1.0 Compost

1.1 Description

This specification covers compost produced from various organic by-products, for use as an infill material for sediment tubes, and as a mulch for temporary and permanent seeding applications.

Compost is the product resulting from the controlled biological decomposition of organic material occurring under aerobic conditions that has been sanitized through the generation of heat and stabilized to the point that it is appropriate for its particular application. Active composting is typically characterized by a high-temperature phase that sanitizes the product and allows a high rate of decomposition, followed by a lower-temperature phase that allows the product to stabilize while still decomposing at a slower rate. Ensure Compost possess no objectionable odors or substances toxic to plants and does not resemble the raw material from which it was derived.

1.2 Materials

Provide compost only from a compost producer that participates in the United States Composting Council’s (USCC) Seal of Testing Assurance (STA) program. The Department will accept only STA approved compost.

Provide compost produced by aerobic (biological) decomposition of organic matter meeting the requirements of Table 1 (Sediment Tube Compost Media Parameters) or Table 2 (Compost Blanket Parameters). Compost feedstock may include, but is not limited to, the following:

- Leaf and yard trimmings
- Food scraps
- Treated biosolids
- Manure
- Agricultural residuals
- Forest residuals
- Tree wood
- Bark
- Paper

Ensure compost does not contain any visible refuse, other physical contaminants, or any substance considered harmful to plant growth. Do not use materials that have been treated with chemical preservatives as a compost feedstock. Do not use mixed municipal solid waste compost.

Proper thermophilic composting meeting the US Environmental Protection Agency’s definition for a ‘process to further reduce pathogens’ (PFRP) will effectively reduce populations of human and plant pathogens, as well as destroy noxious weed seeds and propagules.

1.2.1 Sediment Tubes

Use compost in accordance with AASHTO specification MP 9-03 (Filter Socks) and compost that meets all applicable EPA 40 CFR 503 standards for Class A biosolids including the time and temperature standards. Only use compost that meets the requirements of the United States Composting Council (USCC) Seal of Testing Assurance (STA) program.
Compost sediment tubes are applicable in areas that have concentrated flow drainage patterns.

Table 1: Sediment Tube Compost Media Parameters

<table>
<thead>
<tr>
<th>Parameters, Material</th>
<th>Reported as (units of measure)</th>
<th>Filter Sock Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5.0 – 8.5</td>
<td></td>
</tr>
<tr>
<td>Soluble Salt Concentration [2] (electrical conductivity)</td>
<td>dS/m (mmhos/cm)</td>
<td>N/A</td>
</tr>
<tr>
<td>Moisture Content [2]</td>
<td>%, wet weight basis</td>
<td>&lt;60</td>
</tr>
<tr>
<td>Organic Matter Content [2]</td>
<td>%, dry weight basis</td>
<td>20 – 100</td>
</tr>
<tr>
<td>Particle Size [3]</td>
<td>% passing a selected mesh size, dry weight basis</td>
<td>• 2&quot;, 90% passing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3/8&quot;, 30% to 50% passing (or 50% -70% retained)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2&quot; maximum particle length</td>
</tr>
<tr>
<td>Stability [3]</td>
<td>Carbon Dioxide Evolution Rate</td>
<td>mg CO(_2)-C per g OM per day</td>
</tr>
<tr>
<td>Physical Contaminants (man-made inerts)</td>
<td>%, dry weight basis</td>
<td>&lt;1</td>
</tr>
</tbody>
</table>

1 Recommended test methodologies are provided in Test Methods for the Examination of Composting and Compost (TMECC, The US Composting Council).

2 Each specific plant species requires a specific pH range. Each plant also has a salinity tolerance rating; maximum tolerable quantities are known. When specifying the establishment of any plant or turf species, it is important to understand the pH and soluble salt requirements and how they relate to the compost in use.

3 Stability/Maturity rating is an area of compost science that is still evolving and, as such, other various test methods could be considered. Also, never base compost quality conclusions on the result of a single stability/maturity test.

4 Landscape architects and project (field) RCEs may modify the allowable compost specification ranges based on specific field conditions and plant requirements.

1.2.2 Mulch / Compost Blanket

Use compost on slopes up to a 2H:1V grade and a maximum continuous slope length of 50 feet. Use compost on areas that only have sheet flow drainage patterns. Do not use compost as a mulch on areas that receive concentrated flows.

Use compost in accordance with AASHTO specification MP 10-03 (Compost Blankets) and compost that meets all applicable EPA 40 CFR 503 standards for Class A biosolids including the time and temperature standards. Only use compost that meets the requirements of the United States Composting Council (USCC) Seal of Testing Assurance (STA) program.
Table 2: Compost Blanket Parameters

<table>
<thead>
<tr>
<th>Parameters 1,4</th>
<th>Reported as (units of measure)</th>
<th>Vegetated Compost</th>
<th>Un-vegetated Compost</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH2</td>
<td></td>
<td>5.0 – 8.5</td>
<td>N/A</td>
</tr>
<tr>
<td>Soluble Salt Concentration 2 (electrical conductivity)</td>
<td>dS/m (mmhos/cm)</td>
<td>Maximum 5</td>
<td>Maximum 5</td>
</tr>
<tr>
<td>Moisture Content</td>
<td>%, wet weight basis</td>
<td>30 – 60</td>
<td>30 – 60</td>
</tr>
<tr>
<td>Organic Matter Content</td>
<td>%, dry weight basis</td>
<td>25 – 65</td>
<td>25-100</td>
</tr>
<tr>
<td>Particle Size</td>
<td>% passing a selected mesh size, dry weight basis</td>
<td>• 3&quot;, 100% passing</td>
<td>• 3&quot;, 100% passing</td>
</tr>
<tr>
<td>Physical Contaminants (man-made inerts)</td>
<td>%, dry weight basis</td>
<td>&lt; 1</td>
<td>&lt; 1</td>
</tr>
</tbody>
</table>

1 Recommended test methodologies are provided in Test Methods for the Examination of Composting and Compost (TMECC, The US Composting Council)
2 Each specific plant species requires a specific pH range. Each plant also has a salinity tolerance rating; maximum tolerable quantities are known. When specifying the establishment of any plant or turf species, it is important to understand the pH and soluble salt requirements and how they relate to the compost in use.
3 Stability/Maturity rating is an area of compost science that is still evolving and, as such, other various test methods could be considered. Also, never base compost quality conclusions on the result of a single stability/maturity test.
4 Landscape architects and project (field) RCEs may modify the allowable compost specification ranges based on specific field conditions and plant requirements.

1.2.3 Quality Assurance

Only use compost products that are certified to specified product parameters in accordance with the U.S. Composting Council (USCC) Seal of Testing Assurance (STA) Program.

1.2.4 Quality Control

Before delivery of the compost, provide quality control (QC) documentation that includes the following:

- The feedstock by percentage in the final compost product.
- A statement that the compost meets federal and state health and safety regulations.
- A statement that the composting process has met time and temperature requirements.
- A copy of the lab analysis verifying that the compost meets the material requirements of this specification.

Test methods used for purposes of this specification are as provided in the Test Methods for the Examination of Compost and Composting (TMECC), jointly published by the USDA and USCC (2002 publishing as part of the USDA National Resource Conservation Technical Bulletin Series). A list of such methods is provided in the table below and on line at http://tmecc.org/tmecc/.
### Table 3: Test Methods for Compost Characterization

<table>
<thead>
<tr>
<th>Compost Parameters</th>
<th>Reported as</th>
<th>Test Method</th>
<th>Test Method Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>TMECC 04.11-A</td>
<td>Electrometric pH Determinations for Compost. 1:5 Slurry Method</td>
</tr>
<tr>
<td>Soluble salts</td>
<td>dS/m (mmhos/cm)</td>
<td>TMECC 04.10-A</td>
<td>Electrical Conductivity for Compost. 1:5 Slurry Method (Mass Basis)</td>
</tr>
<tr>
<td>Primary plant nutrients:</td>
<td>%, as-is (wet) &amp; dry weight basis</td>
<td>TMECC 04.04-Ca</td>
<td>Secondary and Micro-Nutrient Content. Calcium</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>Total N</td>
<td>TMECC 04.02-D</td>
<td>Nitrogen. Total Nitrogen by Combustion</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>P₂O₅</td>
<td>TMECC 04.03-A</td>
<td>Phosphorus. Total Phosphorus</td>
</tr>
<tr>
<td>Potassium</td>
<td>K₂O</td>
<td>TMECC 04.04-A</td>
<td>Potassium. Total Potassium</td>
</tr>
<tr>
<td>Calcium</td>
<td>Ca</td>
<td>TMECC 04.04-Ca</td>
<td>Secondary and Micro-Nutrient Content. Calcium</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Mg</td>
<td>TMECC 04.04-Mg</td>
<td>Secondary and Micro-Nutrient Content. Magnesium</td>
</tr>
<tr>
<td>Moisture content</td>
<td>%, wet weight basis</td>
<td>TMECC 03.09-A</td>
<td>Total Solids and Moisture at 70±5°C</td>
</tr>
<tr>
<td>Organic matter content</td>
<td>%, dry weight basis</td>
<td>TMECC 05.07-A</td>
<td>Matter Method. Loss On Ignition Organic Matter Method</td>
</tr>
<tr>
<td>Particle size</td>
<td>Screen size passing through</td>
<td>TMECC 02.12-B</td>
<td>Laboratory Sample Preparation. Sample Sieving for Aggregate Size Classification.</td>
</tr>
<tr>
<td>Stability (respirometry)</td>
<td>mg CO₂-C per g TS per day</td>
<td>TMECC 05.08-B</td>
<td>Respirometry. Carbon Dioxide Evolution Rate</td>
</tr>
<tr>
<td>Maturity (Bioassay)</td>
<td>% (average)</td>
<td>TMECC 05.05-A</td>
<td>Biological Assays. Seedling Emergence and Relative Growth</td>
</tr>
<tr>
<td></td>
<td>% (average)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Perform all sampling, testing, packing, and marking of compost samples in accordance with TMECC 02.01-B (Selection of Sampling Locations for Windrows and Piles).

### 1.3 Construction Requirements

#### 1.3.1 Site Preparation

**1.3.1.1 Sediment Tubes**

Refer to the *SCDOT Sediment Tube Specification*.

**1.3.1.2 Mulch / Compost Blanket**

Avoid very coarse compost if the slope is to be landscaped or seeded as it will make planting and vegetation establishment more difficult.

Slightly roughen (scarify) slopes and remove large clods, rocks, stumps, roots larger than two (2) inches in diameter and debris on slopes where vegetation is to be established. Where it is practical, track (compact) perpendicular to contours on the slope using a bulldozer before applying the compost.

#### 1.3.2 Installation

**1.3.2.1 Sediment Tubes**

Refer to the *SCDOT Sediment Tube Specification*.

**1.3.2.2 Mulch / Compost Blanket**
Place a two (2) inch depth of compost for areas that will receive seeding, planting, or landscaping as shown on the plans. Modify compost application rates based on specific site conditions including soil characteristics, severity of slope grade, and slope length.

Uniformly apply compost using an approved spreader unit, including bulldozers, side discharge manure spreaders, etc. Alternatively, apply compost using a pneumatic (blower) unit or other unit that propels the product directly at the soil surface, thereby preventing water from moving between the soil-compost interface. Where applicable, apply the compost layer approximately three (3) feet over the top of the slope.

On highly unstable soils, use compost in conjunction with appropriate structural measures.

Dry or hydraulic seeding may be completed following compost application, as required or during the compost application itself, where a pneumatic unit is used to apply the compost.

1.3.3 Inspection and Maintenance

1.3.3.1 Sediment Tubes

Refer to the current SCDOT Sediment Tube Specification.

1.3.3.2 Mulch / Compost Blanket

Inspect compost installation for erosion or failure every seven (7) calendar days.

Inspect regularly until grass or vegetation is firmly established.

Repair all damaged areas immediately by restoring the compost to its finished grade, re-apply fertilizer, seed, and replace the appropriate compost material as needed.

1.3.4 Acceptance

Obtain RCE acceptance and approval for all compost installations.

1.4 Measurement

1.4.1 Sediment Tubes

Refer to the current SCDOT Sediment Tube Specification.

1.4.2 Mulch / Compost Blanket

The RCE will measure compost to the nearest cubic yard (CY) in vehicles at the point of delivery.

1.5 Payment

1.5.1 Sediment Tubes

Refer to the current SCDOT Sediment Tube Specification.
1.5.2 Mulch / Compost Blanket

Payment for compost is to the nearest cubic yard (CY) in vehicles at the point of delivery accepted. The installation must be accepted by the RCE prior to payment. Payment includes full compensation for loading, hauling, stockpiling, placing, materials, labor, tools, equipment, maintenance, and other materials, labor, equipment, tools, supplies, transportation, and incidentals necessary to fulfill the requirements of the pay item in accordance with the Plans, the Specifications, and other terms of the Contract.

Bid item numbers and descriptions are as follows:

<table>
<thead>
<tr>
<th>Bid Item Number</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXXXX</td>
<td>Compost</td>
<td>Cubic Yard</td>
</tr>
</tbody>
</table>

1.6 References

ASTM Standards:

US EPA Test Methods:

TMECC Sampling and Test Methods

Other Standards:
- US Composting Council Seal of Testing Assurance Program documents


*These Specifications contain all the technical text found in the ‘Official’ American Association of State Highway & Transportation Officials (AASHTO) versions found in their 2003 AASHTO Provisional Standards manual. The Compost for Erosion/Sediment Control ‘Filter Socks’ is designated as specification MP 9-03, and the ‘Compost Blankets’ as specification MP 10-03. For a copy of the official AASHTO Specifications, contact AASHTO’s Publications and Communications Technical Assistant at 202-624-5800.