SCDOT TRAFFIC SIGNAL MANUAL- CHAPTER 4 STOP & GO SIGNAL DESIGN

	RECOMMENDED		TIMING PARAMETERS				
Speed		Equiv.	Min			Min	
(mph)	Setback (feet)	Second	Initial	Max Initial	Passage	Gap	Notes
							Low speeds - urban
30	80*	1.8	12	12	2.5	2.5	Detection is primarily to gap out
							signal. Loops are placed at 80' from
							the stop bar with a 2.5 second gap to
							extend
						Urban and Suburban Arterials –	
35	200	3.9	15	24	3.0	2.5	Detection is primarily used to
<u> </u>							determine minimum green times and
40	300	5.1	15	34	6.0	2.5	gap out signal. Detection will be
							placed to provide limited decision
45	330	5.0	15	37	6.0	2.5	zone protection Loops are placed at
							4 - 5.5 seconds from the stop bar with
50	370	5.0	15	41	6.0	2.5	a 2.5 second gap to extend vehicles
							through
	445	5.5	15	49	6.0	3.0	High Speed Rural or Access
							Controlled Arterials –
55							Detection is primarily used to
							determine minimum green times and
							gap out signal. Loops are placed at
60	485	5.5	15	53	6.0	3.0	approximately 5.5 seconds from the
							stop bar with a 3 second gap to
							extend vehicles through the decision
							zone.
>45	255', 385' **	Varies (4-6)	15	Varies (30-42)	3.0 (since 2)	2.5	

SCDOT Setback Detector Placement and Volume Density Timings Figure 4-7

Setback distances are approximate and may be adjusted based on presence of driveways or pavement types.

* Considered low speed - decision zone not an issue - volume density not used

** Settings for existing setback detection, consisting of 2 6'X6' loops per lane at 255' and 385'

SCDOT TRAFFIC SIGNAL MANUAL - CHAPTER 4 STOP & GO SIGNAL DESIGN

SCDOT Stop Bar Detector Placement

	RECOMM	IENDED	TIMING PARAMETERS				
Speed (mph)	Setback (feet)	Equiv. Second	Min Initial	Max Initial	Passage	Min Gap	
n/a	@Stop Bar	n/a	Typically 4-8 seconds*	n/a	2-3	n/a	

(Typically side streets and left turn lanes)

Figure 4-8

* This value can be increased to accommodate pedestrian crossing time each cycle; however additional minimum green time can be obtained by the activation of a pedestrian button.

	1 loop per lane	2 loops per lane	
Approach Lanes	Seconds	Seconds	
Single through lane	2-3	1-1.5	
Two through lanes	1.5-2.0	0.5-1.0	
Three (or more) through lanes	1.0-1.5	0.5-0.7	

Volume Density Seconds per Actuation

Figure 4-9

These values are approximate and engineering judgement should be used. When traffic is evenly distributed over multiple lanes, use lower number. Increase for high truck traffic.