16.6	0.32 0.31	3 4	72.68 71.51	
40 41	54.35 54.37	47 47	10.2 9.9	21.2 21.1	3.6 3.7	0.00	21.3 21.2	16.6	0.31	4	71.63	
42	54.39	47	10.3	21.2	3.8	0.00	21.2	16.5	0.29	4	70.49	
43	54.41	47	10.8	21.5	3.7	0.00	21.7	16.6	0.30	4	72.44	
44	54.43	47	11.1	21.2	3.7	0.00	21.2	16.5	0.30	4	72.04	
45	54.45	47	11.1	21.1	3.7	0.00	21.2	16.6	0.30	4	71.36	

Georgia SPT - SPT 2 Sample 5

Page 2 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019

Rod of area 1.18 square inches on CME 75

OP: N	VT							Date	e: 12-Apr	il-2019	
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR
	ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)
46	54.47	47	11.0	21.3	3.7	0.00	21.5	16.5	0.29	4	71.27
47	54.49	47	11.2	21.2	3.8	0.00	21.3	16.3	0.29	4	70.87
48	54.51	47	11.0	21.5	3.5	0.00	21.6	16.6	0.30	4	72.83
49	54.54	47	11.4	21.3	3.3	0.00	21.4	16.7	0.31	4	73.80
50	54.56	47	11.2	21.5	3.2	0.00	21.7	16.9	0.31	4	74.32
51	54.58	47	11.7	21.3	3.5	0.00	21.3	16.3	0.30	4	72.31
52	54.60	47	11.8	21.5	3.3	0.00	21.7	16.5	0.29	5	72.94
53	54.62	47	11.8	21.2	3.2	0.00	21.3	16.7	0.28	4	71.57
54	54.64	47	11.7	21.6	3.2	0.00	21.6	16.3	0.30	5	73.68
55	54.66	47	12.1	21.6	3.2	0.00	21.6	16.2	0.27	5	71.81
56	54.68	47	11.8	21.2	3.2	0.00	21.3	16.5	0.29	5	72.43
57	54.70	47	11.7	21.1	3.4	0.00	21.2	16.6	0.29	4	71.75
58	54.73	47	11.6	21.5	3.2	0.00	21.7	16.3	0.29	5	72.23
59	54.75	47	12.0	21.6	3.2	0.00	21.7	16.1	0.28	5	72.28
60	54.77	47	11.6	21.6	3.4	0.00	21.7	16.4	0.31	5	73.76
61	54.79	47	11.7	21.4	3.5	0.00	21.5	15.7	0.29	5	72.69
62	54.81	47	11.7	21.7	3.4	0.00	21.7	16.8	0.29	4	72.24
63	54.83	47	11.9	21.5	3.3	0.00	21.6	15.9	0.30	5	73.48
64	54.85	47	11.5	21.6	3.6	0.00	21.6	15.8	0.30	5	73.37
65	54.87	47	11.9	21.6	3.2	0.00	21.7	16.5	0.28	5	72.35
66	54.89	47	11.7	21.4	3.4	0.00	21.5	16.4	0.29	5	72.12
67	54.92	47	12.0	21.3	3.3	0.00	21.3	16.5	0.28	5	72.10
68	54.94	47	11.6	21.7	3.6	0.00	21.8	16.7	0.30	5	73.06
69	54.96	47	11.4	21.5	3.4	0.00	21.5	16.6	0.30	5	73.07
70	54.98	47	11.5	21.7	3.4	0.00	21.8	16.4	0.28	5	72.03
71	55.00	47	11.6	21.4	4.0	0.00	21.5	16.1	0.28	5	73.35
	A	verage	9.9	21.4	3.9	**	21.5	16.5	0.41	4	72.31
		d. Dev.	1.5	0.2	1.7	**	0.2	0.4	0.27	1	0.78
		iximum	12.1	21.7	10.0	**	21.8	17.7	1.55	5	74.32
	Mi	nimum	6.4	21.0	1.9	**	21.1	15.4	0.27	1	70.49
				Total nur	nhor of hl	ows analy	17 ·hazu				

Total number of blows analyzed: 71

BL# Sensors

1-71 F1: [357AWJ1] 212.0 (1.12); F4: [357AWJ2] 211.2 (1.12); A2: [55385] 915.0 (0.88); A3: [50148] 1065.0 (0.88)

BL# Comments

71 end of set 5. n=51

Time Summary

Drive 1 minute 41 seconds 2:42 PM - 2:43 PM BN 1 - 71