

FROEHLING & ROBERTSON, INC.

Preliminary Geotechnical Subsurface Data Report Emergency Bridge Package 4 S-28-36 Pine Grove Road over Twenty-Five Mile Creek Kershaw County, South Carolina F&R Project No. 65T-0215

Prepared for:

South Carolina Department of Transportation
Design-Build Section
955 Park Street
Columbia, SC 29201

December 3, 2015

FROEHLING & ROBERTSON, INC.

Engineering • Environmental • Geotechnical

18 Woods Lake Road Greenville, South Carolina 29607 I USA T 864.271.2840 I F 864.271.8124

December 3, 2015

Mr. Trapp Harris, PE South Carolina Department of Transportation Design-Build Section 955 Park Street Columbia, South Carolina 29201

Reference: Preliminary Geotechnical Subsurface Data Report

Emergency Bridge Package 4

S-28-36 Pine Grove Road over Twentyfive Mile Creek

Kershaw County, South Carolina

F&R Project No. 65T-0215

Dear Mr. Harris:

The purpose of this geotechnical subsurface data report is to present the results of the subsurface investigation program undertaken by Froehling & Robertson, Inc. (F&R) in connection with the Emergency Bridge Package 4 at State Route S-28-36 Pine Grove Road over Twentyfive Mile Creek in Kershaw County, South Carolina. Our services were performed in general accordance with your work order request emailed to F&R on November 18, 2015, and as authorized by your office per our On-Call Contract with SCDOT. The attached report presents our understanding of the project, reviews our investigation procedures, describes existing site and general subsurface conditions, and presents the results of our soil laboratory tests.

Corporate HQ: 3015 Dumbarton Road Richmond, Virginia 23228 T 804.264.2701 F 804.264.1202 www.fandr.com

F&R greatly appreciates the opportunity to work with you on this project. If there are any questions concerning this report or if any additional information is required, please do not hesitate to contact us.

Sincerely, FROEHLING & ROBERTSON, INC.

Gary R. Taylor, PE

Senior Geotechnical Engineer

Registered SC No. 27330

Day R. Taylor

No. 27330

Benedictus K. Azumah, PE Geotechnical Engineer Registered VA No. 052166

TABLE OF CONTENTS

SECTIO	<u>PA</u>	\GE
1.0	PURPOSE & SCOPE OF SERVICES	4
2.0	PROJECT INFORMATION	4
2.1 2.2	SITE DESCRIPTION PROJECT DESCRIPTION	
3.0	SUBSURFACE INVESTIGATION	5
3.1 3.2 3.3 3.4	SUBSURFACE INVESTIGATION PROGRAM LOCATION CONTROL SUBSURFACE INVESTIGATION PROCEDURE GROUNDWATER	5 6
4.0	LABORATORY TESTING	8
6.0	LIMITATIONS	9

APPENDICES

APPENDIX I

Figure No. 1: Site Location Plan

Figure No. 2: Boring Location Plan

Figure No. 3A: Photograph of Boring B-01 Being Drilled Figure No. 3B: Photograph of Boring B-02 Being Drilled

APPENDIX II

Key to Soil Classification Unified Soil Classification Chart SCDOT Soil Test Boring Log Descriptors (Soil and Rock) SCDOT Soil Test Boring Logs – Borings B-01 and B-02

APPENDIX III

Soil Laboratory Tests Summary Rock Laboratory Tests Summary

APPENDIX IV

Soil Laboratory Tests Data Sheets

S-28-36 Pine Grove Road over Twentyfive Mile Creek

APPENDIX V

Figure No. 4A – 4C: Strength Compression Test Sample Photographs

Figure No. 5A – 5C: Rock Core Photographs

1.0 PURPOSE & SCOPE OF SERVICES

The purpose of this Geotechnical Investigation was to explore the subsurface conditions at the site and perform soil laboratory tests on selected soil samples obtained from the investigation. F&R's scope of services included the following:

- Completion of two soil test borings to a depth of approximately 33.5 and 35 feet below the existing ground surface and as close as possible to each previous bridge abutment location.
- Completion of rock coring below each of the soil test borings.
- Preparation of typed SCDOT Soil Boring Logs;
- Performing soil laboratory tests including natural moisture contents, Atterberg
 Limits, Wash No. 200 Gradation tests, unconfined compressive strength of rock;
- Preparation of this preliminary geotechnical subsurface data report by professional engineers.

This report was prepared in general accordance with the 2010 SCDOT Geotechnical Design Manual (GDM), Version 1.1.

Our scope of services did not include identification and evaluation of appropriate foundation systems for the proposed bridge, design capacities and other environmental aspects of the project site.

2.0 **PROJECT INFORMATION**

2.1 Site Description

The project site is on Pine Grove Road (State Route S-28-36) located between State Road S-28-651 and Ridgeway Road in Kershaw County, South Carolina. The area around the creek and the road is partly wooded with several residential dwellings. Project surroundings are shown on the attached Figure No. 1 - Site Vicinity Map included in Appendix I.

2.2 Project Description

Recent flooding in the region has caused extensive erosion around the bridge and resulted in extensive damage to the bridge. Emergency replacement of the bridge is planned. For this purpose, the geotechnical subsurface investigation and laboratory testing is required by SCDOT and will form part of a preliminary investigation of the site.

3.0 SUBSURFACE INVESTIGATION

3.1 Subsurface Investigation Program

The subsurface investigation program consisted of two soil test borings (STB) with rock coring. The borings, designated as B-01 and B-02 were advanced to a termination depth of approximately 39.5 and 68 ft below the existing ground surface on the approaches adjacent to the location of the bridge. Upon auger refusal, the borings were then advanced into rock using NQ rock coring techniques. Approximate boring locations are identified on Figure No. 2 - Boring Location Plan included in Appendix I. Photographs of Borings B-01 and B-02 being drilled are also included as Figure Nos. 3A and 3B in Appendix I.

3.2 Location Control

The STB locations were staked in the field by personnel from our office following instructions from your office. The borings were drilled in the centerline of the existing alignment a few feet from the edge of the bridge end bents. The ground surface elevation at the borings locations were not provided to us at the time of this writing. GPS coordinates of Borings B-01 (Latitude 34.247297/ Longitude -80.71354) and B-02 (Latitude 34.247778/ Longitude -80.714198) were obtained with a portable hand-held GPS and are recorded on the soil boring logs included in Appendix II of this report.

3.3 Subsurface Investigation Procedure

Subsurface investigation was performed on November 23, 2015 and November 24, 2015 using an ATV-mounted CME/550X drill rig. The drill rigs used for this project were equipped with an automatic hammer and the drilling method used was the wash rotary boring. The energy ratio of this ATV-mounted hammer is 86%. SPT tests at boring locations were performed continuously from the existing ground surface to a depth of 10 feet. Thereafter, boreholes were advanced and SPT performed at approximate 5-foot intervals to the auger refusal depths. The Standard Penetration Test (SPT) was performed at the boring locations in general accordance with ASTM D1586.

Soil samples were obtained with a long split-spoon sampler with each SPT being driven with a 140-lb automatic hammer falling 30 inches. The number of blows required to drive the sampler each 6-inch increment of penetration was recorded and are shown on the boring logs. The first six-inch increment is used to seat the sampler with the sum of the second and third penetration increments being termed the SPT value, "N". A representative portion of each disturbed split-spoon sample was collected with each SPT, placed in a glass jar, and returned to our laboratory for review and testing.

The recovered split-spoon samples were visually classified by F&R engineers in general accordance with the ASTM D2488. The boring logs provided in Appendix II show the subsurface conditions encountered on the dates and at the approximate locations indicated.

Upon auger refusal, the borings were then advanced into rock to depths of 39.5 to 68 feet using NQ rock-coring techniques generally following procedures outlined in ASTM D 2113 using a 2-inch nominal inside diameter diamond-impregnated drill attached to the end of a double-tube core barrel. Rock core specimens were measured for recovery immediately upon retrieval, placed in core boxes for protection, labeled and transported to the laboratory for further evaluation by our professional staff. In the laboratory, the rock core specimens were measured for Percent Recovery and Rock Quality Designation (RQD) by a member of our professional

6

staff. Percent Recovery is the ratio of the recovered core length to the length of rock drilled,

expressed by a percentage. RQD is the ratio of the cumulative length of all pieces of rock greater

than or equal to four (4) inches to the total amount drilled, expressed as a percent of the total

amount drilled. The RQD value is related to the soundness and quality of the rock mass and has

been correlated with engineering properties of rock.

By the nature of the work performed, the drilling activities result in disturbances to the site. The

completed boreholes performed were backfilled upon completion. The borehole backfill may

subside at some time following our work. F&R assumes no responsibility for borehole subsidence

after completion of the field investigation and departing the site.

3.4 Groundwater

Groundwater was encountered in Borings B-01 and B-02 at a depth of approximately 13.5 feet.

The test borings were backfilled after completion of drilling for safety. The depth at which

groundwater was encountered in each individual boring is indicated on the attached soil boring

logs in Appendix II.

The groundwater levels at the boring locations were determined based on our observation of

free water in the split-spoon soil samples following removal of the sampler. Upon completion of

drilling, the boreholes were backfilled for safety, hence the absence of 24-hour water level

readings on the boring logs.

The groundwater levels on the soil boring logs indicate our estimate of the hydrostatic water

table at the time of our investigation. The final design should anticipate the fluctuation of the

hydrostatic water table depending on variations in precipitation, surface runoff, evaporation,

creek levels and similar factors.

SCDOT - Design-Build Section

S-28-36 Pine Grove Road over Twentyfive Mile Creek

F&R Record No. 65T-0215

Geotechnical Subsurface Data Report Kershaw County, South Carolina

December 3, 2015

7

4.0 LABORATORY TESTING

Laboratory testing consisted of Atterberg Limits Tests, No. 200 Sieve Cut grain size analyses (Wash #200), Natural Moisture Content and unconfined compressive strength of rock tests performed on specific soil or rock samples. The specific tests performed on the selected samples are listed in Tables No. 1 and 2 below.

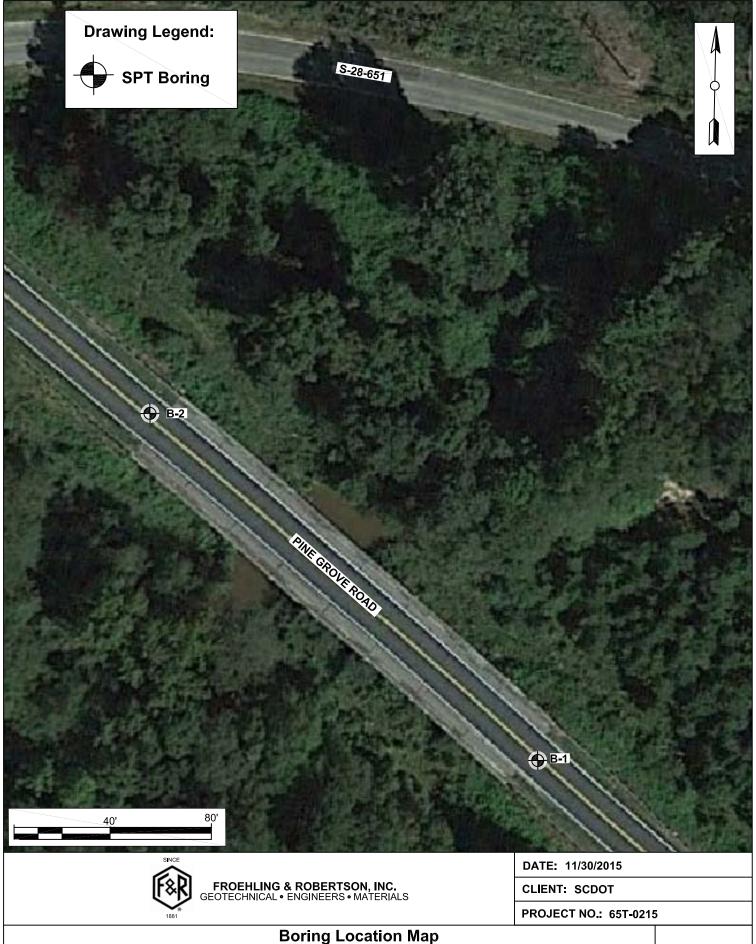
Table No. 1: Soil Laboratory Tests Performed on Selected Soil Samples

Boring	Sample Number	Depth (ft)	Atterberg Limits	Percent Fines Wash # 200	Natural Moisture Content
B-01	SS-2	2.0-4.0		Х	X
B-01	SS-4	6.0-8.0		Х	X
B-01	SS-5	8.0-10.0		Х	Х
B-01	SS-6	13.5-15.0	Х	Х	Х
B-01	SS-7	18.5-20.0	X	Х	X
B-01	SS-8	23.5-25.0	X	X	X
B-02	SS-3	4.0-6.0		X	Х
B-02	SS-5	8.0-10.0		Х	X
B-02	SS-6	13.5-15.0	Х	Х	Х
B-02	SS-7	18.5-20.0	Х	Х	Х
B-02	SS-8	23.5-25.0	Х	Х	Х
B-02	SS-9	28.5-30.0		Х	Х

Table No. 2: Rock Laboratory Tests Performed on Selected Rock Core Samples

Boring	Sample Number	Approximate 4" Sample Depth (ft)
B-01	1	35.5-36.5
B-01	2	35.5-36.5
B-01	3	42.0-42.5
B-01	4	59.0-60.0
B-01	5	63.0-64.0
B-01	6	66.5-67.5
B-02	7	36.5-37.5
B-02	8	37.5-38.5

The laboratory testing results are presented in Appendix III and the laboratory test data sheets are presented in Appendix IV.


6.0 LIMITATIONS

This report has been prepared for the exclusive use of South Carolina Department of Transportation or their agent, for specific application to the referenced site in accordance with generally accepted soil and foundation engineering practices. No other warranty, express or implied, is made. Our investigation is based on site location information furnished to us; and generally accepted geotechnical engineering practice. The subsurface investigation logs included herein, do not reflect variations in subsurface conditions which could exist intermediate of the boring locations or in unexplored areas of the site. Should such variations become apparent during construction, it will be necessary to perform additional subsurface exploration based upon on-site observations of the conditions.

APPENDIX I

Emergency Bridge Package 4 Additional Bridge - Pine Grove Road
Kershaw County, South Carolina

Figure No. 2

APPENDIX II

KEY TO SOIL CLASSIFICATION

Correlation of Penetration Resistance with Relative Density and Consistency

<u>Sands and</u>	<u> Gravels</u>	Silts and C	<u>Clays</u>
No. of	Relative	No. of	
Blows, N	<u>Density</u>	Blows, N	Consistency
0 - 4	Very loose	0 - 2	Very soft
5 - 10	Loose	3 - 4	Soft
11 - 30	Medium dense	5 - 8	Firm
31 - 50	Dense	9 - 15	Stiff
Over 50	Very dense	16 - 30	Very stiff
		31 - 50	Hard
		Over 50	Very hard

Particle Size Identification

(Unified Classification System)

Boulders: Diameter exceeds 12-in. (300-mm)

Cobbles: 3-in. (75-mm) to 12-in. (300-mm) diameter

Gravel: Coarse - ¾-in. (19-mm) to 3 in. (75-mm) diameter

<u>Fine</u> - No. 4 (4.75-mm) sieve to ¾-in. (19-mm) diameter

Sand: Coarse – No. 10 (2.0-mm) to No. 4 (4.76 mm) sieve

<u>Medium</u> – No. 40 (0.425-mm) to No. 10 (2.0-mm) sieve <u>Fine</u> - No. 200 (0.075-mm) to No. 40 (0.425-mm) sieve

Silt and Clay: Less than No. 200 (0.075-mm) sieve

Modifiers

The modifiers provide our estimate of the amount of silt, clay or sand size particles in the soil sample.

Approximate Content ≤ 5%:	Modifiers Trace
5 to 10%: 15 to 25%:	Few Little
30 to 45%:	Some
50 to 100%	Mostly

	Field Moisture Description
Dry	Absence of moisture, dusty, dry to touch
Moist	Damp but no visible water
Wet	Visible free water, usually soil is below water table

SOIL CLASSIFICATION CHART

	A 100 00/00	IONO	SYM	BOLS	TYPICAL
M	AJOR DIVIS		GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
33.23				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
н	GHLY ORGANIC S	SOILS	71 71 71 71 71 7 7 7 7 7 7 7 7	РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

a -	 Relative Density / Cons Relative Density¹ 	istency Terms		Consistency ²		
	Descriptive Term	Relative Density	SPT Blow Count	Descriptive Term	Unconfined Compression Strength (a.) (tel)	SPT Blow Count
	Very Loose Loose Medium Dense Dense Very Dense	0 to 15% 16 to 35% 36 to 65% 66 to 85% 86to 100%	< 4 5 to 10 11 to 30 31 to 50 >51	Very Soft Soft Firm Stiff Very Stiff Hard	Strength (q _b) (tsf) <0.25 0.26 to 0.50 0.51 to 1.00 1.01 to 2.00 2.01 to 4.00 >4.01	<2 3 to 4 5 to 8 9 to 15 16 to 30 > 31
b	Moisture Condition					
	Moist Dan	t <u>eria</u> sence of moisture, dusty, d np but no visible water ible free water, usually in		ow the water table		
c	Color Describe the sample colo	or while sample is still moi:	st, using Munsell color o	chart.		
d	Angularity ¹					
<u> </u>	<u>Descriptive Term</u> Angular Subangular Subrounded Rounded	Particles are simila Particles have near	p edges and relatively pl or to angular description ly plane sides but have v othly curved sides and n	but have rounded edges well-rounded corners ar	8	
е	Weakly Reactive Son	<u>eria</u> visible reaction re reaction, with bubbles fi lent reaction, with bubbles				
f	Cementation ³ <u>Descriptive Term</u> Weakly Cemented Moderately Cemented Strongly Cemented	Criteria Crumbles or breaks with Crumbles or breaks with Will not crumble or brea	considerable finger pres			
g	Particle-Size Range ¹ Gravol		<u>Sand</u>			
	Fine 4.76 to 19.1 Coarse 19.1 to 76.2		Fine Medium Coarse	mm 0.074 to 0.42 0.42 to 2.00 4.00 to 4.76	Sieve size #200 to #/ #40 to #10 #10 to #4	40 0
h	Primary Soil Type ^{1, 2} The primary soil type wil	l be shown in all capital le	etters			
i	USCS Soil Designation Indicate USCS soil design	nation as defined in ASTM	M D-2487 and D-2488			
il.	AASHTO Soil Designati	lon		TM D-3282		

Figure 6-11, SCDOT Soil Test Boring Log Descriptors - Soil

August 2008 6-27

Soil Test Boring Log Descriptors ROCK WEATHERING / ALTERATION Description Recognition Original minerals of rock have been entirely decomposed to secondary minerals, and original rock fabric is not apparent; material can be easily broken by hand Residual Soil Completely Weathered / Altered Original minerals of rock have been almost entirely decomposed to secondary minerals, although the original fabric may be intact; material can be granulated by hand Highly Weathered / Altered More than half of the rock is decomposed; rock is weakened so that a minimum 1-7/8 inch diameter sample can be easily broken readily by hand across rock fabric Moderately Weathered / Altered Rock is discolored and noticeably weakened, but less than half is decomposed; a minimum 1-7/8 inch diameter sample cannot be broken readily by hand across rock fabric Slightly Weathered / Altered Rock is slightly discolored, but not noticeably lower in strength than fresh rock Rock shows no discoloration, loss of strength, or other effect of weathering / alteration ROCK STRENGTH Description Approximately Uniaxial Recognition Compressive Strength (psi) Extremely Weak Rock Can be indented by thumbnail 35 - 150Very Weak Rock Can be peeled by pocket knife 150 -700 Weak Rock Can be peeled with difficulty by pocket knife 700 - 3,500Medium Strong Rock Can be indented 3/16 inch with sharp end of pick 3,500 - 7,200Strong Rock Requires one hammer blow to fracture 7,200 - 14,500Very Strong Rock 14,500 - 35,000 Requires many hammer blows to fracture Extremely Strong Rock Can only be chipped with harmmer blows > 35,000 DISCONTINUITY DESCRIPTORS Dip of fracture surface measured relative to horizontal with bearing and direction 1 Discontinuity Width (millimeters) Discontinuity Type Amount of Infilling F Fault Wide (12.5 - 50) Surface Stain Su Moderately Wide (2.5 - 12.5) Joint MWSpotty Sp Sh Shear Narrow (1.25 - 2.5) Partially Filled Fo V Foliation Very Narrow (< 1.25) Vein Tight (0) Bedding O Type of Infilling Surface Shape of Joint q Discontinuity Spacing (feet) Cl Clay Wa Wavy EW Extremely Wide (>65) Pl Planar Wide (22 - 65) Ch Chloride Moderate (7.5-22) Stepped Fe Iron Oxide Irregular Close (2 - 7.5) Gy Gypsum/Tale VC Very Close (< 2) H Healed No None Roughness of Surface Py Pyrite Slickensided (surface has smooth, glassy finish with visual evidence of Qz Quartz Smooth (surface appears smooth and feels so to the touch) SR Slightly Rough (asperities on the discontinuity surfaces are distinguishable and can be felt) R Rough (some ridges and side-angle steps are evident; asperities are clearly visible, and discontinuity surface feels very abrasive Very Rough (near-vertical steps and ridges occur on the discontinuity surface) VR.

Figure 6-12, SCDOT Soil Test Boring Log Descriptors - Rock

6-28

File No		T-0215 Pr		No. (PIN):		P029	<u>/</u> 112	<u></u>	unty:	Ko	rshav	·/			=na	/Geo.	: F8	.R	
-				cy Bridge									Door			Rout		28-36	
Site De						age 4	Addit	ionai i				ve	Road						
Boring		B-01		ring Locati						Offse		+.				nmer		xisting	
Elev.:	ft	Latit	_		71354		Longi			2472		_		Start				3/201	
Total D		65 ft	Soil	I Depth:	35			ore De		30				Com				4/201	
		meter (in):			pler (on	Line	er Re	quire	d:	Y	N			Used		N
Drill Ma	achine:	CME-55)	(Drill Meth	od:	RW/	RC		Hamme	er Ty	pe: /	\ut	omat	ic	En	ergy	Ratio:	86%	
Core Si	ize:	NQ		Driller:	F&F	R			Ground	dwat	er: 1	TOE	3	13.5	ft	24	HR	N/A	
																SPT	N VALU	JE	
Elevation (ft)	Depth O (ft)	MATE	RIAL	DESCRIP	TION		Graphic Log	Sample Depth	Sample No./Type	1st 6"	2nd 6"	3rd 6"	N Value	0 10		INES	MC CONTE	LL X NT (%) 70 80	90
		7" Asphalt Pa	vemer	nt and 3" Ag	gregate	9		0.0											
	0.8	FILL, loose, r moist, SILTY course gravel Munsel=5YR	SAND	n brown, fine (SM/A-2), c	 to coa ontains	- — — - rse, S		2.0	- 1/SS	4	4	4	8	•					
	-	SS-2: NMC=2	27.2%,	, %200=32.6	i			4.0	- 2/SS	3	2	2	4	•	C). A			
	4.0_	Loose, moist, SILTY SAND Munsel=7.5Y SS-4: NMC=2 SS-5: NMC=3	(SM/A R 6/3 25.8%,	\-4) , contains , %200=37.0	s mica	um,		6.0	- 3/SS	1	1	3	4	•					
	-	Very loose						8.0	- 4/SS	1	1	1	2	•	С) A			
	-								- 5/SS	1	1	1	2	•		0 ,	A		
	- 13.5 <u>:</u>	ALLUVIAL, fi SILT (ML/A-4 Munsel=7.5Y), cont R 5/3	tains root fra	gments	5		13.5	6/SS	1	2	2	4	•	×	©	A		
		SS-6: NMC=2	29.8%,	, %200=51.2	, LL=28	8,													- :
								GENI	<u>, </u>						•	Co	ntinue	d Next	Pan
ST - 8	Split Spo Shelby T Rock Co	on ube	1	TYPE NQ - Rock Co CU - Cuttings CT - Continu	3		LC	HS CF	SA - Hollo FA - Cont C - Drivi	inuous	s Flight	er			W -	D	Wash	A INGAL	i ay

			Projec		•		29412			unty:		ersha					g./Geo	_	F&F		
	scripti			ncy Bridg		cage	4 Ad	diti	onal l				rove	Road	<u></u>		Rout	_	_	3-36	
Boring		B-01		oring Loca							Offs						gnme			isting	_
lev.:	ft		titude		0.7135		Lor		ude:		.247		_	Date				_		/201	
otal D		65 ft		oil Depth:		5 ft			re De	•) ft		Date			_			/201	5
ore H	ole Dia	meter (in)	:	Sa	mpler	Con	figur	atio	on	Lin	er Re	equi	red:	Y	(1		Line			Υ	(
rill Ma	achine:		55X	Drill Me	thod:	R۷	V/RC	;		Hamm	er Ty	/pe:	Aut	tomat	ic	E	Energy	Rati	o:	86%	
ore Si	ize:	NQ		Driller:	F8	βR				Groun	dwat	ter:	TO	В	13.5	ft	2	4HR		N/A	
																	• SPT	N VA	LUE	•	
5	_						ی	,	o _	e e				ω		F	⊃L X	MC		$\overset{LL}{ imes}$	
vatic (ft)	Depth (ft)	MA ⁻	TFRIA	L DESCR	IPTIOI	V	jhae	g.	Sample Depth	Sample No./Type	_	-50	Ŧ.,	Value			, · ·	-			
Elevation (ft)	ا گ	1417 (1 L 1 X 1/7 X	L DLOOK		•	نَّا	5	Sal De	Sal No.	1st 6"	2nd 6"	3rd 6"	Z			FINES				
		PL=24, PI	=4				\dashv	П		+ -	+	Ŋ	ल	+	U 1	<u>u 20</u>	30 40	50	υU	<i>τ</i> υ 80	9
		ı ∟−∠ + , [*]	7													:		:	:		
															:	:		:			
										1						:		:	:		
																		:	:		
										-						:		:	:		
																:		:	:		
																:		:	:		
										-					:	÷	: :				
	18.5			oiot lial-t		_	_ _1	니니	18.5	-				+	-	:		:	:		
				oist, light gr AND (SM/A		ίΟ										į			:		
		Munsel=7.		-	,					7/SS	5	6	11	17				:	:		
				, %, %200=18	R Q											:		:	:	: :	
		Non-Plasti		70, 70 200- 10	,, ,									1	1	<u>:</u>	: :	- :-		<u> </u>	
																		:			
																i		:	:	: :	
	-									-					:	:					
																			:		
																:		:	:	:	
																:		:			
																:		:	:	: :	
	-									-						:		:	:	:	
	23.5	- <i>--</i>					_ 📖		23.5					1]	:		:	:		
				THERED R dense, brow		^										:		:	:		
				.ND (SM/A-1		U				8/SS	50/2			100	:) :	A : :	:	:	: :	
		contains re	ock frag	ments	, ,										}			:	:		
		Munsel=7.												+	1	<u>:</u>			<u>:</u>	<u> </u>	
		NMC=11.3	3%, %20	00=25.1, No	n-Plast	ic									:	:	<u> </u>		:		
																:			:		
										-						:		:	:		
																:	: :	:	:	: :	
																:		:	:		
	1															:		:	:	: :	
																:	: :	:		: :	
										4						:		:	:		
									28.5]			:	:		
																:		:	:	: :	
										9/99	50/0.	5'		100				:			
										3,00	30,0.	-		100		i		:	:		
																:	<u> </u>	:	:	<u> </u>	
								LE	GENI)								ntinu	ıed	Next	P
SS - S	Split Spo		AMPLE	R TYPE NQ - Rock	Coro 1	7/9"	_		ЦС	SA - Holl	OW S+	am 1.		RILLI			OD - Rotary	, \\/.	h		
	പാഥക്കാ	ULI		INCJ - PKOCK	COIE. I	-1/0			_ ⊢ ⊓∂	,a - noll	UVV (7)[6	an Al	uuei			. v v	- nviai\	vvas	11		

F::	a N -		ST 0245 F					0000	110	0.5	4	1/	oral			1	E	10	. 1	Гог		
\vdash	e No.				t No. (I			0294			unty:		ersha				⊏ng	./Geo.	-	F&F		
-		scription				idge Pa		ge 4 /	Additi	onal l	Bridge			ove	Roa	a ,		Rout			8-36	
_	oring		B-01			ocatio						Offs						gnmer			kisting	
\vdash	ev.:	ft		itude:		-80.71			.ongit			-	7297		Date				-		3/2015	
_		epth:	65 ft	So	il Dept		35 f			ore De			0 ft		Date		•				/2015	
Bo	re Ho	ole Dia	meter (in):			Samp				on			equi		_			Liner			Υ	N
Dr	ill Ma	chine:	CME-5	5X	Drill	Method	d: F	RW/F	RC		Hamn	ner T	ype:	Au	tomat	tic	E	nergy	Ra	tio:	86%	
Co	ore Si	ze:	NQ		Drille	er:	F&R				Grour	ndwa	iter:	TO	В	13.5	ft	24	1HR	2	N/A	
																		SPT	ΝV	'ALUE	•	
vation	(ft)	Depth (ft)	MAT	ERIAL	_ DES	CRIPTI	ION		Graphic Log	Sample Depth	Sample No./Type	;	9	. 0	Value		ŕ	iL 	MC		$\overset{LL}{ imes}$	
Ц	ב ב	۵ ٔ							قَ	Sa	S. S.	1st 6"	2nd 6"	3rd 6"	ź	0 10		FINES 30 40				90
		-								33.5	-											-
											10/SS	50/	1"		100				:	:		•
		35.0	Meta-sedim 4/1), very fir very thinnly slightly wea strong, REC	ne to fir bedde thered	ne grain d (appro to fresh	ed, lami ox. 45 de ı, strong	inated egrees to ver	to s),		35.0	NQ-1											-
		38.0_	RMR=62, m VC, T, PL, S UC Strength UC Strength	noderat S to SR n=1,120	ely hard R, Su 0 psi			J,		38.0	- - NQ-2											-
		-	Meta-sedim 4/1), very fir very thinnly slightly wea strong, REC moderately PL, S to SR	ne to fir bedde thered C=95.09 hard to	ne grain d (appro to fresh %, RQD	ed, lami ox. 45 de i, strong)=30%, f	inated egrees to ver RMR=	to s), ry 59,			- NQ-2											-
999 999		43.0_	Meta-sedim 4/1), very fir very thinnly slightly wea strong, REC moderately S to SR, Su	entary, ne to fir bedde thered C=35%, hard to	gray to ne grain d (appro to fresh	ed, lami ox. 45 de ı, strong 8.3%, R	inated egrees to ver MR=5	to s), ry 2,		43.0	-	3										-
									LE	GENI)							Col	ntin	ued	Next	Page
	T - S	Split Spo Shelby To Rock Cor	on	MPLEF	CU - C	ock Core uttings ontinuou				CF	SA - Hol FA - Cor C - Driv	ntinuo	us Flig	uger	ORILLII ugers	R	W -	DD Rotary Rock (

ile No				t No. (F			29412		unty:		shaw				/Geo.:			
	escripti					Package	4 Addit	ional E				e Roa	d ,		Route		28-36	
oring		B-01		ring L			1			Offset		<u> </u>			nmen		Existing	_
lev.:	ft		tude:			713549	Longi			24729			Start				23/201	
	epth:	65 ft	Sol	il Dept		35 ft		ore De	• ,	30 f			Com				24/201	
		meter (in):				pler Cor			_	er Req			$\overline{}$		Liner			(
	achine:		Σ	Drill I			N/RC		Hamme		_						86%	
ore S	ıze:	NQ		Drille	r:	F&R			Ground	dwate	r: I	OB	13.5	π	24	HR	N/A	
														_	SPTI	N 1/Δ1 I	IE 🖨	
Elevation (ft)	ا ج						.je_	<u>e</u> ج	Sample No./Type			ne ne		PL ×	-	MC -	X	
evat (ft)	Depth (ft)	MATE	ERIAL	DESC	CRIP	TION	Graphic	Sample Depth (ft)	am (T			u o N Value		A F	INITO (CONTE	NIT (0/ \	
ш							٥	ω u	ω S	1st 6"	2nd 6"		0 10				NT (%) 70 80	
														:				
														:	: :			
	-								-				:	÷		: :	: :	:
								}					:	:	: :			
								3										
									1				:	:	: :			
								3					:	:		: :		
	48.0							48.0	NQ-4					i				
	1	Meta-sedime	entary,	gray to	dark	gray (5YR			110-4					:	: :	: :		
		4/1), very fin very thinnly	ie to tin bedded	ne grain d (appro	ed, lai x 45	minated to degrees)	°											
	-	slightly weat	hered	to fresh	, stror	ng to very			-					i				
		strong, REC	=6.0%	, RQD=	0%, Ŗ	RMR=52,		}						:				
		moderately h		nard, F	o, J, \	vC, 1, PL,		3					:	÷	: :			
		5 to 511, 50							1				1	÷	: :	: :	: :	
														÷	: :			
								1					:	:	: :	: :	: :	
								3						:				
	-								-				:	:		: :		
								3										
	53.0							53.0	NO 5						: :	: :		
		Meta-sedime						3	NQ-5				:	Ė	: :	: :		
		4/1), very fin very thinnly					•	}						:				
		slightly weat	hered	to fresh	, stror	ng to very			-					i				
		strong, REC	=11.69	%, RQD	=0%,	ŘMR=52,		}					:	:				
		moderately h		nard, F	o, J, \	vC, 1, PL,		3										
		5 to 511, 50							1					:	: :	: :	: :	
								}					:	:		: :		
								1					:	Ė				
								3							: :			
	-								-					:				
								3						:				
	58.0							58.0	NO C					:				
		Meta-sedime	entary,	gray to	dark	gray (5YR		3	NQ-6							: :		
		4/1), very fin very thinnly	e to fin	ne grain	ed, lar	minated to	•	}						÷		: :	: :	
		slightly weat	hered t	ս (appio to fresh	, stror	ng to verv			-				:	:	: :	: :	: :	
		strong, REC	=68.3%	%, RQD	=40.8	%,		}						:				
		RMR=57, m to K, T, PL,			to ha	ıra, ⊦o, J,		3					:	:		: :		
		, I, I <u>L</u> , '	<u> </u>	., ou			<u>///</u> LF	GENE)				<u> </u>	•	Con	tinue	d Next	: Pa
				RTYPE								DRILLI			D			
	Split Spo Shelby T			NQ - Ro		ore, 1-7/8"			A - Hollo A - Conti						Rotary ˈ Rock C			
		re, 1-1/8"				ous Tube			- Drivir			.ugoi3	11	-		5.5		

File No		5T-0215				Packag	029412			unty:	Kers		. Des			/Geo. Rout		&R	
Soring	scripti	on: E B-01		oring L			- 4 AU	uill	orial E		Offset:	שטטוכ	- KOS	u 		nmer		-28-36 Existin	
elev.:	ft		etitude			on: 713549	Lan	ai+	ude:		24729	7	Date	Star		ııııeı		23/201	_
:iev.: 「otal D	l	65 ft		:: oil Dep		35 ft			uae: re De		30 ft	<i>'</i>	Date			od:		23/201 24/201	
	-			оп рер								.:							
		meter (in)		· · ·		pler Co					er Requ			$\overline{}$			Used		(
	achine:		SSX		Meth		RW/RC			Hamme								: 86%	
Core S	ize:	NQ		Drille	er:	F&R				Ground	awater	TC	B	13.5	π	24	4HR	N/A	
																SPT	N VAL	I IF	
Elevation (ft)	£						<u>ا</u> ي		⊋ ⊊	Sample No./Type			ne		Pl ×	-	MC	$\overset{LL}{\longrightarrow}$	
eval (ft)	Depth (ft)	MA	TERIA	L DES	CRIP	TION	rab	Log	Sample Depth (ft)	am (e	ئ و	N Value		A [INIES	CONT	=NIT (0/.)	
Ш							٥		ω̈⊔	N S	1st 6"	ard 6"	; Z	0 10				ENT (%) 0 70 8	
		UC Streng	gth=2,84	12 psi			X		-					:		: :			
								$\langle \rangle \rangle$:				
							N.			_					:	: :			
								$\langle \rangle \rangle$:	÷	: :			
															:				
	-						K		-	1					:				
								$\langle\!\langle\!\rangle\!\rangle$:				
	63.0_								63.0	NQ-7					:				
		Meta-sedi 4/1), very	mentary	y, gray to	dark	gray (5Y	R ∭			1402-1				:	:	<u> </u>			
		very thinnl	line to i	ine graii ed (appr	ieu, ia ox. 45	minated degrees).	$\langle \rangle \rangle$:				
	-	slightly we	athered	d to frest	n, stroi	ng to ver	\rangle			_					:				
		strong,RE moderatel	C=94.1	%, RQD	=70%,	, RMR=6	4, 🎇							:	:	: :			
		S to SR, S	y naru t Su	o naru,	'U, J,	v C, T, Pl	-, 📡	$\langle\!\langle\!\langle$:				
		UC Streng		12 psi			K			1					÷	: :			
			, _,	r				$\langle \rangle \rangle$:				
							N.		-	4					:				
															:				
		UC Streng	gth=3,64	11 psi											:				
	-						K		-	1					:				
								$\langle \rangle \rangle$:	:	: :			
	68.0_														:				
															:				
															:	: :			
	-								-	-					:				
															:	: :			
															:		: :		
															:				
															:		: :		
	-									-					:				
														:	:	: :	: :	: :	
															:				
										1				:	:				
														:	:	: :	: :		
										4					:				
															:	<u>:</u> :			
														:	:	: :	: :		
	-									+					:				
															:				
										L					<u>:</u>	<u>:</u> :	! !	!	
								E	GEND)				•					
	- u		SAMPLE	RTYPE									DRILLII						
	Split Spo Shelby T			NQ - F		ore, 1-7/8	•		HS	A - Hollo A - Cont	w Stem	Auger	linere			Rotary Rock (Wash		
		re, 1-1/8"				, ous Tube				- Drivir			9013	,			-0.0		

File No		5T-0215	Pro		No. (F	PIN):	<u>-</u>	⊃02¢	9412	Cn	unty:	Ke	ersha	aw			Enc	j./Ge	90.:	F8	·R	
Site De				-							Bridge				Road		<u> ۱۶</u>	_	ute	_	28-36	
Boring		B-02			ring Lo			ye 1	Audit	ioriai		Offse			iwa	- 	Δli	gnm			zo-so Existin	
Elev.:	ft	 D-02	Latitu				71419	<u>R</u>	Longi	tudo		.247			Date	Start		_	ı c ı il		24/201	_
		65 ft					34															
Total D	-			501	I Dept					ore De		71			Date						4/201	
		meter (gurati	on		er Re			_	$\overline{}$				Jsed		N
Drill Ma			E-55X		Drill I			RW	/RC		Hamm		_					:ner			86%	
Core S	ize:	NQ			Drille	r:	F&F	₹			Groun	dwat	er:	то	В	13.5	ft		24F	IR	N/A	
									_									•	DT 1		·- •	
																		• 5	PIN	VALU	JE 🛡	
E G	_								<u>.</u> 2	ے و	e e				<u>o</u>		Ę	PL X	N	/C	LL ×	
Elevation (ft)	Depth (ft)	I.	/ATFF	RIAI	DESC	RIP	TION		Graphic Log	Sample Depth	Sample No./Type		<u>.</u> 0	÷.	N Value					_		
E E			,,,,_,	, \L	DLOC	,			G ₂ G	Sa)	Sa No.	st 6"	2nd 6"	3rd 6"	z	0.40					NT (%)	
	0.0	7" Aspl	nalt Pay	/emei	nt and 1	3" Aaa	renate			0.0		+=	7	ਲ		0 10	20	30	40	50 60	70 8	0 90
		Base	iait Fav	verrier	iii aiiu c	, Agg	gregate			0.0	'						:	:				
	0.8					- 				:	4,00			_			:	:	:	: :	:	
	_	FILL, Id moist, S	SII TY S	ark gr SAND	ay, iine) (SM/A	: 10 CO . -2)	arse,				- 1/SS	2	4	2	6		i	:	÷			
		Munsel			(-,				:						:	:	:				
	_	SS-3: N			. %200:	=29.1				2.0	1	1				4 :	:	:	:	: :	:	
		SS-5: N								:						1	:	:				
				,	, ====					:							:	:	:		:	
	-	Mediun	n dense	e, red	dish bro	own				}	- 2/SS	3	6	6	12) :	:			:	
		Munsel	: 5YR 4	4/3						:						:	:	:		: :		
										4.0	<u></u>						:	:			:	
		Loose														1 :	:	:	į		:	
										:						:	:	:	:	: :	:	
	_									:	3/SS	2	3	4	7		0 !	<u>.</u>	<u>:</u>	<u>: :</u>		
																	i					
											.											
	_									6.0	· +	+				1 :		:	:			
																:	:	:	:	: :	:	
										:	4/00			_			:		-			
	-										4/SS	1	4	2	6							
																:	:	:	:	: :	:	
	_	., .								8.0)	-				.	:	:	:	: :	:	
		Very lo	ose							:								:				
										:							i	:				
	_										- 5/SS	1	1	2	3		C	•				
																:	:	:	į	: :	:	
																:	:	:				
										:							:	:	:	: :	:	
																:	:	:	:	: :	:	
	_										4					:	:	:	:	: :	:	
										:							:	:				
										:							i	:	:			
	-									:	-					:	:	:	:	: :	:	
																:	:	:	i	: :	:	
																:	÷	:	-	: :		
		L									. 1					:	:	:		: :	:	
	13.5	▽ ALLUV	II IM fir		ark grav			שוע		13.5	·	+				∃	:	:				
	_	CLAY (SC/A-6	iii, uč i) ,	ur yrd)	y, 111018	ot, JAI	וטו										:	:		:	
		Munsel		-							6/SS	2	2	4	6	•	8	\ 		A	:	
		SS-6: N			, %200:	=50.8.	LL=34	١,		1						:	:	:			:	
				7		1		•	<u> </u>	<u>1</u>						:	:	<u>:</u>	:	in::	: d N	<i>4</i> 🔼
			CARA	טו כיי	TVDE				LE	GENI	ر				יי וום	UC NAT	T1 14		ont	inue	d Nex	t Pa
ss - s	Split Spc	on	SAIVI		TYPE NQ - Ro	ock Co	re, 1-7	/8"		l HS	SA - Holl	ow Ste	em Au	iger	RILLI			บบ - Rot	ary V	Vash		
ST - S	Shelby T	ube		(CU - Cı	uttings				CF	A - Con	tinuou	s Flig	ht A	ugers			- Roc				
AWG - I	Rock Co	re, 1-1/8"		(CT - Co	ontinuc	ous Tub	oe -		D0	C - Driv	ıng Ca	ising									

File No.			Projec				P029			unty:	Kers				Er	ng./G		F8		
Site De			Emerge				age 4	Additi	onal l				e Ro	ad			oute		28-36	
Boring		B-02		oring L							Offset						ment		Existin	_
Elev.:	ft		atitude:		-80.7			Longit			.24777	8		e Sta			1		24/201	
Total D		65 ft		oil Dep		34			re De	-	7 ft	•				leted			24/201	
		meter (in	•	Duitt	_			guratio			er Req	-			N T			Jsed		(
Drill Ma Core Si		CME	-55X	Drille	Metho	F&F	RW/	RU		Hamm Groun			utom OB	_	.5 ft	⊨ne	rgy F 24F		86% N/A	
COIE SI	Ze.	INQ		Dillie	. .	Γαι				Groun	uwate	. '	ОБ	13.	JIL		241	IIN	IN/A	
																• :	SPT N	I VALU	JE •	
_									_	- 0						PL ×	N	иC О	LL —×	
Elevation (ft)	Depth (ft)	N//	ATERIA	l DEG	CDIDT	LION		Graphic Log	Sample Depth	Sample No./Type		· .	.d 6"			\times			\longrightarrow	
	De D	IVIA	A I EKIA	ב מבטי	CKIF	IION		Gra	Sar De	Sar No./	1st 6"	2nd 6"	3rd 6"						NT (%)	
		PL=22, F	PI=12					11.11.			+=-	<u> </u>	ক	0	10 2	20 30 :	40	50 60	70 80	9
		, 1													:					:
															:					:
]														:		:		: :	:
															:		:			
	-									+					:					
															:		:			
															:					
	18.5								18.5						:		:			
	10.0	Very den	se, reddi	sh brow	n, fine t	 to coa	rse,		10.3				\top	\dashv	:					
	-	moist, SI	LTY SAN	D (SM/A	4-2-4) , (contai	ns			7/00		10			:		:			
		gravel Munsel=	5VD 4/2							7/SS	8	10 4	10 50	ן י	0	≜ :		Ţ :	: :	
		SS-7: NN		ر ر ۱/۵۵۵)=20 1										<u>:</u>	<u>:</u> :	<u> </u>			
	7	Non-Plas		o, 70∠UU	J−∠U. I,										:					
															:		:			
	-									+										
															:					
															:		:			
	22.5														:					
	22.0	PARTIAL													:		:			
	-	sampled coarse, S	as very d	lense, d	ark gra	y, fine	e to			-					:					
		rock frag		14D (2IAI	um-4-4)	, conta	an 15		23.5	i			+	\dashv	:		:			
		Munsel:													:					
		SS-8: NN		%200=	35.1, LI	L=32,				8/SS	50/2		10	0	0	\Rightarrow	4	: :		
		PL=28, P		,											:					
	+	SS-9: NN	лC=14.39	%, %200)=32.1					+			+		:	: :	- : -	: :	: :	
															:					
															:		i			
															:		:			
															:					
	-									+					:		:			
															:					
															:		:	: :		
									28.5	,					:					
									_5.0						:		:	: :		
	-									0/00	FOIC		140		-					
										9/SS	50/6		10	U	0	-	• :			
															:	<u> </u>	<u>:</u>	<u> </u>	<u> </u>	
								LE	GEN)							Cont	tinue	d Next	P
SS - S	Split Spo		SAMPLE		lock Co	re 1-7	 7/8"		НС	SA - Hollo	ow Stem	Auge	DRILI	ING			otary V	Vash		
ST - S	Shelby T	ube		CU - C	uttings				CF	A - Con	tinuous	Flight		;			ock Co			
WG - F	Rock Co	re, 1-1/8"		CT - C	ontinuo	us Tub	be		DC	C - Drivi	ng Casi	ng								

		ject No. (PIN):		029412		unty:	Kersha				ng./Geo.:	_		
ite Descrip		rgency Bridge		e 4 Additio	onal E			ove	Road		Route		8-36	
oring No.:	B-02	Boring Locati	ion:				Offset:			4	dignmen	t: E	xisting]
lev.: ft	Latitu	-80.	714198	Longitu	ude:	34.	247778		Date	Starte	d:	11/24	4/2015	5
otal Depth:	65 ft	Soil Depth:	34 ft		re De	pth:	7 ft		Date	Comp	leted:	11/24	4/2015	5
	ameter (in):	•		nfiguratio			r Requi	red:		(N)		Used:	Υ	(1
rill Machine				RW/RC			r Type:			$\overline{}$	Energy			
ore Size:	NQ	Driller:	F&R	(11/11/0		Ground		TC		13.5 ft		HR	N/A	
ore orec.	ING	Dillier.	Ιαιτ			Oround	iwater.	1.0		10.0 10		1111	11//	
											● SPT	N VALU	E •	
Elevation (ft) Depth (ft)				Graphic Log	글 무 그	Sample No./Type			N Value		PL X	MC →	$\overset{LL}{ o}$	
(ft) (Depth (ft)	MATER	RIAL DESCRIP	MOIT	raph	Sample Depth (ff)	am L	1st 6" 2nd 6"		\sqr		A FINES	CONTEN	JT /0/.\	
				9	ω u	N S	1st 6" 2nd 6"	3rd	Z	0 10 2	▲ FINES (20 30 40			9
								- ',		:		: :	10 00	
										1 :				:
										1 :		: :		:
										:		: :	: :	
										:	: : :	: :	: :	
	_					」 │				:		: :		
										:		: :	: :	
										:		: :	: :	
	-					-				:				
33.5	L				33.5									
	Meta-sedimen	tary, gray to dark	gray (5Ÿ	R W										
	4/1), very fine	to fine grained, la	minated	to	34.0	11102-1	F0/ F		400	:		: :	: :	
	slightly weather	dded (approx. 45 ered to fresh, stro	uegrees na to ven	', ***		10/SS	50/.5		100	:				
	strong, REC=6	69.2%, RQD=31.6	6%,							:				
	RMR=62, mod	erately hard to ha	ard, Fo, J	,		+ -				:			: :	
	VC, T, PL, S to	o SR, Su								:				
						_								
	UC Strength=8	3 742 nsi												
	_ SS Subligui-0	,, πε poi				」 │								
	UC Strength=1	14,157 psi												
		7 - F				4								:
38.5					38.5	NO a								
55.0	Meta-sedimen	tary, gray to dark	gray (5Y	R	,	NQ-2								
	4/1), very fine	to fine grained, la	minated	to		┤								
39.5	very thinnly be	dded (approx. 45 ered to fresh, stro	aegrees); <u></u>						:				
	strong, REC=9	91.6%, RQD=0%,	RMR=71	I, /						:		: :	: :	
	[†] ∖moderately ha	rd to hard, Fo, J,	VC, T, PI	_,		1				:	: : :	: :	: :	
	S to R, Su									:				
						_				:		: :	: :	
										:		: :	: :	
										:				
	1					」				:		: :		
	-					-								
1										:		: :	: :	
	_					-				:		: :		:
												: :		
														:

R TYPE NQ - Rock Core, 1-7/8" CU - Cuttings CT - Continuous Tube SS - Split Spoon ST - Shelby Tube AWG - Rock Core, 1-1/8"

DRILLI
HSA - Hollow Stem Auger
CFA - Continuous Flight Augers
DC - Driving Casing

METHOD RW - Rotary Wash RC - Rock Core

APPENDIX III

FROEHLING & ROBERTSON, INC.

LABORATORY TEST SUMMARY SHEET

F&R Project No: 65T-0215

Client: South Carolina Department of Transportation

Project: S-28-36 Pine Grove Road over Twentyfive Creek

SCDOT Proj ID

City/State: Kershaw County, SC

Boring/Sample No.	Depth (ft)	LL	PL	PI	USCS/AASHTO Classification	Water Content (%)	Percent Passing No. 200 Sieve
B-01/SS-2	2.0-4.0				SM/A-2	27.2	32.6
B-01/SS-4	6.0-8.0				SM/A-4	25.8	37.0
B-01/SS-5	8.0-10.0				SM/A-4	31.5	45.2
B-01/SS-6	13.5-15.0	28	24	4	ML/A-4	29.8	51.2
B-01/SS-7	18.5-20.0	NP	NP	NP	SM/A-1-b	17.9	18.9
B-01/SS-8	23.5-25.0	NP	NP	NP	SM/A-1-b	11.3	25.1
B-02/SS-3	4.0-6.0				SM/A-2	14.9	29.1
B-02/SS-5	8.0-10.0				SM/A-2	22.2	32.4
B-02/SS-6	13.5-15.0	34	22	12	SC/A-6	22.3	50.8
B-02/SS-7	18.5-20.0	NP	NP	NP	SM/A-2-4	12.5	20.1
B-02/SS-8	23.5-25.0	32	28	4	SM/A-2-4	16.0	35.1
B-02/SS-9	28.5-30.0				SM/A-2-4	14.3	32.1

NP: non-plastic

Date: 12/2/15

FROEHLING & ROBERTSON, INC.

ROCK CORE COMPRESSIVE STRENGTH TESTS

Project: Emergency Bridge Package 4 Addition	al Bridge - Kershaw County	Report Date:	December 2, 2015
Client: SCDOT	Drill Date: 11/23/15 - 11/24/15	Record No.:	65T-0215

COMPRESSIVE STRENGTH DATA

Core No.	Boring No.	Length	Weight (lbs)	Unit Weight (pcf)	Core Dia. (in)	L/D Ratio	X-sec Area (sq-in)	Test Date	Applied Load (lbs)	Unit Stress (psi)	Corr. Factor	Corrected Compressive Strength (psi)
1	B-01	4.1	1.24	169.5	1.97	2.10	3.05	12/1/15	3,420	1120	1.0000	1120
2	B-01	4.1	1.21	167.4	1.97	2.07	3.05	12/1/15	13,080	4283	1.0000	4283
3	B-01	4.0	1.19	169.2	1.97	2.02	3.05	12/1/15	11,760	3850	1.0000	3850
4	B-01	4.1	1.21	169.0	1.97	2.05	3.05	12/1/15	8,680	2842	1.0000	2842
5	B-01	4.2	1.26	169.7	1.97	2.13	3.05	12/1/15	9,780	3202	1.0000	3202
6	B-01	4.1	1.25	172.1	1.97	2.08	3.05	12/1/15	11,120	3641	1.0000	3641
7	B-02	4.1	1.21	166.2	1.97	2.09	3.05	12/1/15	26,700	8742	1.0000	8742
8	B-02	4.1	1.21	167.8	1.97	2.07	3.05	12/1/15	43,240	14157	1.0000	14157
						AVERA	3,156					

AVERAGE COMPRESSIVE STRENGTH B-02

11,450

APPENDIX IV

KERSHAW COUNTY

			vostur:	E COMTEN	. (%),	•	*
		 : #2	 ; #3	#4	#5	#6	; #7
Sample I.D	B-1 2-	1	B-1 6-8		6-1 8-10		B-1 135-1
	301.3		468, 73		492,12		421.72
Wet Soil + Tare	248,4		403,29		408,99		358,92
Dry Soils + Tare	5-7 147.		6 /49,32	-	K 145,23		510 148.2
Weight of Water	32,99	- :	65.44	,	83.13		62.80
	1 -	4	253.97		263.76		210.68
Weight of Dry Soils	0.272		0.25%		0.315		0.298
Moisture Content	*	<u>• </u>	*	<u> </u>			
	<u>・</u> クへ #8	#9	#10	1 #11	#12	#13	#14
Sample ! D.	B-1 18.5	-20	B-1 23.5-	25			
Wet Soil + Tare	370.78	Į.	228.58				
Dry Soils + Tare	336,65	!	220,53				
Tare#& VVeight	B 146,0	3	5-51 149.33	\$		· · · · · · · · · · · · · · · · · · ·	
Weight of Water	34.13		8.05			·	
Neight of Dry Soils			71.25				
vioisture Content	0.179		0.113				
				,	*	1100	*** #21
	#15	#15	#17	#18	#19	#20	<u> </u>
Sample I.D.	B-24-6	2	B-2 8-10	-	B-2 13.5-1	5	B-2 185-
Vet Soil + Tare	558.94		556.99		456,94		50/.39
ry Soils ÷ Tare	512,68		492,96		410,96		53 149,18
are#&Weight	AE 204,2	21	L 204,23		AD 204,32		39,18
/eight of Water	46.06	ę.	6A.03		45.99	!	313.03
leight of Dry Soils	308.59		288,73		206.6A		0.125
oisture Content	0.149		0.222		6.223		
	#22	#23	#24	#25	#26	#27	#28
ample I.D.	B-2 235-	i	B-2 285-	30			
et Soil ÷ Tare	286.97	= =	504.93				{
y Soils ÷ Tare	268,63		460, 23	*			
	J 149,33		521 147-69				
., _ ,,			44.70		i		1
	18.94						i i
eight of Water	118.7		312.54				

WASH 200 (C 117)

CLIENT _ ·		_ R-1	TECHNICIAN_	
PROJECT KERSHAV	V CO	- D 2-A	TEST DATE _	
RECORD NO				
		SOIL CLASSIFICATION		
TARE # AB-A		TARE WEIGHT 172	81	
A Tare and Dry Soil B Dry Soil	(A-Tare)	294,19	_	
C Tare and Dry Soil After Wash	(// /u/c)	254, 67		
D Dry Soil After Wash	(C-Tare)	El. 86	_	
E Material Lost	(B-D)	39,52		

 $(B-D)/B \times 100=$

Percent Passing #200

32.6%

CLIENT		- R-I	TECHNICIAN	
PROJECT KERSHAW	CO1		TEST DATE	
RECORD NO		6-8		
		SOIL CLASSIFICATI	ON	
tare # AA		tare weight <u>24</u>	f7,74	
A Tare and Dry Soil B Dry Soil C Tare and Dry Soil After Wash D Dry Soil After Wash E Material Lost	(A-Tare) (C-Tare) (B-D)	501. 95 254. 21 407. 90 160.16 94.65		
Percent Passing #200	(B-D)/B x 1	100=	37,0%	

 $(B-D)/B \times 100=$

CLIENT _ ·		- R-l	TECHNICIAN
PROJECT KERSHA	N CO	- P	TEST DATE
RECORD NO.		8-10	
		SOIL CLASSIFICATION	
TARE #	_	TARE WEIGHT 248	<u>63</u>
A Tare and Dry Soil		512. 17	
3 Dry Soil	(A-Tare)	264.14	_
C Tare and Dry Soil After Wash		392.80	_
Dry Soil After Wash	(C-Tare)	144,77	_
Material Lost	(B-D)	119,37	_

 $(B-D)/B \times 100=$

Percent Passing #200

45, 2%

PROJECT <u>KERSHAW</u> RECORD NO.	CO :	- β-1 - 13,5-15	TECHNICIANTEST DATE
		SOIL CLASSIFICATION	
TARE #	-	TARE WEIGHT 249.	96
A Tare and Dry Soil B Dry Soil C Tare and Dry Soil After Wash D Dry Soil After Wash E Material Lost	(A-Tare) (C-Tare) (B-D)	460,98 211.62 352,93 102.97 108.05	

 $(B-D)/B \times 100=$

Percent Passing #200

51.2%

CLIENT		_ B-1	TECHNICIAN	
PROJECT KERSHAW RECORD NO.	CO /	- p-1 - 18.5-20	TEST DATE	
		SOIL CLASSIFICATION		
TARE # ACC		TARE WEIGHT 255	5.10	
A Tare and Dry Soil B Dry Soil C Tare and Dry Soil After Wash D Dry Soil After Wash E Material Lost	(A-Tare) (C-Tare) (B-D)	446,06 190,96 410,06 154.96 36,0		
Percent Passing #200	(B-D)/B x :	100=	3.9%	

CLIENT		_ R-1	TECHNICI	.AN
PROJECT KERSHAW) Co.	ν .	TEST DA	TE
RECORD NO.		23.5-	25	
		SOIL CLASSIFIC	CATION	
TARE # 176	_	TARE WEIGHT	178,22	
A Tare and Dry Soil B Dry Soil C Tare and Dry Soil After Wash D Dry Soil After Wash E Material Lost	(A-Tare) (C-Tare) (B-D)	249.65 71.43 231.71 53.49 17.94		
Percent Passing #200	(B-D)/B x :	100=	25.1%	

CLIENT _ ·		- R-2.	TECHNICIAN	
PROJECT KERSHAV	V CO-	- B-2 - A-6	TEST DATE	
RECORD NO.		4-6		
		SOIL CLASSIFICATION		
TARE # N 2	_	TARE WEIGHT319.	. 87	
A Tare and Dry Soil B Dry Soil C Tare and Dry Soil After Wash D Dry Soil After Wash E Material Lost	(A-Tare) (C-Tare) (B-D)	614,00 294,13 528,55 208.68 85.45		
Percent Passing #200	(B-D)/B x 1	100= 2	9.1%	

 $(B-D)/B \times 100=$

CLIENT		- R-2	TECHNICIAN	
PROJECT KERSHAV	U CO 2	- β-2 - 8-10	TEST DATE	
RECORD NO		8-10		
		SOIL CLASSIFICATION		
TARE #XD		TARE WEIGHT306	. 15	
A Tare and Dry Soil B Dry Soil C Tare and Dry Soil After Wash D Dry Soil After Wash E Material Lost	(A-Tare) (C-Tare) (B-D)	595, 54 289, 39 501, 80 195, 45 93, 74		
. Percent Passing #200	(B-D)/B x	100= 32	4%	

 $(B-D)/B \times 100=$

CLIENT		- ^ ^		TECHNICIAN_	
PROJECT KERSHAW	CO,	B- C	_	TEST DATE _	
RECORD NO.		_ B-2 _ 13.5	-15		
		SOIL CLASSII	FICATION		
TARE # D3	_	TARE WEIGHT _	250, 6) (c	
Tare and Dry Soil		457.3	7	-	
Dry Soil Tare and Dry Soil After Wash	(A-Tare)	351, 99		-	
Dry Soil After Wash	(C-Tare)	101.93		-	
Material Lost	(B-D)	105.3%		-	
			50,	80/0	
Percent Passing #200	(B-D)/B x	100=		<i>U</i>	

 $(B-D)/B \times 100=$

Е

CLIENT		TECHNICIAN	
PROJECT KERSHAW CO.	B-2	TEST DATE	
RECORD NO.	_ pre 18.5-20		
	SOIL CLASSIFICATION		
TARE # W 4	TARE WEIGHT 330.	48	
A Tare and Dry Soil	644.39	_	
3 Dry Soil (A-Tare)			
C Tare and Dry Soil After Wash	581.42		
D Dry Soil After Wash (C-Tare)	250.94		
Material Lost (B-D)	62.97		
•	2,	0,1%	
Percent Passing #200 (B-D)/B	x 100=	J 1 -	

CLIENT		- 0 0	TECHNICIAN
PROJECT KERSHA	w co,	D-6	TEST DATE
RECORD NO.		β-2 23.5-21	
		SOIL CLASSIFICATION	N
TARE # N		TARE WEIGHT 32	.7, 17
A Tare and Dry Soil		446.66	
B Dry Soil	(A-Tare)	119.49	
C Tare and Dry Soil After Wash		404.66	
D Dry Soil After Wash	(C-Tare)	11.49	
E Material Lost	(B-D)	42,5	- Company Company

Percent Passing #200

 $(B-D)/B \times 100=$

35.1 %

	co,	B-2	28,5-30	TECHNICIAN_ TEST DATE _	
RECORD NO.		_			
		SOIL CLASS	SIFICATION		
TARE # _ B A		TARE WEIGHT	<u>337,</u>	70	
A Tare and Dry Soil B Dry Soil C Tare and Dry Soil After Wash D Dry Soil After Wash E Material Lost	(A-Tare) (C-Tare) (B-D)		_	- - -	

 $(B-D)/B \times 100=$

Percent Passing #200

32.10/6

A

Client:
Project:
F&R Project No.:
Item Code/Use:

	Lit	juid Lihit		
Tare No.	60	1	M3	
Cup & Wet Soil	34,30	34.89	35.33	
Cup & Dry Soil	31.88	32.26	32,55	
Moisture Loss	2.42	2.63	2,78	
Cup Weight	23.11	23.63	23.12	
Dry Soil	8.77	9.23	9,43	
Blows	31	24	16	
Moisture %	0.276	0.285	0.295	
	Pl	astic Limit		
Tare No.	12	7A		
Cup & Wet Soil	30.52	29.85		
Cup & Dry Soil	29.07	28,59		
Moisture Loss	1.45	1.26		
Cup Weight	23,05	23, 23		
Dry Soil	6.62	5.36		
Moisture %	0.241	0.235		

. Material			Date Received:	11/25/15
Sample No:		6		-
Location:	B-1	13.5-15	Date Processed:	
Course			· · · · · · · · · · · · · · · · · · ·	

	40.0 38.0			1		77.				-
	36.0									2)
nt	34.0		2. 3							
ţe	32.0				E ST			-		
Content		1944							833	
	30.0		202 100	1933		200			5	
Water	28.0	-72	108 N. F. A.							
≥	26.0		网络全国							
	24.0		1.57 California	1.01.25			01	3.		
	22.0 20.0			277	* WARES	74.00				
		10								 100
			Numbe	r of RI	OME					, 00

Laboratory Technician:	•
Reviewed By:	

Program Administrator

$$LL = 78.5 \begin{pmatrix} \frac{24}{25} \end{pmatrix} = 78$$

$$PL = 74$$

$$PT = 4$$

Client:	Material	Date Received: 11/25//
Project: KERSHAW CO / F&R Project No.: Item Code/Use:	Sample No: 7 Location: 8-/ /8.5- 26 Source:	Date Processed:
Tare No. Cup & Wet Soil Cup & Dry Soil Moisture Loss Cup Weight Dry Soil Blows Moisture % Plastic Limit Tare No. Cup & Wet Soil Cup & Dry Soil Moisture Loss Cup Weight Dry Soil Moisture Loss Cup Weight Dry Soil Moisture Moisture Loss Cup Weight Dry Soil Moisture %	40.0 38.0 36.0 32.0 30.0 28.0 24.0 22.0 20.0 Number of	100 F Blows
Laboratory Technician: Reviewed By: Program Administrator	LL = PL = PI = USCS =	- · · · · · · · · · · · · · · · · · · ·

6

Client: Project: F&R Project No.: Item Code/Use:	HAW CO	 S	Material	. 25	Date Received: 11/25/15 Date Processed:
Tare No. Cup & Wet Soil Cup & Dry Soil Moisture Loss Cup Weight Dry Soil Blows Moisture % Tare No. Cup & Wet Soil Cup & Dry Soil Moisture Loss Cup Weight Dry Soil Moisture Loss Cup Weight Dry Soil	N-PLASTIC		40.0 38.0 36.0 34.0 32.0 30.0 28.0 24.0 22.0 20.0	umber of Blow	100
Moisture % Laboratory Technicia Reviewed B			LL = PL = PI = USCS =		

Client:			
Project:	KERSHAW	co	
F&R Project No.:			
Item Code/Use:			

	Lit	juid Limit		
Tare No.	18	511	108	
Cup & Wet Soil	37.18	37.41	37,57	
Cup & Dry Soil	33.68	33.68	33.73	
Moisture Loss	3.50	3,73	3.84	
Cup Weight	23,09	22.93	23.15	
Dry Soil	10.59	10,75	16,58	
Blows	31	23	17	
Moisture %	0,331	0.347	0.363	
	Pl	astic Limit		
Tare No.	MI	51		
Cup & Wet Soil	29,83	31,56		
Cup & Dry Soil	28,66	29.99		,
Moisture Loss	1.17	1.57		
Cup Weight	23.03	23,03		
Dry Soil	5.63	6,96		
Moisture %	0.208	0.226		

Laboratory Technician:	· · · · · · · · · · · · · · · · · · ·
Reviewed By:	
	Program Administrator

Material		•			
Sample No:		Ce		•	
Location:	B-2		13,5-	15	
Source:	•			31.7	

Date Received:	11/25/15
Date Processed:	

*				No.								
40 O -		Ø. 1										
	State Control				Ana Di	735.0		(4)		100	1	
		•										
											* 1	
			600000	51.593								
	79.12.73			10 S 41			136	7	25			
30.0	3045	T		1							.	•
28.0 -	7.			44.23		E CO					- 000	
26.0			3 N A4-	W. 1947		Dink				R.C.		
					100					504		
22.0 -	Colorado Contrato Contrato	ing Sept.	Control Care		Control of the last of the las	<u>کیانیا</u> انتخاب			2.4 I			
20.0		School Card		A second		30.2		and the				
1	10				,					100		
·										, 50		
			Number	of BI	ows							
				•								
		38.0 - 36.0 - 32.0 - 30.0 - 28.0 - 26.0 - 24.0 - 22.0 - 30.0 - 22.0 - 22.0 - 30.0 - 22	38.0 36.0 34.0 32.0 30.0 28.0 26.0 24.0 22.0 20.0	38.0 36.0 34.0 32.0 30.0 28.0 26.0 24.0 22.0 20.0	38.0 36.0 34.0 32.0 30.0 28.0 26.0 24.0 22.0 20.0	38.0 36.0 34.0 32.0 30.0 28.0 26.0 24.0 22.0 20.0	38.0 36.0 34.0 32.0 30.0 28.0 26.0 24.0 22.0 20.0	38.0 - 36.0 - 34.0 - 32.0 - 30.0 - 28.0 - 24.0 - 22.0 - 20.0 - 10	38.0 36.0 34.0 32.0 30.0 28.0 26.0 24.0 22.0 20.0	38.0 - 36.0 - 34.0 - 32.0 - 30.0 - 28.0 - 24.0 - 22.0 - 20.0 - 10	38.0 36.0 34.0 32.0 30.0 28.0 26.0 24.0 22.0 20.0 10	38.0 - 36.0 - 34.0 - 32.0 - 30.0 - 28.0 - 24.0 - 22.0 - 20.0 - 10

LL =	
PL=	
PI = .	
USCS =	

$$LL = 34.7 \left(\frac{23}{25}\right)^{0.121} = 34$$
 $PL = 27$
 $PI = 12$

E

Client:		. Mate	erial		Date Received: /// 23
	2 SHAW CO	Sample			
F&R Project No.:		Locat	ion: B – Z	185-20	Date Processed:
Item Code/Use:		Sou	rce:		
	·				1
	Liquid Limit				
Tare No.			40.0		The second secon
Cup & Wet Soil			38.0 -		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Cup & Dry Soil	1 1 0 0 5		360 -		
Moisture Loss	10N-1245110	1 1	34.0 -		
Cup Weight			32.0 -		
Dry Soil		Content	32.0		经交换 经基础 经
Blows		ن ا	30.0 -		
Moisture %		<u>,</u>	28.0		THE RESERVE OF THE STATE OF
	Plästic Limit	Water	26.0 -		
Tare No.		>	2 1.0		
Cup & Wet Soil			22.0 -	-Andrew Carlotte Control of the Angree of the	
Cup & Dry Soil			20.0		
Moisture Loss			10		100
Cup Weight					
Dry Soil				Number	of Blows
Moisture %					
		4		•	1
				LL =	•
Laboratory Techni	ician:			PL =	
Reviewe	d By:			PI =	
	Program Administrator			USCS =	

N .	

Client:			
Project:	KERSHAW	CD	
F&R Project No.:			
Item Code/Lise:			

Tare No.	W2	85	DG	
Cup & Wet Soil	36.06	34.17	36.41	
Cup & Dry Soil	32.99	31.47	32.88	
Moisture Loss	3.07	2.70	3.53	
Cup Weight	23.26	23.12	23.00	
Dry Soil	9.73	8,35	9,88	
Blows	30	25	15	
Moisture %	0.316	0.323	0.357	
	Pk	astic Limit		
Tare No.	42	82		
Cup & Wet Soil	29,16	29.56		
Cup & Dry Soil	27.78	28.15		
Moisture Loss	1.38	1:41		
Cup Weight	22,91	23, 25		
Dry Soil	4.87	4.90		
Moisture %	0. 293	0.288		

. Material	•				
Sample No:		H	9		
Location:	B-2		23.	5-25	
Source:	•				_

Date Received:	11/25/15
Date Processed:	

	40.0 38.0				Sec.	(1.17)	73. C				
	36.0										
nt	34.0										
ĭte	32.0			級表別的	- 20						
Water Content	30.0			A		4					
r O	28.0	Section 1	317323		的技术				-25		
te			1	100					la:		
ĕ,	26.0										
	24.0			La Contraction	Land			U-11		2.3	
	22.0 20.0				** * 20**	e with the	me.	7			
		10					-				10
		10									10
Number of Blows											

Laboratory Technician:	,
Reviewed By:	
	Program Administrator

LL = PL = PI = USCS =

LL=37 PL=78 PI=4

APPENDIX V

Core No. 1 UC Strength = 1,120 psi

Core No. 2 UC Strength = 4,283 psi

Core No. 3 UC Strength = 3,850 psi

Fig. 4A - Compressive Strength Test Sample Photos - B-01

Fig. 4B - Compressive Strength Test Sample Photos - B-01

Core No. 7 UC Strength = 8,742 psi

Core No. 8 UC Strength = 14,157 psi

Fig. 4C - Compressive Strength Test Sample Photos - B-02

Figure No. 5A Rock Core Photographic Log S-28-36 Pine Grove Road, Kershaw County, South Carolina **Boring B-01**

Rock Sample Depth	Run No.	Run Length	Recovery	RQD
35 ft - 38 ft	#1	3 ft	35 inches	69 %
38 ft - 43 ft	#2	5 ft	47.5 inches	30 %
43 ft - 48 ft	#3	5 ft	21 inches	8 %

Figure No. 5B Rock Core Photographic Log S-28-36 Pine Grove Road, Kershaw County, South Carolina **Boring B-01**

Rock Sample Depth	Run No.	Run Length	Recovery	RQD
43 ft - 48 ft	#3	5 ft	21 inches	8 %
48 ft - 53 ft	#4	5 ft	4 inches	0 %
53 ft - 58 ft	#5	5 ft	7 inches	0 %
58 ft - 63 ft	#6	5 ft	41 inches	41 %
63 ft - 68 ft	#7	5 ft	56.5 inches	70 %

Figure No. 5C Rock Core Photographic Log S-28-36 Pine Grove Road, Kershaw County, South Carolina

Boring B-02

Rock Sample Depth	Run No.	Run Length	Recovery	RQD
33.5 ft - 38.5 ft	#1	5 ft	41.5 inches	32 %
38.5 ft - 39.5 ft	#2	1 ft	11 inches	0 %