

December 18, 2019

GEOTECHNICAL DESIGN BULLETIN NO. 2019-3

SUBJECT:

Corrections and Additions to 2019 GDM

EFFECTIVE DATE:

Immediately

SUPERSEDES:

As Noted

RE:

None

The Geotechnical Design Support Office is making the following Additions and Revisions (see attachments) to the SCDOT Geotechnical Design Manual (2019).

Section 13.10.1 – Delete and replace Table 13-6

Section 14.8.2 – Delete and replace the last Sentence of the 2nd Paragraph Section 14.8.3 – Delete and replace the 2nd Paragraph of Item 2 of the 3rd Paragraph

Section 14.8.3 – Delete Equation 14-8

Section 16.9.1 – Delete and replace the 4th Sentence of the 3rd Paragraph

Jeff Sizemore, P.E.

Geotechnical Design Support Engineer

JCS:neh Attachments

ec:

John Boylston, Director of Preconstruction Robert Isgett, Director of Construction David Cook, Director of Maintenance Robert Perry, Director of Traffic Engineering Chris Gaskins, RP Engineer - Design Build

Rob Bedenbaugh, Preconstruction Support Engineer

Ladd Gibson, Dir. of Mega Projects Jennifer Necker, RP Engineer -Lowcountry Leah Quattlebaum, RP Engineer – Pee Dee Philip Sandel, RP Engineer – Midlands Julie Barker, RP Engineer – Upstate

Tad Kitowicz, FHWA

Table 13-6, Sand-Like Shear Strengths

Liquefaction Potential	Liquefaction Triggering Criteria	Soil Shear Strength
Cyclic Liquefaction		Use Idriss and Boulanger (2008) or Olson and Johnson (2008) residual shear strength of liquefied soils (τ_{rl}) correlations. Sections 13.10.2.1 and 13.10.2.2
	$(D/C)_{SL\text{-Sand}} > \phi_{SL\text{-Sand}}$ $(0.7 \le R_u \approx 1.0)$	Equation 13-48
		$\phi_{rl} = tan^{-1} \left(\frac{\tau_{rl}}{\sigma'_{vo}} \right) \leq \phi_{Peak}$
		or
		Equation 13-49
		$ \tau_{rl} = \sigma'_{vo} * tan \phi_{rl} \leq \sigma'_{vo} * tan \phi_{peak} $
No Liquefaction	$(D/C)_{SL\text{-Sand}} \le \phi_{SL\text{-Sand}}$ $(R_u < 0.70)$	Peak undrained shear strength (τ _{peak}). See Chapter 7.

14.8.2 **Downdrag Loads**

Therefore, based on the relationship between the fully liquefied shear strength (τ_{rl}) and the peak undrained shear strength (τ_{peak}) , use a limited friction angle (ϕ_{rl-lim}) of 20° to determine the downdrag load induced by soils that have undergone liquefaction.

14.8.3 <u>Lateral Soil Response of Liquefied Soils (P-y Curves)</u>

Use a reduced soil friction angle for limited liquefaction ($\phi_{\text{rl-lim})}$ of 20° to develop the P-y curves.

16.9.1 Traditional Approach

For those Sand-Like soil layers that undergo SSL, a limited shear strength $(\tau_{\text{rl-lim}})$ shall be used to determine DD_{SL}. For those soils not affected by SSL, peak undrained shear strength (τ_{peak}) shall be used in the determination of DD_{SL}.