

INTERCHANGE MODIFICATION REPORT

I-26 AT S-48 (COLUMBIA AVENUE) INTERCHANGE IMPROVEMENTS LEXINGTON COUNTY, SOUTH CAROLINA PROJECT NO. R4035500-121734.01 PROJECT ID P042383

DECEMBER 2016

PREPARED FOR: SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION &

LEXINGTON COUNTY

INTERCHANGE MODIFICATION REPORT

I-26 AT S-48 (COLUMBIA AVENUE) INTERCHANGE IMPROVEMENTS LEXINGTON COUNTY, SOUTH CAROLINA PROJECT NO. R4035500-121734.01 PROJECT ID P042383

DECEMBER 2016

PREPARED FOR: SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

&

LEXINGTON COUNTY

12-16-16

TABLE OF CONTENTS

			<u>Page</u>
1.0	EXEC	CUTIVE SUMMARY	5
2.0	INTR	ODUCTION	7
	2.1	BACKGROUND	7
	2.2	SCOPE	7
	2.3	STUDY AREA	8
	2.4	PURPOSE AND NEED STATEMENT	9
	2.5	EXISTING CONDITIONS FOR STUDY AREA	10
3.0	OPE	RATIONAL ANALYSIS	13
	3.1	ANALYSIS METHODOLOGY	13
	3.2	TRAFFIC VOLUMES	16
	3.3	CRASH ANALYSIS	17
	3.4	EXISTING 2014 TRAFFIC ANALYSIS	25
	3.5	NO-BUILD 2020 TRAFFIC ANALYSIS	28
	3.6	NO-BUILD 2040 TRAFFIC ANALYSIS	31
	3.7	BUILD 2020 TRAFFIC ANALYSIS	34
	3.8	BUILD 2040 TRAFFIC ANALYSIS	38
4.0	VISS	IM ANALYSIS	42
	4.1	MODEL DEVELOPMENT	42
		4.1.1 Geometric Data	42
		4.1.2 Traffic Control Data	42
		4.1.3 Speed Data	43
		4.1.4 Traffic Input	44
		4.1.5 Driving behavior Parameters	45
	4.2	BASE YEAR MODEL CALIBRATION AND VISUAL VALIDATION	46
		4.2.1 Calibration Criteria	47
		4.2.2 Simulation Setting and Random Seed Variation	48
		4.2.3 Visual Validation	48
		4.2.4 Calibration Results	50
	4.3	MEASURES OF EFFECTIVENESS	52
		4.3.1 95 th Percentile (Worst Case) Methodology	52
		4.3.2 Delay Reporting for Stop and Signal Controlled Intersections.	53

TABLE OF CONTENTS

				<u>Page</u>
		4.3.3	2014 Existing Condition AM and PM Peak Hour MOEs	53
		4.3.4	2020 No-Build AM and PM Peak Hour MOEs	53
		4.3.5	2020 Build (DDI) AM and PM Peak Hour MOEs	55
		4.3.6	2040 No-Build AM and PM Peak Hour MOEs	56
		4.3.7	2040 Build (DDI) AM and PM Peak Hour MOEs	57
5.0	SUMN	IARY O	F FINDINGS	58
	5.1	FINDI	NGS	58
	5.2	CONC	LUSION AND RECOMMENDATION	59
6.0	FEDE	RAL HI	GHWAY ADMINISTRATION (FHWA) POLICY	60

TABLES		
TABLE 1:	LOS THRESHOLDS FOR UNSIGNALIZED INTERSECTIONS	14
TABLE 2:	LOS THRESHOLDS FOR SIGNALIZED INTERSECTIONS	14
TABLE 3:	LOS THRESHOLDS FOR FREEWAY SEGMENTS	.15
TABLE 4:	LOS THRESHOLDS FOR MERGE / DIVERGE AREAS	.16
TABLE 5:	EXISTING 2014 INTERSECTION LOS AND DELAY	.25
TABLE 6:	EXISTING 2014 FREEWAY / MERGE / DIVERGE LOS AND DENSITY	.26
TABLE 7:	NO-BUILD 2020 INTERSECTION LOS AND DELAY	.28
TABLE 8:	NO-BUILD 2020 FREEWAY / MERGE / DIVERGE LOS AND DENSITY	.29
TABLE 9:	NO-BUILD 2040 INTERSECTION LOS AND DELAY	.31
TABLE 10:	NO-BUILD 2040 FREEWAY / MERGE / DIVERGE LOS AND DENSITY	.32
TABLE 11:	BUILD 2020 INTERSECTION LOS AND DELAY	34
TABLE 12:	BUILD 2020 FREEWAY / MERGE / DIVERGE LOS AND DENSITY	.35
TABLE 13:	BUILD 2040 INTERSECTION LOS AND DELAY	38
TABLE 14:	BUILD 2040 FREEWAY / MERGE / DIVERGE LOS AND DENSITY	.39
TABLE 15:	SPEED DISTRIBUTION	44
TABLE 16:	2014 AM PEAK HOUR CALIBRATION RESULTS	.50
TABLE 17:	2015 PM PEAK HOUR CALIBRATION RESULTS	51
	TRAVEL TIME CALIBRATION RESULTS	
TABLE 19:	95 TH PERCENTILE CALCULATION METHOD	52
TABLE 20:	2014 EXISTING AM / PM PEAK HOUR LOS AND DELAY (VISSIM)	.53
TABLE 21:	2020 NO-BUILD AM / PM PEAK HOUR LOS AND DELAY (VISSIM)	.54
TABLE 22:	2020 BUILD AM / PM PEAK HOUR LOS AND DELAY (VISSIM)	.55
TABLE 23:	2040 NO-BUILD AM / PM PEAK HOUR LOS AND DELAY (VISSIM)	.56
TABLE 24:	2040 BUILD AM / PM PEAK HOUR LOS AND DELAY (VISSIM)	57

FIGURES

FIGURE 1A: PROJECT LOCATION	8
FIGURE 1B: INTERCHANGE STUDY AREA	9
FIGURE 2: EXISTING LANEAGE AND TRAFFIC CONTROL	12
FIGURE 3: 2014 EXISTING PEAK HOUR TRAFFIC VOLUMES	18
FIGURE 4: 2020 NO-BUILD PEAK HOUR TRAFFIC VOLUMES	19
FIGURE 5: 2040 NO-BUILD PEAK HOUR TRAFFIC VOLUMES	20
FIGURE 6: 2020 BUILD ALTERNATIVE 1 PEAK HOUR TRAFFIC VOLUMES	21
FIGURE 7: 2020 BUILD ALTERNATIVE 2 PEAK HOUR TRAFFIC VOLUMES	22
FIGURE 8: 2040 BUILD ALTERNATIVE 1 PEAK HOUR TRAFFIC VOLUMES	23
FIGURE 9: 2040 BUILD ALTERNATIVE 2 PEAK HOUR TRAFFIC VOLUMES	24
FIGURE 10: 2014 EXISTING LOS AND LANEAGE	27
FIGURE 11: 2020 NO-BUILD LOS AND LANEAGE	30
FIGURE 12: 2040 NO-BUILD LOS AND LANEAGE	33
FIGURE 13: 2020 BUILD ALTERNATIVE 1 LOS AND LANEAGE	36
FIGURE 14: 2020 BUILD ALTERNATIVE 2 LOS AND LANEAGE	37
FIGURE 15: 2040 BUILD ALTERNATIVE 1 LOS AND LANEAGE	40
FIGURE 16: 2040 BUILD ALTERNATIVE 2 LOS AND LANEAGE	41

APPENDICES

APPENDIX A – S-48 TRAFFIC PROJECTIONS MEMO APPENDIX B - TRAFFIC COUNTS APPENDIX C – CRASH DATA APPENDIX D - EXISTING 2014 SYNCHRO AND SIM TRAFFIC REPORTS APPENDIX E – EXISTING 2014 HCS REPORTS APPENDIX F - NO-BUILD 2020 SYNCHRO AND SIM TRAFFIC REPORTS APPENDIX G – NO-BUILD 2020 HCS REPORTS APPENDIX H – NO-BUILD 2040 SYNCHRO AND SIM TRAFFIC REPORTS APPENDIX I – NO-BUILD 2040 HCS REPORTS APPENDIX J – BUILD AL T 1 2020 SYNCHRO AND SIM TRAFFIC REPORTS APPENDIX K - BUILD ALT 2 2020 SYNCHRO AND SIM TRAFFIC REPORTS APPENDIX L – BUILD ALT 1 2040 SYNCHRO AND SIM TRAFFIC REPORTS APPENDIX M – BUILD ALT 2 2040 SYNCHRO AND SIM TRAFFIC REPORTS APPENDIX N – BUILD ALT 3 2020 AND 2040 SIDRA REPORTS APPENDIX O – ALTERNATIVE 1, 2, AND 3 CONCEPTUAL DESIGNS

1.0 EXECUTIVE SUMMARY

To obtain approval from the Federal Highway Administration (FHWA), the following Interstate 26 at S-48 (Columbia Avenue) Interchange Modification Report (IMR) was developed for the South Carolina Department of Transportation (SCDOT). The I-26 at S-48 (Columbia Avenue) diamond interchange is located at Exit 91 in Lexington County, South Carolina. The S-48 (Columbia Avenue) portion of the interchange is just within the Town of Chapin limits, which is located approximately 20 miles northwest of Columbia, SC.

The purpose of the project is to improve operational efficiency and safety of the existing interchange and to accommodate future volumes. The current interchange design is approaching capacity as a two-lane bridge along with no turn lanes to / from S-48 and is functionally obsolete. Operation is expected to worsen with more daily traffic volumes based on past census data indicating the population has been increasing by approximately twenty (20) percent per decade since 1990. With this anticipated growth along with the recently approved Chapin Technology Park and a planned commercial development north of the interchange, modifications to the existing diamond interchange are needed.

The traffic analysis included the evaluation of Existing year 2014, Future year 2020, and Future year 2040 traffic volumes during the AM and PM peak hours. The future year analyses included a No-Build Alternative with the existing interchange / intersection layout and three Build Alternatives:

- 1. Diverging Diamond Interchange
- 2. Partial Clover Leaf
- 3. Dual Roundabout

Geometric design improvements to the adjacent intersections to the interchange are also addressed in this Interchange Modification Report (IMR). Plans to realign Crooked Creek Road (S-232), currently intersecting with the I-26 Eastbound On Ramp, and Ellett Road (less than 50 feet from the I-26 Westbound Ramps) are expected to be realigned directly with S-48 approximately 1000 feet to the south under signal control. This report focuses on the interchange; however, plans are being conducted along S-48 (Columbia Avenue) to widen the existing two-lane highway to five-lanes. Traffic volumes used in this IMR were referenced from the S-48 (Columbia Avenue) Corridor Improvement Project Traffic Study dated October 17, 2016.

Adjacent interchanges Exit 85 (SC 202) and Exit 97 (US 176) were also studied even though both interchanges are more than 5 miles from the study interchange. As expected, Exit 97 (14 miles from Columbia and more developed) carries more traffic than the Exit 85, which is rural and 12 additional miles further away from Columbia. It should be noted, that there an I-26 widening project underway that extends from Exit 85 to Exit 101 which also includes some interchange improvements.

Analysis using Synchro 9.1 indicated that interchange alternatives 1 and 2 operated at an acceptable level-of-service (LOS) C; however, the diverging diamond interchange was selected based its minimal right-of-way acquisition and impact to future development as opposed to other study alternatives. The preferred alternative was also modeled using the microsimulation software VISSIM 7.0. Alternative 3 (dual roundabouts) did not provide an acceptable level-of-service (see **Appendix N**); therefore, it should be not be considered as a viable alternative.

Operation at Exit 97 (US 176 east of the study interchange) is expected to fail by 2040 with no improvements to the interchange. Consideration for widening of I-26 and a review of the interchange is recommended to accommodate projected traffic volumes. Operation at Exit 85 (SC 202 west of the study interchange) is expected to operate an acceptable level-of-service during the year 2040 with its existing design. **Figure 15** summarizes the Level-of-Service and delay for the projected 2040 preferred alternative.

This study recommends the best alternative to meet current and future surrounding area needs for Lexington County, South Carolina. SCDOT will submit this report for a validation of engineering and operational feasibility. Final approval of the IMR will be requested once all National Environmental Policy Act (NEPA) requirements have been met.

2.0 INTRODUCTION

2.1 BACKGROUND

Interstate 26 is a rolling four-lane East-West highway that is divided by a grassy median. The study area for the proposed project begins at Exit 85 (SC 202) and ends at Exit 97 (US 176). The interchange of emphasis in this report is Exit 91, which provides access to S-48 (Columbia Avenue) in Chapin, South Carolina. S-48 is a two lane minor arterial with future widening plans to accommodate future growth as part of this project. The approved Chapin Technology Park (a phased 2019 and 2024 Build-out) is approximately 1 mile south of the interchange and the planned commercial development just north of the interchange (northwest quadrant) was included in the traffic projections. The existing interchange at S-48 currently has minor queuing issues at the signalized I-26 westbound ramp and is expected to be over capacity based on the projected annual growth in the area and the added traffic volumes from the two large developments. The preferred alternative is to replace the existing diamond interchange design with a diverging diamond interchange (DDI) and to realign Crooked Creek Road and Ellett Road 1000 feet south of interchange under signal control improving the access management of S-48.

2.2 SCOPE

This report focuses on traffic analysis of existing and future conditions and provides recommendations for mitigating Level-of Service (LOS) and queuing. AECOM was tasked with studying traffic conditions in the vicinity of the proposed project during the weekday AM and PM peak hours for three scenarios:

- 2014 Existing: An analysis of existing conditions in the year 2014.
- 2020/2040 No-Build: An analysis of conditions in the years 2020 and 2040 with no changes to the interchange.
- 2020/2040 Project Build-Out: An analysis of conditions in the years 2020 and 2040 if a an interchange is modified, S-48 is widened to 5 lanes to the south, and Crooked Creek Road and Ellett Road are realigned 1000 feet to the south.

This study includes an analysis of the existing adjacent interchanges to the east and west of the proposed interchange modification of Exit 91. To the east is Exit 97 and to the west is Exit 85.

The scope of this interchange modification study included the following tasks:

- 1. Field visits to the study area were performed to collect data on the existing conditions such as lane configurations/geometry and current traffic control measures. Traffic counts and signal timing information at the interchanges were obtained from SCDOT.
- Existing conditions of the interchanges were studied by utilizing the existing traffic volumes. Levels of service of the intersections at each interchange were determined using Synchro 9.1. I-26 freeway and interchange on / off ramps (segments, merges, and diverges, and off-ramps) were analyzed High Capacity Software 2010. VISSIM 7.0 was also used to model the entire network.

- 3. Two future design years were examined in this report. Build and No-Build scenarios were analyzed for the years 2020 and 2040. The No-Build scenario analyzed the conditions in both design years in which no modifications were made to the interchange or adjacent freeway and interchanges. The Build scenario analyzed the future conditions in both build years if the interchange modification and widening of S-48 (Columbia Avenue) were constructed. Adjacent merge and diverge areas (freeway segments, on-ramps, and off-ramps) were analyzed under the future design year (2020/2040) conditions of the study area.
- 4. The future design year conditions were analyzed for three (3) different interchange alternative scenarios. Adjacent merge and diverge areas (freeway segments, on-ramps, and off-ramps) were analyzed under the future design year (2020/2040) conditions of the study area. Only the preferred alternative was also modeled using VISSIM 7.0.

2.3 STUDY AREA

The study area is located in Lexington County, South Carolina. Specifically, the S-48 (Columbia Avenue) Widening project is located in the Town of Chapin, South Carolina. The study area of the IMR begins to the west of S-48 at Exit 85 of I-26 and ends to the east at Exit 97. The interchange of I-26 at S-48 is Exit 91. I-26 is an east-west four (4) lane freeway with two (2) travel lanes in each direction. The location of the project is shown in **Figure 1A** and **Figure1B**.

Figure 1A – Project Location

Figure 1B – Interchange Study Area

2.4 PURPOSE AND NEED STATEMENT

The purpose of this IMR is to study the impact of the modification of the interchange at Exit 91 on I-26 near Chapin, South Carolina. Chapin is located in Lexington County, northwest of Columbia. The population of Lexington County has been steadily increasing. In the 1990 Census, the population of Lexington County was 167,611. This grew to 216,014 (28.9% increase) in the 2000 Census and then reached 262,391 (21.5% increase) in 2010. Due to continual and anticipated growth in the area, improvements to the existing roadway network should be reviewed. This report is aimed at the potential improvements to the interchange from I-26 to Columbia Avenue in Chapin. The existing interchange is currently over capacity and the Frontage Road connection with S-48 and Crooked Creek Road connection with the I-26 EB On Ramp should be realigned for safety to meet SCDOT's latest criteria for access management. With new developments and construction in Chapin, such as the S-48 (Columbia Avenue) widening, there is a need for to modify the interchange to be able to accommodate this growth in terms of both capacity and safety.

2.5 EXISTING CONDITIONS FOR STUDY AREA

Currently S-48 is a 2-lane undivided minor arterial roadway with a 35 mile per hour (mph) posted speed limit that runs from US 76 at its intersection with S-51 (Amick Ferry Road) to the I-26 interchange. In the study area, I-26 is a 4-lane divided freeway with a 70 mph posted speed limit running in the east-west direction.

The AM peak hour studied was from 7:30-8:30 AM and the PM peak hour was from 4:45 – 5:45 PM based on the peak hour turning movement traffic counts. Heavy truck percentage for the peak hours varied; however, 4% was used for I-26 and 2% was used on the other studied roadways. It should be noted that SCDOT records indicate the daily heavy truck percentage on S-48 is 7% while I-26 is approximately 15%. Descriptions of the interchanges and a complete list of the study area are described below and shown in **Figure 2**:

- 1. I-26 Eastbound Ramps at S-48
- 2. I-26 Westbound Ramps at S-48
- 3. I-26 Eastbound Ramps at SC 202
- 4. I-26 Westbound Ramps at SC 202
- 5. I-26 Eastbound Ramps/ Exxon Driveway at US 176
- 6. I-26 Westbound Ramps at US 176

<u>Exit 85</u>

Approximately 6 miles to the west of Exit 91 on I-26 is Exit 85, a folded diamond/partial cloverleaf interchange. This interchange provides access to SC 202, a north-south 2-lane undivided roadway with a bridge over I-26. The eastbound off-ramp from I-26 is a stop controlled intersection where vehicles have the ability to turn left or right on to SC 202. The westbound off-ramp also has a stop controlled left turn onto SC 202 while the right turn from the ramp is yield controlled. A frontage road (Meadow Brook Road), less than 100 feet north of the I-26 westbound ramps, runs parallel to I-26 westbound, which is accessible from SC 202.

<u>Exit 91</u>

The interchange that intersects with S-48 is Exit 91 as a diamond interchange. This interchange provides access to S-48, which leads directly into Chapin. The eastbound off-ramp provides stop controlled access to S-48. The westbound off-ramp is signalized at the intersection with S-48. A frontage road (Ellett Road) intersects with S-48 approximately 50 feet to the southwest of the eastbound off-ramp. This road runs parallel to I-26 eastbound to the west of S-48. The eastbound on-ramp has access to Crooked Creek Road located on the ramp. There are multiple fast food restaurants and gas stations located west of the interchange on S-48.

<u>Exit 97</u>

Approximately 6 miles to the east of Exit 91 on I-26 is Exit 97. This interchange is a partial cloverleaf design for I-26 westbound and eastbound on ramp movements. The interchange

provides access to US 176, which has access to many residential developments near the interstate. The eastbound off-ramp leads to an intersection with US 176 that is stop controlled coming off the ramp. In addition to the intersection with US 176, the ramp intersects with Rauch Metz Road about half the distance between I-26 and US 176. Traffic traveling from Rauch Metz Road has the option to turn left to access the on-ramp to I-26 eastbound or turn right and head toward the intersection with US 176. The I-26 eastbound loop on-ramp also provides for vehicles to turn left onto Rauch Metz Road.

The I-26 westbound off-ramp intersects with US 176 at a signalized intersection. Through and left turn lane traffic approach the signal while the right turning traffic approaches a yield before continuing onto US 176. There is a driveway leading to a shopping center (Broad River Village) across from the off/on ramps at the signalized intersection.

3.0 OPERATIONAL ANALYSIS

3.1 ANALYSIS METHODOLOGY

The highway capacity analyses performed are based on methodologies from the Highway Capacity Manual (HCM 2010). Traffic modeling software used in the capacity analyses were Synchro 9.1 and SimTraffic 9.0, (Build 908, Rev 56), and VISSIM 7.0 for intersection analyses.

The traffic carrying ability of a roadway is described by levels of service (LOS) that range from LOS A to LOS F. LOS A represents unrestricted maneuverability and operating speeds. LOS B represents reduced maneuverability and operating speeds. LOS C represents restricted maneuverability and operating speeds closer to the speed limit. LOS D represents severely restricted maneuverability and unstable, low operating speeds. LOS E represents operating conditions at or near the capacity level. LOS F represents breakdown conditions characterized by stop and go travel. A visual representation of each LOS is shown below.

Source: FDOT Quality Level of Service Manual

The Highway Capacity Manual (HCM) 2010 defines LOS at an unsignalized intersection by average control delay per vehicle, which includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. Several factors affect the controlled delay for unsignalized intersections, such as availability and distribution of gaps in the conflicting traffic stream, critical gaps, and follow-up time for a vehicle in the queue. The Highway Capacity Manual explains that drivers perceive that a signalized intersection is designed to carry higher traffic volumes and therefore expect to experience greater delays at signalized intersections. Unsignalized intersections are assigned a LOS for each minor movement. Typically, LOS C is

I-26 at S-48 - Project No. P042383 - SCDOT

considered the minimum acceptable level of service at an intersection for a suburban area. **Table 1** presents LOS thresholds for unsignalized intersections.

Level of Service	Average Control Delay (sec/veh)			
A	\leq 10.0			
B	> 10.0 and \leq 15.0			
C	> 15.0 and \leq 25.0			
D	> 25.0 and \leq 35.0			
E	> 35.0 and \leq 50.0			
F	> 50.0			

Table 1: LOS Thresholds for Unsignalized Intersections
--

LOS for a signalized intersection is defined in terms of average control delay per vehicle, which is composed of initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. A single LOS describes a signalized intersection. **Table 2** presents LOS thresholds for signalized intersections.

Level of Service	Average Control Delay (sec/veh)			
A	\leq 10.0			
B	> 10.0 and \leq 20.0			
C	> 20.0 and \leq 35.0			
D	> 35.0 and \leq 55.0			
E	> 55.0 and \leq 80.0			
F	> 80.0			

A basic freeway segment can be characterized by three performance measures: density in terms of passenger cars per mile per lane, speed in terms of mean passenger-car speed, and volume to capacity (v/c) ratio. Each of these measures is an indication of how well traffic flow is being accommodated by the freeway. The measure used to provide an estimate of level of service is density. **Table 3** defines the traffic density conditions at each level of service.

Traffic flow within a basic freeway segment can vary greatly depending on the conditions constricting flow at upstream and downstream bottleneck locations. Bottlenecks can be created by ramp merges or weaving segments, lane drops, maintenance and construction activities, accidents, and objects in the roadway.

Level of Service	Density Range (pc/mi/In			
A	\leq 11.0			
B	> 11.0 and \leq 18.0			
C	> 18.0 and \leq 26.0			
D	> 26.0 and \leq 35.0			
E	> 35.0 and \leq 45.0			
F	> 45.0			

Table 3: LOS Thresholds for Freeway Segments

A ramp is a length of roadway providing an exclusive connection between two highway facilities. On freeways, all entering and exiting maneuvers take place on ramps that are designed to facilitate smooth merging of on-ramp vehicles into the freeway traffic stream and smooth diverging of off-ramp vehicles from the freeway traffic stream onto the ramp.

A ramp consists of three geometric elements of interest: the ramp-freeway junction, the ramp roadway, and the ramp street junction. The ramp freeway junction is typically designed to permit high-speed merging and diverging with varying acceleration and deceleration lanes. Ramp roadways can vary between locations in terms of number of lanes, design speeds, grades, and horizontal curvature. The design of ramp roadways is seldom a source of operational difficulty unless a traffic incident causes disruption along the length of the ramp. Ramp-street terminal problems can cause queuing along the length of ramp, but this is generally not related to the design of the ramp roadway. **Table 4** defines the traffic density conditions at each level of service.

Level of Service	Density Range (pc/mi/In		
A	\leq 10.0		
B	> 10.0 and \leq 20.0		
C	> 20.0 and \leq 28.0		
D	> 28.0 and \leq 35.0		
E	> 35.0		
F	Demand Exceeds Capacity		

3.2 TRAFFIC VOLUMES

Traffic volumes were for this IMR were referenced from the S-48 (Columbia Avenue) Corridor Improvement Project Traffic Study dated 10-17-16. In summary, the 2014 existing traffic volumes were grown at a linear rate of 1.25% to obtain the base Opening Year (2020) and Design Year (2040) traffic projections. After these projections were complete, a traffic study for the Chapin Technology Park and Chapin Commerce Village Development became available. These two developments are significant in size and impact the S-48 corridor and interchange. At the direction of Lexington County and SCDOT, additional traffic volumes were added to the base volumes to be conservative and to better estimate the turning movement volumes to / from S-48. Additional volumes were generated using:

- Chapin Technology Park (120 acre industrial park, 450 single family houses, and 350,000 SF of commercial). Based on the final traffic study submitted and approved by SCDOT on October 13, 2015 for the Chapin Technology Park, the opening year is 2019. These new trips were added to the Opening Year (2020). The Chapin Technology Park is not expected to be complete until 2024 as these trips at full build-out were added to the Design Year (2040). The Technology Park is located north of Columbia Avenue near Woodthrush Road.
- Chapin Commerce Village (132,000 SF Specialty Retail, 8,350 SF Quality Restaurant, 8,350 SF General Office, 4,500 SF Fast Food Restaurant with Drive-Through, 8,350 High Turn-Over (Sit-Down) Restaurant, 4,050 SF Fast Food Restaurant with Drive-Through, 4,950 SF Convenience Market with Gasoline Pumps, 8,350 SF Quality Restaurant, 120 Room Hotel, 8,350 Quality Restaurant, and 4,050 SF General Office Building). This development has not had a traffic study and is only in the early planning stages. It is located just east of I-26 along S-48 (Columbia Avenue).

A complete memo describing the methodology with traffic figures can be referenced in **Appendix A**.

The memo does not provide volumes along I-26, therefore, AECOM used an I-26 traffic count located just east Exit 91 and determined other sections along I-26 in the study area by balancing with the known ramp volumes at Exit 85 and Exit 97. The raw traffic counts are located in **Appendix B**. Finalized traffic volumes (balanced) for all study scenarios are displayed in **Figures 3-9**.

3.3 CRASH ANALYSIS

Crash data collected over the last 3.4 years show low crash rates along I-26 within the Exit 91 interchange area. There was a total 40 crashes with 75 percent of the crashes consisting of either running off the road or rear end. Of the 40 crashes, 8 people were injured with 1 fatality. The one fatality appears to be pedestrian related occurring during the dusk hours. The crash data also indicates that there were 8 rear-end collisions between the on / off ramps (stack 6) over the 3.4 year period which may be attributed to queuing from the westbound off-ramp extending onto the interstate. Crash summaries can be found in **Appendix C**.

The preferred Alternative Diverging Diamond Interchange design is not expected change the existing diamond interchange as the ramp design and number of lanes on the freeway are expected to remain the same. A modification to the S-48 interchange is not expected to have a significant adverse effect on safety on I-26 but is expected to improve the safety on S-48 at the ramps with the fewer conflict points.

3.4 EXISTING 2014 TRAFFIC ANALYSIS

The results of the Existing 2014 intersection analysis using Synchro 9.1 indicate that S-48 at I-26 eastbound ramp is currently operating LOS D in the AM Peak hour and LOS E during PM for the minor street approaches. The westbound off ramp under signal control is operating at LOS B; however, queues from the signal may extend onto I-26.

Table 5 summarizes the LOS and delay for each of study intersections with detailed Synchro reports found in **Appendix D**.

ID	Intersection	Traffic Control	Approach	HCM 2010 Level of Service (LOS)		Control Delay (sec/veh)	
				AM	РМ	AM	РМ
	Exit 91 (I-26 at S-48)						
1	I-26 Eastbound Off Ramp / Crook Creek Road at S-48	Unsignalized	WB (AM)* EB (PM)*	D	Е	28.4	42.7
2	I-26 Westbound Ramps at S-48	Signalized	-	В	В	11.7	19.1

Table 5: Existing 2014 Intersection LOS and Delay

*Since vehicles from Crooked Creek Road can access the I-26 eastbound on ramp to S-48 (Columbia Avenue), the worst of the two minor approaches was reported.

The results of the Existing 2014 Freeway / Merge / Diverge analysis using Highway Capacity Software (HCS) 2010 indicate that just east of Exit 97 (US 176), I-26 is operating at LOS D in the AM peak hour (eastbound) and during the PM peak hour (westbound). All other freeway segment / merge / diverge analyses are operating at LOS C or better.

Table 6 summarizes the LOS and density for each merge / diverge area with detailed HCS reports found in **Appendix E**.

Approach	Description	HCM 2010 Level of Service (LOS)		Density (pc/mi/ln)				
		AM	PM	AM	РМ			
Freeway Segment								
	West of Exit 85	A	В	9.4	11.3			
Eastbound	Between Exit 85 and Exit 91	Α	В	10.6	11.0			
Eastbound	Between Exit 91 and Exit 97	В	В	15.6	14.2			
	East of Exit 97	D	С	30.0	19.4			
	East of Exit 97	В	D	11.6	26.4			
Maathau ad	Between Exit 91 and Exit 97	Α	В	9.4	14.7			
Westbound	Between Exit 85 and Exit 91	A	А	6.7	10.0			
	West of Exit 85	Α	А	7.0	9.5			
Merge Area								
	EB Exit 85 On-Ramp	В	В	15.2	15.9			
Eastbound	EB Exit 91 On-Ramp	В	В	13.7	12.2			
	EB Exit 97 On-Ramp	С	В	25.4	17.5			
	WB Exit 97 On-Ramp	A	В	7.4	13.6			
Westbound	WB Exit 91 On-Ramp	А	А	5.5	9.4			
	WB Exit 85 On-Ramp	В	В	10.3	13.3			
	Diverge Area							
	EB Exit 85 Off-Ramp	В	В	12.8	15.2			
Eastbound	EB Exit 91 Off-Ramp	Α	А	9.1	9.7			
	EB Exit 97 Off-Ramp	В	В	15.3	13.5			
	WB Exit 97 Off-Ramp	Α	С	8.2	24.1			
Westbound	WB Exit 91 Off-Ramp	Α	В	5.3	12.2			
	WB Exit 85 Off-Ramp	Α	В	9.3	13.5			

Table 6: Existing 2014 Freeway / Merge / Diverge LOS and Density

Figure 10 shows the LOS for the Existing 2014 conditions.

3.5 NO-BUILD 2020 TRAFFIC ANALYSIS

The 2020 No-Build scenario analyzes the conditions if there were no improvements made to the interchange. The results of the No-Build 2020 intersection analysis using Synchro 9.1 indicate that S-48 at I-26 is expected to operate at LOS F in the AM and PM peak hours.

Table 7 summarizes the LOS and delay for each of study intersections with detailed Synchroreports found in **Appendix F**.

ID	Intersection	Traffic Control	Approach	HCM 2010 Level of Service (LOS)		Control Delay (sec/veh)		
				AM	РМ	AM	РМ	
	Exit 91 (I-26 at S-48)							
1	I-26 Eastbound Off Ramp / Crook Creek Road at S-48	Unsignalized	WB (AM)* EB (PM)*	F	F	900+	900+	
2	I-26 Westbound Ramps at S-48	Signalized	-	F	F	126.0	433.7	

Table 7: No-Build 2020 Intersection LOS and Delay

*Since vehicles from Crooked Creek Road can access the I-26 eastbound on ramp to S-48 (Columbia Avenue), the worst of the two minor approaches was reported.

The results of the 2020 No-Build Freeway / Merge / Diverge analysis using Highway Capacity Software (HCS) 2010 indicate that just east of Exit 97 (US 176), I-26 is expected to operate at LOS E in the AM peak hour (eastbound) and during the PM peak hour (westbound). In addition the I-26 eastbound merge area from Exit 97 is expected to operate at LOS D along with the I-26 westbound diverge area during the PM peak hour. All other freeway segment / merge / diverge analyses are operating at LOS C or better.

Table 8 summarizes the LOS and density for each merge / diverge area with detailed HCS reports found in **Appendix G**.

Approach	Description	HCM 2010 Level of Service (LOS)		Density (pc/mi/ln)				
		AM	РМ	AM	РМ			
Freeway Segment								
	West of Exit 85	А	В	10.9	13.5			
	Between Exit 85 and Exit 91	В	В	12.1	13.2			
Eastbound	Between Exit 91 and Exit 97	С	С	20.1	20.3			
	East of Exit 97	Е	D	40.9	27.6			
	East of Exit 97	В	Е	15.9	38.4			
Marthan and	Between Exit 91 and Exit 97	В	С	13.5	20.5			
Westbound	Between Exit 85 and Exit 91	А	В	7.9	11.9			
	West of Exit 85	А	В	8.2	11.5			
Merge Area								
	EB Exit 85 On-Ramp	В	В	17.0	18.3			
Eastbound	EB Exit 91 On-Ramp	В	В	18.0	18.2			
	EB Exit 97 On-Ramp	D	С	30.8	24.3			
	WB Exit 97 On-Ramp	В	В	12.1	19.6			
Westbound	WB Exit 91 On-Ramp	Α	В	6.9	11.6			
	WB Exit 85 On-Ramp	В	В	11.7	15.5			
Diverge Area								
	EB Exit 85 Off-Ramp	В	В	14.7	18.0			
Eastbound	EB Exit 91 Off-Ramp	В	В	11.1	12.5			
	EB Exit 97 Off-Ramp	С	С	20.3	20.6			
	WB Exit 97 Off-Ramp	В	D	13.6	31.6			
Westbound	WB Exit 91 Off-Ramp	В	В	10.6	18.8			
	WB Exit 85 Off-Ramp	В	В	10.8	16.0			

Table 8: No-Build 2020 Freeway / Merge / Diverge LOS and Density

Figure 11 shows the LOS for the No-Build 2020 conditions.

3.6 NO-BUILD 2040 TRAFFIC ANALYSIS

The 2040 No-Build scenario analyzes the conditions if there were no improvements made to the interchange. The results of the No-Build 2040 intersection analysis using Synchro 9.1 indicate that S-48 at I-26 is expected to continue to operate at LOS F in the AM and PM peak hours. **Table 9** summarizes the LOS and delay for each of study intersections with detailed Synchro reports found in **Appendix H**.

ID	Intersection	Traffic Control	Approac h	HCM 2010 Level of Service (LOS)		Control Delay (sec/veh)		
				AM	PM	AM	РМ	
Exit 91 (I-26 at S-48)								
1	I-26 Eastbound Off Ramp / Crook Creek Road at S-48	Unsignalized	WB (AM)* EB (PM)*	F	F	900+	900+	
2	I-26 Westbound Ramps at S-48	Signalized	-	F	F	247.4	900+	

Table 9: No-Build 2040 Intersection LOS and Delay

*Since vehicles from Crooked Creek Road can access the I-26 eastbound on ramp to S-48 (Columbia Avenue), the worst of the two minor approaches was reported.

The results of the 2040 No-Build Freeway / Merge / Diverge analysis using Highway Capacity Software (HCS) 2010 indicate that just east of Exit 97 (US 176), I-26 is expected to operate at LOS F in the AM and PM peak hours. Between Exit 91 and Exit 97, the freeway is expected to operate at LOS D in the AM peak hour (eastbound) and PM peak hour (westbound). The PM hour diverge at Exit 91 is also LOS D. In addition the I-26 eastbound merge area from Exit 97 is expected to operate at LOS F along with the I-26 westbound diverge area during the PM peak hour. All other freeway segment / merge / diverge analyses are operating at LOS C or better.

Table 10 summarizes the LOS and density for each merge / diverge area with detailed HCS reports found in **Appendix I**.

Approach	Description	HCM 2010 Level of Service (LOS)		Density (pc/mi/ln)					
		AM	РМ	AM	РМ				
Freeway Segment									
	West of Exit 85	В	С	15.8	19.5				
Eastbound	Between Exit 85 and Exit 91	В	С	17.5	19.1				
Eastbound	Between Exit 91 and Exit 97	D	D	31.3	33.0				
	East of Exit 97	F	F	105.3	50.3				
	East of Exit 97	С	F	23.3	91.3				
	Between Exit 91 and Exit 97	С	D	19.5	32.4				
Westbound	Between Exit 85 and Exit 91	В	В	11.1	17.1				
	West of Exit 85 B		В	11.5	16.5				
Merge Area									
	EB Exit 85 On-Ramp	С	С	23.0	24.7				
Eastbound	EB Exit 91 On-Ramp	С	С	26.2	27.2				
	EB Exit 97 On-Ramp	F	F	42.0	34.7				
	WB Exit 97 On-Ramp	В	D	18.6	28.3				
Westbound	WB Exit 91 On-Ramp	В	В	10.6	17.4				
	WB Exit 85 On-Ramp	В	С	15.6	21.3				
Diverge Area									
	EB Exit 85 Off-Ramp	С	С	20.9	25.1				
Eastbound	EB Exit 91 Off-Ramp	В	В	17.8	19.5				
	EB Exit 97 Off-Ramp	D	D	29.7	30.7				
	WB Exit 97 Off-Ramp	С	F	21.5	44.2				
Westbound	WB Exit 91 Off-Ramp	В	D	17.7	28.3				
	WB Exit 85 Off-Ramp	В	С	15.0	22.5				

Table 10: No-Build 2040 Freeway / Merge / Diverge LOS and Density

Figure 12 shows the LOS for the 2040 No-Build Conditions

3.7 BUILD 2020 TRAFFIC ANALYSIS

The 2020 Build scenario analyzes the conditions for three-interchange alternatives at Exit 91. For all three Alternatives, the following changes were included in the 2020 Build scenario:

- A New Frontage Road approximately 1000 feet to the south of the I-26 eastbound ramps was included to carry the traffic of the proposed Chapin Technology Park. The new Frontage Road was assumed to be a signalized intersection.
- Ellet Road (old frontage road) was removed in the Build scenario. In the Build scenario, Ellet Road traffic redistributed and added to the New Frontage Road traffic.
- Crooked Creek Road was realigned to connect to the New Frontage Road intersection with S-48. In the Build scenario, it will not have direct access to the I-26 EB on ramp. Crooked Creek Road traffic was redistributed and added to the Frontage Road traffic.

The results of the Build 2020 analysis using Synchro 9.1 indicate that two of three alternatives are expected to operate at LOS C of better. Alternative 1 (DDI) is expected to have signals at both ramps; therefore, the LOS is balanced at both intersections to obtain proper signals timing. Alternative 2 (Partial Cloverleaf) has an expected LOS A at the I-26 eastbound ramps because no signal is recommended at the I-26 westbound ramps and signal can operate independently. Alternative 3 (Dual Roundabouts) is expected to operate at LOS F for the westbound ramps during the PM peak hour; therefore, it should not be considered as a viable alternative.

Table 11 summarizes the LOS and delay for each of study intersections with detailed Synchroreports found in **Appendix J and K**. Detailed Sidra output reports are found in **Appendix N**.

ID	Intersection	Traffic Control	Approach	HCM 2010 Level of Service (LOS)		Control Delay (sec/veh)			
				AM	РМ	AM	РМ		
	Exit 91 (I-26 at S-48) – Diverging Diamond Interchange – Alt 1								
1	I-26 Eastbound Ramps at S-48	Signalized	-	С	С	20.9	22.3		
21	I-26 WB Ramps at S-48	Signalized	-	В	С	17.2	23.6		
22	S-48 at I-26 WB Off Ramp	Signalized	-	С	В	20.5	16.9		
Exit 91 (I-26 at S-48) – Partial Cloverleaf – Alt 2									
1	I-26 Eastbound Ramps at S-48	Signalized	-	А	А	4.1	4.7		
2	S-48 at I-26 WB Off Ramp	Unsignalized	WB	В	С	12.7	19.8		

Table 11: Build 2020 Intersection LOS and Delay

The results of the 2020 Build Freeway / Merge / Diverge analysis using Highway Capacity Software (HCS) 2010 indicate that just east of Exit 97 (US 176), I-26 is expected to operate at LOS E in the AM peak hour (eastbound) and during the PM peak hour (westbound). In addition

the I-26 eastbound merge area from Exit 97 is expected to operate at LOS D along with the I-26 westbound diverge area during the PM peak hour. All other freeway segment / merge / diverge analyses are operating at LOS C or better.

Table 12 summarizes the LOS and density for each merge / diverge area with detailed HCSreports found in **Appendix G**.

Approach	Description	HCM 2010 Level of Service (LOS)		Density (pc/mi/ln)				
		AM	PM	AM	РМ			
	Freeway Segment							
	West of Exit 85	A	В	10.9	13.5			
Feethering	Between Exit 85 and Exit 91	В	В	12.1	13.2			
Eastbound	Between Exit 91 and Exit 97	С	С	20.1	20.3			
	East of Exit 97	Е	D	40.9	27.6			
	East of Exit 97	В	Е	15.9	38.4			
Westbound	Between Exit 91 and Exit 97	В	С	13.5	20.5			
vvestbound	Between Exit 85 and Exit 91	A	В	7.9	11.9			
West of Exit 85		A	В	8.2	11.5			
Merge Area								
	EB Exit 85 On-Ramp	В	В	17.0	18.3			
Eastbound	EB Exit 91 On-Ramp	В	В	18.0	18.2			
	EB Exit 97 On-Ramp	D	С	30.8	24.3			
	WB Exit 97 On-Ramp	В	В	12.1	19.6			
Westbound	WB Exit 91 On-Ramp	А	В	6.9	11.6			
	WB Exit 85 On-Ramp	В	В	11.7	15.5			
	Diverge Area							
	EB Exit 85 Off-Ramp	В	В	14.7	18.0			
Eastbound	EB Exit 91 Off-Ramp	В	В	11.1	12.5			
	EB Exit 97 Off-Ramp	С	С	20.3	20.6			
	WB Exit 97 Off-Ramp	В	D	13.6	31.6			
	WB Exit 91 Off-Ramp – Alt 1	В	В	10.6	18.8			
Westbound	WB Exit 91 Off- Ramp – Alt 2	В	В	10.6	16.3			
	WB Exit 91 Off Loop Ramp – Alt 2	А	В	9.0	18.8			
	WB Exit 85 Off-Ramp	В	В	10.8	16.0			

Table 12: Build 2020 Freeway / M	lerge / Diverge LOS and Density
----------------------------------	---------------------------------

Figure 13 and 14 shows the LOS for the 2020 Build Conditions for Alternative 1 and 2.

3.8 BUILD 2040 TRAFFIC ANALYSIS

The 2040 Build scenario analyzes the conditions for three-interchange alternatives at Exit 91. For three Alternatives, the following changes were included in the 2040 Build scenario:

- A New Frontage Road approximately 1000 feet to the south of the I-26 eastbound ramps was included to carry the traffic of the proposed Chapin Technology Park. The new Frontage Road was assumed to be a signalized intersection.
- Ellet Road (old frontage road) was removed in the Build scenario. In the Build scenario, Ellet Road traffic redistributed and added to the New Frontage Road traffic.
- Crooked Creek Road was realigned to connect to the New Frontage Road intersection with S-48. In the Build scenario, it will not have direct access to the I-26 EB on ramp. Crooked Creek Road traffic was redistributed and added to the Frontage Road traffic.

The results of the Build 2040 analysis using Synchro 9.1 indicate that two of three alternatives are expected to operate at LOS C of better. Alternative 1 (DDI) is expected to have signals at both ramps; therefore, the LOS is balanced at both intersections to obtain proper signals timing. Alternative 2 (Partial Cloverleaf) has an expected LOS A at the I-26 eastbound ramps because no signal is recommended at the I-26 westbound ramps and signal can operate independently. Alternative 3 (Dual Roundabouts) is expected to operate at LOS F for the westbound ramps during the PM peak hour; therefore, it should not be considered as a viable alternative.

Table 13 summarizes the LOS and delay for each of study intersections with detailed Synchro reports found in **Appendix L and M**. Detailed Sidra output reports are found in **Appendix N**.

ID	Intersection	Traffic Control	Approach	HCM Leve Serv (LC	el of vice		l Delay /veh)
			AM	РМ	AM	РМ	
	Exit 91 (I-26 at S-48) – Diverging Diamond Interchange – Alt 1						
1	I-26 Eastbound Ramps at S-48	Signalized	-	С	С	24.3	25.1
21	I-26 WB Ramps at S-48	Signalized	-	С	С	26.6	29.2
22	S-48 at I-26 WB Off Ramp	Signalized	-	В	В	19.4	16.9
	Exit 91 (I-26 at S-48) – Partial Cloverleaf – Alt 2						
1	I-26 Eastbound Ramps at S-48	Signalized	-	А	А	4.2	5.0
2	S-48 at I-26 WB Off Ramp	Unsignalized	WB	В	С	13.3	21.0

Table 13: Build 2040 Intersection LOS and Delay

The results of the 2040 Build Freeway / Merge / Diverge analysis using Highway Capacity Software (HCS) 2010 indicate that just east of Exit 97 (US 176), I-26 is expected to operate at LOS F in the AM and PM peak hours. Between Exit 91 and Exit 97, the freeway is expected to

operate at LOS D in the AM peak hour (eastbound) and PM peak hour (westbound). The PM hour diverge at Exit 91 is also LOS D. In addition the I-26 eastbound merge area from Exit 97 is expected to operate at LOS F along with the I-26 westbound diverge area during the PM peak hour. All other freeway segment / merge / diverge analyses are operating at LOS C or better.

 Table 14 summarizes the LOS and density for each merge / diverge area with detailed HCS reports found in Appendix I.

Approach	Description	HCM 2010 Level of Service (LOS)		Density (pc/mi/ln)			
		AM	РМ	AM	PM		
	Freeway Segment						
	West of Exit 85	В	С	15.8	19.5		
Faathound	Between Exit 85 and Exit 91	В	С	17.5	19.1		
Eastbound	Between Exit 91 and Exit 97	D	D	31.3	33.0		
	East of Exit 97	F	F	105.3	50.3		
	East of Exit 97	С	F	23.3	91.3		
Maathaal	Between Exit 91 and Exit 97	С	D	19.5	32.4		
Westbound	Between Exit 85 and Exit 91	В	В	11.1	17.1		
West of Exit 85		В	В	11.5	16.5		
	Merge Area						
	EB Exit 85 On-Ramp	С	С	23.0	24.7		
Eastbound	EB Exit 91 On-Ramp	С	С	26.2	27.2		
	EB Exit 97 On-Ramp	F	F	42.0	34.7		
	WB Exit 97 On-Ramp	В	D	18.6	28.3		
Westbound	WB Exit 91 On-Ramp	В	В	10.6	17.4		
	WB Exit 85 On-Ramp	В	С	15.6	21.3		
	Diverge Area						
	EB Exit 85 Off-Ramp	С	С	20.9	25.1		
Eastbound	EB Exit 91 Off-Ramp	В	В	17.8	19.5		
	EB Exit 97 Off-Ramp	D	D	29.7	30.7		
	WB Exit 97 Off-Ramp	С	F	21.5	44.2		
	WB Exit 91 Off-Ramp – Alt 1	В	D	17.7	28.3		
Westbound	WB Exit 91 Off- Ramp – Alt 2	В	А	10.6	6.7		
	WB Exit 91 Off Loop Ramp – Alt 2	В	С	16.1	25.8		
	WB Exit 85 Off-Ramp	В	С	15.0	22.5		

Table 14: Build 2040 Freeway	v / Merae	/ Diverae	LOS and Density
	<i>, ,</i>	/ Divoigo	

Figure 15 and 16 shows the LOS for the 2040 Build Conditions for Alternative 1 and 2.

4.0 VISSIM ANALYSIS

Simulation modeling is a very useful tool for designing improvements to the roadway system. It enables engineers and planners to predict and compare the outcomes of both No-Build and Build alternatives. For this project VISSIM 7.0 software was selected for the traffic operational analysis due to its powerful multi-model modeling capabilities. VISSIM is stochastic traffic simulation software that uses the psycho-physical driver behavior model developed by R. Wiedemann. It combines a perceptual model of the driver with a vehicle model. Every driver with his or her specific behavior characteristics is assigned to a specific vehicle. As a result, the driver behavior corresponds to the technical capabilities of his vehicle. In addition, the optional 3D visualization capability makes it easier to visualize the traffic flow patterns in the corridor. As a result the analyst can see the issues in the model and propose the appropriate solution

4.1 MODEL DEVELOPMENT

The following subsections summarize the data collection, field observations, traffic assignment, and other relevant inputs that were required for the development of the VISSIM models. First, the existing condition models were developed and calibrated, which then served as the base for the development of the future year No-Build and Build model networks.

4.1.1 Geometric Data

To assist in coding of the model network, aerial photography was obtained using VISSIM 7's built-in Bing Maps aerial feature. In addition, Google Maps was also used to for the geometrical information of the study corridor. Lane configurations were initially taken from the aerial pictures and confirmed with the field observations.

Grades (gradient) are an important element of the microsimulation models as they directly impact the vehicle acceleration and deceleration parameters. It is particularly very important for a heavy truck's acceleration and deceleration travelling at the higher speed. The field observations data suggested that grades are very slight in the study area. The study team utilized United States Geological Survey (USGS)¹ data to obtain grades for the model segments.

4.1.2 Traffic Control Data

4.1.2.1 Signal Controllers

VISSIM can model signalized intersections using either the built-in fixed-time control or various other external signal control logic formats. Among the available external logic formats is the Ring Barrier Controller (RBC), which was used in this model at the signalized intersection. The settings on this controller type are saved to an external data file with the extension *.rbc.

¹ <u>http://viewer.nationalmap.gov/basic/</u>

I-26 at S-48 - Project No. P042383 - SCDOT

It should be noted that in the 2014, 2020 No-Build and 2040 No-Build scenarios the signals were coded as RBC – Actuated Uncoordinated.

For the 2020 and 2040 Build AM and PM scenarios, the signals on S-48 (Columbia Avenue) interchange (DDI) were coded as RBC- Actuated Coordinated. In addition, the signal at I-26 WB On & Off Ramps and US-176 are coded as Actuated Uncoordinated.

4.1.2.2 Signal Timings

Traffic signal timing plans for the two signalized intersections; I-26 westbound On-Off Ramps & Columbia Avenue intersection and I-26 WB On-Off Ramps & Columbia Avenue intersection were obtained from the South Carolina Department of Transportation. However, the plans only had minimum, maximum, yellow, red times and phase information. Based on this, 2014 AM and PM peak hour Synchro models were developed and optimized to calculate the splits and cycle lengths. Split and cycle length information was entered into the VISSIM models.

Similarly, 2020 and 2040 AM and PM peak hour No-Build and Build synchro models were developed to obtain the signal timing information, which was then used in the VISSIM models.

4.1.2.3 Stop Signs

Stop controlled intersections are modeled in VISSIM using a combination of stop signs and priority rules. The stop sign and stop line of the priority rule define the location at which vehicles must stop. The amount of time a vehicle is stopped is determined by the time distribution assigned to the respective vehicle class. In the absence of time distributions, a vehicle will stop for one time step. Priority rules are implemented to establish the minimum gap time and headway at which the stopped vehicle may proceed into the receiving traffic stream. Stop and yield signs were coded based on the aerial data.

4.1.3 Speed Data

The posted speed limits data on the roadways were collected from Google Maps' street view function. For the existing year model calibration, the average speed data for section along the interstate corridor was collected from INRIX. This data was used to develop the desired speed distribution for the I-26 segments. The desired speed distribution for the turning vehicles at an intersection was assumed to be 17 MPH and 14 MPH for cars and heavy vehicles respectively with a 1.5 MPH of standard deviation.

SD No	Speed Limit (MPH)	Min	Max	15%	85%
3	15	10	20		
5	25	20	30		
7	35	30	40		
8	40	35	45		
9	45	40	50		
10	50	45	55		
15	65	40	75	60	70
18	65	60	85	70	78.8

Table 15: Speed Distribution

Desired Speed Decision points are used for permanent speed changes within the network and are coded at locations where the speed change would typically occur (location of speed signs).

A new series of desired speed distributions are assigned to each vehicle class at the Desired Speed Decision point. Therefore, as a vehicle passes over a decision point, its speed is adjusted according to the new distribution.

Reduced Speed Areas were used to model short sections with reduced speeds (curves or turns). Similar to the Desired Speed Decision points, a new set of desired speed distributions (in this case 'reduced' speeds) are assigned to each vehicle class to account for slower speeds within the reduced speed area. However, unlike the Desired Speed Decision Point, when encountering a Reduced Speed Area, each vehicle begins to decelerate in advance to reach the lower desired speed as it enters the defined area. After leaving the reduced speed area, the vehicle returns to its actual desired speed.

The Reduced Speed Areas coded in the model correspond to turns (left and right) and locations that because of their geometry will impose a mandatory reduction on the speed of vehicles, independently of their originally desired speed.

4.1.4 Traffic Input

VISSIM supports two different forms of vehicle assignments; Dynamic and Static. In dynamic assignment, the vehicle travels from its origin to designation based on the best available route. Parking lots are used as the origin and destination points and generally there are multiple routes between each origin and destination.

Static assignment assumes that the vehicle will follow an assigned path or route from its origin to destination irrespective of the friction or cost. Route is a sequence of links and connectors from a routing decision point to the destination(s).

The study corridor does not have multiple routes option i.e. for a vehicle there is only one route available to travel between any origin and destination. Hence, it was determined that the static assignment would be the most suitable to replicate the existing conditions. Each vehicle input source on I-26 and cross-streets had its routing decision point. Route stretched to each on and off-ramp followed by another routing decision (origin) to eventually take the vehicles through interchange to reach its destination. No vehicles are taken out or added to the network automatically; therefore, it is important that balanced volume flows are entered.

4.1.4.1 Traffic Composition

The default vehicle types available in VISSIM are Car, HGV (truck), Bus, Tram (transit), Bike, and Pedestrian. These can be used to define traffic composition for a microsimulation model. For the purpose of this study, only two default vehicle types; Car and HGV (truck) were utilized. Traffic compositions are the proportions of each vehicle type present in each of the vehicle input sources. Vehicle Inputs are time variable traffic volumes entered at the source node. For the modeling purpose, I-26 (East and West ends of the model) and the cross-streets were defined as source nodes.

4.1.4.2 Exiting Condition Volumes

The 2014 Existing Condition AM and PM peak hour turning movement volumes were developed from the (2014) collected counts. Most of the collected approach and receiving volumes were balanced. However, at some locations where the approach and receiving volumes were off, minor adjustments were done to get the balanced volumes. No vehicles were taken out or added to the network automatically; therefore, it was important that balanced volume flows were entered.

4.1.4.3 2020 and 2040 No-Build and Build Volumes

It was assumed that in 2020 or 2040 the traffic pattern i.e. origin and destination would remain unchanged between the No-Build and Build scenarios. Hence, the No-Build and Build condition traffic volumes were kept consistent.

4.1.5 Driving behavior Parameters

During the simulation, the driver behavior parameters are used to guide the vehicles through the model network. VISSIM uses five driving behavior models, out of which only two; Urban (Motorized) and Freeway (Free Lane Selection) were used for the development of the base year model network. The Urban (Motorized) parameter was used to model surface streets within the network. The Freeway (Free Lane Selection) parameter was used to model the freeway facilities within the project network.

4.1.5.1 Data Limitations

There were a few limitations associated with the collected data. Limitations and relevant logical solution are listed below:

- Traffic Signal Data:
 - Signal plans were obtained from the SCDOT, however, the signal timing, splits and offsets were not available.
 - VISSIM (RBC controller) requires various signal parameter inputs. Using the information provided in the signal plan, Synchro models were developed to develop and optimized to generate the splits and timings.
 - Using the base year Synchro model, 2020 and 2040 No-Build Synchro models and signal timing data were developed.
- Grade/Elevation Data:
 - Grade or Elevation is an important component of microsimulation as it can have a significant impact on the acceleration and deceleration parameter of a vehicle, especially on the heavy trucks. As mentioned in the Section 4.2 elevation data was obtained from the United States Geological Survey (USGS) and grades were calculated using the best engineering judgement. Grades were then applied to the model segments.
- Traffic Volumes:
 - At some locations, including on I-26 mainline, traffic counts were not available such as west of Exit 91. The only 24-hour traffic count on I-26 that was conducted just east of Exit 91.
 - Using the engineering judgement, logical existing and future traffic volumes were back calculated and balanced.

4.2 BASE YEAR MODEL CALIBRATION AND VISUAL VALIDATION

In order to achieve logical microsimulation results, it is imperative to calibrate and validate the model using observed field data. It should be noted that there are no universally accepted or definitive methods for performing model calibration and validation. The responsibility lies with the modeler to adopt and implement a suitable procedure depending upon the scope and budget of the project that will provide an acceptable level of confidence in the model results. Once the calibration targets are achieved, the same parameters can then be applied to the future year models.

4.2.1 Calibration Criteria

To ensure satisfactory calibration of the model, standards were used to establish targets regarding traffic flows and travel times. The targets of this calibration effort were set at the values included in Traffic Analysis Toolbox Volume III –Guidelines for Applying Traffic Microsimulation Modeling Software² published by the Federal Highway Administration (FHWA) shown below:

Criteria and Measures	Calibration Acceptance Targets
Hourly Flows, Model Versus Observed	
Individual Link Flows	
Within 15%, for 700 veh/h < Flow < 2700 veh/h	> 85% of cases
Within 100 veh/h, for Flow < 700 veh/h	> 85% of cases
Within 400 veh/h, for Flow > 2700 veh/h	> 85% of cases
Sum of All Link Flows	Within 5% of sum of all link counts
GEH Statistic < 5 for Individual Link Flows*	> 85% of cases
GEH Statistic for Sum of All Link Flows	GEH < 4 for sum of all link counts
Travel Times, Model Versus Observed	
Journey Times, Network	
Within 15% (or 1 min, if higher)	> 85% of cases
Visual Audits	
Individual Link Speeds	
Visually Acceptable Speed-Flow Relationship	To analyst's satisfaction
Bottlenecks	
Visually Acceptable Queuing	To analyst's satisfaction

GEH measure is a formula used in traffic modeling to compare two sets of traffic volumes (Observed and Modeled). Its mathematical formulation is similar to the Chi-Squared test, but it is not a true statistical test but rather an empirical formula. The formulation for the GEH Statistic is as follows:

$$GEH = \sqrt{\frac{2 * (M - O)^2}{(M + O)}}$$

Where M represents model estimate volume and O represents field counts.

² <u>http://ops.fhwa.dot.gov/trafficanalysistools/tat_vol3/vol3_guidelines.pdf</u>, page64

I-26 at S-48 - Project No. P042383 - SCDOT

This statistic is typically used to offset the discrepancies that occur when using only simple percentages, as traffic volumes vary over a wide range. In other words, if using only percentages, small absolute discrepancies have no impact on large volumes but a large percent impact in smaller numbers, and vice versa. It has been shown that for traffic volumes smaller than 10,000 a five percent variation yields smaller numbers than a GEH of five. Beyond 10,000, five percent differences keep growing linearly whereas GEH=5 follows a decaying curve.

Based on the scope and purpose of this study it was determined that base year model calibration will be based on the link flows, travel time and speed criteria. For the link volume calibration, 2014 traffic counts and turning movements were used to compare with the model link volumes.

For the link speed comparison, it was recommended to use the INRIX speed data against the model link speeds. In the study area, INRIX only provided speeds on the I-26 links, therefore only I-26 model link speeds were used for the calibration and validation purposes. Data collection points were placed on I-26 corridor in areas upstream and downstream of merge and diverge at the locations of the INRIX speed data collection.

4.2.2 Simulation Setting and Random Seed Variation

The AM peak hour model was set run from 7:00-8:30 AM with 30 minutes of seeding time. Hence, the actual analysis period was 7:30-8:30AM. Similarly, the PM peak hour model was set to run from 4:15 - 5:45PM with 30 minutes of seeding time. The actual PM analysis period was from 4:45 - 5:45PM. The model was ran ten times starting with a random seed at five with five seed increments. Simulation parameter settings are pictorially shown on the following page.

4.2.3 Visual Validation

Visual validation of the models is an imperative step in the development and calibration of the model. It is essential for the modeler to perform a thorough visual validation to eliminate any coding errors and achieving logical results.

After coding, the models were ran and visually inspected multiple times. The errors pertaining to the lane change decision, yield, conflict area, etc. were then addressed to achieve realistic vehicle movements. The validation process was performed for all the existing, no-build and build models.

eriod:	5400	Simulation sec	onds
tart Time;	07:00:00	[hh:mm:ss]	
tart Date:		[DD.MM.YYYY	1
imulation resolution:	10	Time step(s) /	Sim. sec
andom Seed:	5		
lumber of runs:		1	0
andom seed increme	nt:	2	5
ynamic assignment v	olume increment:	0.0	0 %
mulation speed:	@ 1000.0	Sim. sec. / s	
	maximu	m	
	Retrospe	ctive synchroni	zation
		Simulation sec	onds
reak at:	0	Simple of Sec	

Simulation Settings – AM

Simulation Settings – PM

Simulation Parameters			
Comment:			
Period:	5400	Simulation seco	nds
Start Time:	04:15:00	[hh:mm:ss]	
Start Date:	_	[DD.MM.YYYY]	
Simulation resolution:	10	Time step(s) / Si	m. sec.
Random Seed:	5		
Number of runs:		10	1
Random seed increment:		5	
Dynamic assignment volu	me increment:	0.00	%
Simulation speed:	1000.0	Sim. sec. / s	
	e maximu	im	
	Retrospe	ective synchroniza	ation
Break at:	0	Simulation seco	nds
Number of cores:	use all core	s	
	0	ĸ	Cancel

4.2.4 Calibration Results

2014 Existing Condition AM and PM peak hour models were run with the VISSIM's default simulation parameters settings. It was observed that with the default simulation parameters the models' link volumes were within the desired ranges for the calibration. However, the model link speeds were less than the observed INRIX speeds on the I-26 links. Hence, some minor adjustments to the desired speed distribution and speed curve were performed to account for the higher speeds observed in the INRIX data.

4.2.4.1 Link Volumes and Speed

A model is assumed to be reasonably calibrated, if:

- Link flows satisfy modeled versus observed flow thresholds for 85% of the individual links.
- Sum of all link flows is within 5% of sum of all link counts.
- 85% of the network link flows have a GEH less than 5.
- Model link speeds fall within ±2.5MPH of INRIX Speeds.

 Table 16 and 17 shows overall calibration results under AM and PM peak hours.

Calibration Summary						
Speed Data						
MOE Criteria	Target	Actual	Calibrated			
Within Acceptable Range (±5 MPH of INRIX Speed)	90%	100.0%	Calibrated			
Within Desirable Range(±2.5 MPH of INRIX Speed)	75%	100.0%	Calibrated			
Flow	(Count) Data					
MOE Criteria	Target	Actual	Calibrated			
Individual Link Flow	85%	99.1%	Calibrated			
Sum of All Link Flows	5%	1.4%	Calibrated			
GEH Individual Link	85%	98.0%	Calibrated			
GEH - All Links	5.00	2.40	Calibrated			

Table 16: 2014 AM Peak Hour Calibration Results

Calibration Summary Speed Data						
MOE Criteria	Target	Actual	Calibrated			
Within Acceptable Range (±5 MPH of INRIX Speed)	90%	100.0%	Calibrated			
Within Desirable Range(±2.5 MPH of INRIX Speed)	75%	100.0%	Calibrated			
Flow	(Count) Data					
MOE Criteria	Target	Actual	Calibrated			
Individual Link Flow	85%	100.0%	Calibrated			
Sum of All Link Flows	5%	1.2%	Calibrated			
GEH Individual Link	85%	100.0%	Calibrated			
GEH - All Links	5.00	2.26	Calibrated			

Table 17: 2014 PM Peak Hour Calibration Results

4.2.4.2 Travel Time

A model is reasonably calibrated when the modeled travel times are within 15% (or one minute if higher) of the average field collected travel time for 85% of the cases. **Table 18** shows the AM and PM peak hour travel time calibration results.

Table 18: Travel Time Calibration Results

Time	Percentage	Calibrated
7:30 AM - 8:30 AM	100%	Calibrated
4:45 PM - 5:45 PM	100%	Calibrated

Percentage of Travel Times within 15% (or one minute)

4.3 MEASURES OF EFFECTIVENESS

4.3.1 95th Percentile (Worst Case) Methodology

For the AM and PM peak hourly analysis, *95 percent Worst Case Result method*³ as described in the FHWA Tool Box was utilized for the worst case (density) determination. The equation below shows the 95th percentile density equation:

95 percent Worst Result = M +1.64 * S Where,

M = Mean observed result (weighted density) in the model runs;

S = Standard deviation of the result (weighted density) in the model runs

Weighted delay results from the 10 batch runs were compiled by each intersection. Further, average and standard deviation in the model runs were calculated. The resultant weighted delay was calculated utilizing the 95 percent worst case result method. Error! Reference source not found. **Table 19** below shows the 95th percentile delay calculation method.

Time	Calibrated
Model Runs	Intersection Average Delay
Run 1	D1
Run 2	D2
Run 3	D3
Run 10	D16
Average Wt. Delay (D _a)	D _a = (D1+D2+D3++D10) / 10
St. Deviation (S _d)	S _d = Stand. Dev (D1, D2, D3,,D10)

Table 19: 95th Percentile Calculation Method

³ <u>http://ops.fhwa.dot.gov/trafficanalysistools/tat_vol3/Vol3_Guidelines.pdf</u> page 77

4.3.2 Delay Reporting for Stop and Signal Controlled Intersections

Stop Controlled Intersection

Most of the stop controlled intersections in the study corridor are "1-Way Stop". Because the main approach is generally a free-flow with heavy traffic movement, the stop controlled movement is weighted out. As a result, even though the stop controlled approach operated at LOS E or F but overall the intersection reported as operating at LOS D or better. It was determined that for stop controlled intersections, worst approach delay should be reported.

Signalized (or Signal Controlled Intersection)

For the signal controlled intersections, the 95th percentile of the overall (weighted) delays were calculated.

MOEs for the all the No-Build and Build models are compiled in the following subsections.

4.3.3 2014 Existing Condition AM and PM Peak Hour MOEs

After the existing conditions VISSIM model was calibrated, the measures of effectiveness (MOEs) for existing conditions were obtained for the AM and PM peak hours.

Table 20 shows the intersection delay and Level of Service for the both the peak periods.

	2014 Existing Condition					
Intersection	Exit #	Interception	АМ		РМ	
		Intersection Traffic Controller	Avg. Delay (Sec. / Veh.)	LOS*	Avg. Delay (Sec. / Veh.)	LOS*
S-48 and I-26 WB Ramps	91	Signalized	14.1	В	19.5	В
S-48 and I-26 EB Ramps		Stop	14.5	В	19.7	С
*Delay and LOS for the stop controlled intersection is the worst case approach delay and LOS observed. It is not the overall delay and LOS for the stop controlled intersection.						

Table 20: 2014 Existing AM / PM Peak Hour Delay and LOS (VISSIM)

4.3.4 2020 No-Build AM and PM Peak Hour MOEs

Table 21 shows the intersection delay and level of service for the AM and PM peak hours under2020 No-Build scenario.

	2020 No-Build Condition					
	Intersection	AM	l	РМ		
Exit #	Traffic Controller	Avg. Delay (Sec. / Veh.)	LOS*	Avg. Delay (Sec. / Veh.)	LOS*	
01	Signalized	51.6	D	81.0	F	
91	Stop	>300.0	F	>300.0	F	
	91	Exit # Intersection Traffic Controller 91 Signalized Stop	Exit #Intersection Traffic ControllerAMAvg. Delay (Sec. / Veh.)91Signalized Stop91Stop	Exit # Intersection Traffic Controller Awg. Delay (Sec. / Veh.) LOS* 91 Signalized 51.6 D Stop >300.0 F	Exit # Intersection Traffic Controller AWg. Delay (Sec. / Veh.) Avg. Delay (Sec. / Veh.) 91 Signalized 51.6 D 81.0	

Table 21: 2020 No-Build AM / PM Peak Hour Delay and LOS (VISSIM)

4.3.5 2020 Build (DDI) AM and PM Peak Hour MOEs

In addition to the DDI project, the following changes were included in the 2020 Build scenario:

- A New Frontage was included to carry the traffic of the proposed future developments. It
 was connected to the Columbia Avenue around Shell Gas Station, south of the I-26 EB
 Ramps intersection. It coded and analyzed as a signalized intersection.
- Ellet Road was removed in the built scenario. In the build scenario, Ellet Road traffic redistributed and added to the New Frontage Road traffic.
- Crooked Creek Road was realigned to connect to the New Frontage Road intersection with Columbia Avenue. In the build scenario, it will not have direct access to the I-26 EB on ramp. Crooked Creek Road traffic was redistributed and added to the Frontage Road traffic.

Table 22 shows the intersection delay and level of service for the AM and PM peak hours under 2020 Build scenario. The build scenario would be a Diverging Diamond Interchange (DDI) at I-26 and Columbia Avenue interchange.

	2020 Build Condition					
Intersection		Intersection	AM		РМ	
	Exit #	Traffic Controller	Avg. Delay (Sec. / Veh.)	LOS*	Avg. Delay (Sec. / Veh.)	LOS*
S-48 and I-26 WB Ramps	91	Signalized	15.5	В	16.3	В
S-48 and I-26 EB Ramps		Signalized	12.0	В	12.6	В
*Delay and LOS for the stop controlled inte delay and LOS for the stop controlled inte		the worst case ap	oproach delay a	nd LOS obse	erved. It is not t	he overall

Table 22: 2020 Build (DDI) AM / PM Peak Hour Delay and LOS (VISSIM)

4.3.6 2040 No-Build AM and PM Peak Hour MOEs

Table 23 shows the intersection delay and level of service for the 2040 No-Build AM and PM peak hour scenario.

	2040 No-Build Condition					
Intersection		Interception	AN	1	РМ	
	Exit #	Intersection Traffic Controller	Avg. Delay (Sec. / Veh.)	LOS*	Avg. Delay (Sec. / Veh.)	LOS*
S-48 and I-26 WB Ramps	91	Signalized	74.2	E	90.9	F
S-48 and I-26 EB Ramps		Stop	>300.0	F	>300.0	F
*Delay and LOS for the stop controlled intersection is the worst case approach delay and LOS observed. It is not the overall delay and LOS for the stop controlled intersection.						

Table 23: 2040 No-Build AM / PM Peak Hour Delay and LOS (VISSIM)

4.3.7 2040 Build (DDI) AM and PM Peak Hour MOEs

In 2040 Build scenario, in addition to the DDI project, the following changes were included in the 2040 Build scenario:

- A New Frontage was included to carry the traffic of the proposed future developments. It
 was connected to the Columbia Avenue around Shell Gas Station, south of the I-26 EB
 Ramps intersection. It coded and analyzed as a signalized intersection.
- Ellet Road was removed in the built scenario. In the build scenario, Ellet Road traffic redistributed and added to the New Frontage Road traffic.
- Crooked Creek Road was realigned to connect to the New Frontage Road intersection with Columbia Avenue. In the build scenario, it will not have direct access to the I-26 EB on ramp. Crooked Creek Road traffic was redistributed and added to the Frontage Road traffic.

Table 24 shows the intersection delay and level of service for the 2040 Build AM and PM peak hour scenario.

	2040 Build Condition						
Intersection	Exit #	Intersection	АМ		PI	PM	
		Traffic Controller	Avg. Delay (Sec. / Veh.)	LOS*	Avg. Delay (Sec. / Veh.)	LOS*	
S-48 and I-26 WB Ramps	91	Signalized	17.8	В	15.7	В	
S-48 and I-26 EB Ramps		Signalized	24.5	С	27.5	С	
*Delay and LOS for the stop controlled intersection is the worst case approach delay and LOS observed. It is not the overall delay and LOS for the stop controlled intersection.							

Table 24: 2040 Build (DDI) AM / PM Peak Hour Delay and LOS (VISSIM)

5.0 SUMMARY OF FINDINGS

The following is a summary of the results for the analysis of the project to provide interchange improvements at Exit 91 - S-48 (Columbia Avenue). As shown in this analysis, under the No-Build conditions, by 2020 the level of service begins to fail (LOS E/F) at the I-26 ramps. In the 2040 No-Build scenario, all intersections of concern at Exit 91 are at failing level of service conditions.

- 1. I-26 Eastbound Ramps at S-48
- 2. I-26 Westbound Ramps at S-48

The scenario in which the diverging diamond interchange alternative is constructed, the 2020 and 2040 Build conditions show an acceptable level of service (C or higher) at all intersections.

The HCS analysis of the freeway, merge, and diverge segments reach similar conclusions regarding acceptable levels of service. The freeway segments directly adjacent to Exit 91 in the Existing, No-Build, and Build scenarios operate at level of service D or better. Merge and diverge analysis at Exit 91 also indicates a level of service of D or better in the existing and 2020/2040 No-Build and Build years.

It should be noted that at Exit 97, to the East of Exit 91, intersections reach a failing level of service by 2020. Freeway segments reach failing conditions in 2040.

5.1 FINDINGS

2014 Existing Condition

The 2014 analysis results show that most of the intersections in the study area operate at LOS C or better.

2020 No-Build Condition

In the 2020 No-Build AM and PM scenarios, only a few stop controlled approaches operate at LOS D or better. The signalized intersections and stop controlled approaches listed below operate at a LOS E or worse.

- I-26 EB Ramps & S-48 Intersection ; Stop Controlled Approach
- I-26 WB Ramps & S-48 Intersection; Signalized Intersection

2020 Build (DDI) Condition

In the 2020 Build (DDI) AM and PM scenarios, both the intersections on S-48 (Columbia Avenue) operate well at LOS B. The signalized intersections listed below operate at a LOS E or worse:

I-26 WB Off-Ramp & US-176; Signalized Intersection

2040 No-Build Condition

Under the 2040 No-Build condition the signalized intersections and stop controlled approaches listed below operate at a LOS E or worse:

- I-26 EB Ramps & S-48 Intersection ; Stop Controlled Approach
- I-26 WB Ramps & S-48 Intersection; Signalized Intersection

2040 Build (DDI) Condition

All the signalized intersections on S-48 (Columbia Avenue) operate at LOS C or better.

5.2 CONCLUSION AND RECOMMENDATION

The traffic analysis presented in this report suggests that the proposed diverging diamond alternative at S-48 (Columbia Avenue) interchange will operate acceptably in both the 2020 and 2040 build scenarios and does not adversely impact the adjacent interchanges.

6.0 FEDERAL HIGHWAY ADMINISTRATION (FHWA) POLICY

It is in the national interest to maintain the Interstate System to provide the highest level of service on terms of safety and mobility. Adequate control of access is critical to providing such service. Therefore FHWA has developed policy points that must be addressed prior to granting a new or modified access point to the interstate system. The policy points were originally detailed in the Federal Register on October 22, 1990 955 FR 42670), and updated in the Federal Register: February 11, 1998 (Volume 63, Number 28). On August 27, 2009 FHWA published a new policy in the Federal Register (Volume 74, Number 165. The following section details how the proposed action meets the requirements for the new or revised access points to the existing Interstate System.

It should be noted that this Interchange Modification Report for Exit 91 does not include a Signing Plan. A Signing Plan for Exit 91 can be referenced in the Exit 85 and Exit 97 Interchange Modification Reports.

Policy Point #1: The need being addressed by the request cannot be adequately satisfied by existing interchanges to the Interstate, and/or local roads and streets in the corridor can neither provide the desired access, nor can they be reasonably improved (such as access control along surface streets, improving traffic control, modifying ramp terminals and intersections, adding turn bays or lengthening storage) to satisfactorily accommodate the design-year traffic demands (23 CFR 625.2(a)).

Interstate 26 is an east / west main route of the interstate highway system in the southeastern United States. It spans from US 17 in Charleston, South Carolina to US 23 in Kingsport, Tennessee. I-26 is a 4-lane divided highway with a posted speed limit of 70 mile per hour. S-48 (Columbia Avenue) is a two lane minor arterial that connects downtown Chapin with I-26 at Exit 91. The existing Exit 91 interchange is a diamond interchange approximately 20 miles from Columbia, South Carolina. The eastbound off ramp is under stop control while westbound off ramp is signalized. No turn lanes are present to / from I-26. Access management concerns include Ellett Road which is less than 100 feet south of the I-26 eastbound off ramp and Crooked Creek Road which intersects with I-26 eastbound on ramp.

Access management along S-48 is also expected to improve with the proposed DDI. There are plans to consolidate closely spaced driveways adjacent to the interchange termini ramps to one frontage road intersecting S-48 over 1000 feet south of the interchange under signal control.

The purpose of the interchange modification is to improve the operational efficiency and safety of the existing interchange configuration and to accommodate projected traffic volumes. Based on 2020 and 2040 projection traffic volumes, both interstate off-ramps are expected to operate at LOS F with the current interchange configuration. Safety concerns include I-26 westbound off ramp queuing onto I-26 and unsignalized traffic control for the I-26 eastbound off ramp.

Policy Point #2: The need being addressed by the request cannot be adequately satisfied by reasonable transportation system management (such as ramp metering, mass transit, and HOV facilities), geometric design, and alternative improvements to the Interstate without the proposed change(s) in access (23 CFR 625.2(a)).

The diverging diamond interchange and partial cloverleaf alternatives were analyzed as part of this report. Results from the analysis indicates both alternatives are expected to provide a LOS

C or better for the 2040 projected design volumes. The preferred alternative was the diverging diamond interchange due its right-of-way costs and location of the planned development north of the interchange. Ramp metering, mass transit, and HOV facilities are not warranted based on existing or design year volumes and are not expected to improve operations for this suburban interchange.

Policy Point #3: An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis shall, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (23 CFR 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, shall be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)).

Requests for a proposed change in access must include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request must also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).

An operational analysis was performed for Existing 2014, Opening 2020, and Design 2040 years along I-26 between Exit 85 (SC 202) and Exit 97 (US 176). All mainline segments, merge and diverge ramp junctions as well as surface street intersection were studied. Synchro 9.1 was used for the intersections, HCS 2010 for the mainline segments and merge / diverge areas, and VISSIM 7.0 to model everything together.

The Existing 2014 traffic analysis indicates as shown in Figure 10 that majority of the study is operating at LOS C or better with following exceptions:

- US 176 at I-26 westbound off ramp (Exit 97)
- I-26 freeway segment east of Exit 97

The No-Build 2020 and 2040 traffic analysis indicates, as shown in Figure 11 and 12, that basically everything east of Exit 91 (S-48) is not operating at an acceptable LOS C. Please note the intersections on Exit 91 (S-48) are expected to operate at LOS F while the I-26 westbound segment prior to Exit 91 and off-ramp are projected to operate at LOS D.

The Build 2020 and 2040 traffic analysis indicates, as shown in Figure 13 and 15, that overall operations at the interchange of I-26 at S-48 (Columbia Avenue) would be improved when comparing to the No-Build scenario. East of Exit 91 (S-48) would continue to operate at LOS D until Exit 97 where the LOS worsens to F due to capacity on the mainline. Operation at the intersections on the surface streets at Exit 97 would not be impacted with the proposed interchange modification due to the 6-mile distance to the study interchange and would continue to operate the same as in the No-Build scenario.

Policy Point #4: The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)).

The proposed interchange modification for this project would provide all relevant traffic movements at the I-26 and S-48 interchange. The proposed interchange design concept will meet or exceed all applicable SCDOT, AASHTO, and FHWA design standards.

It should be noted that the proposed design plans to remove the existing Crooked Creek Road access with the I-26 eastbound on ramp and realign it with S-48 (Columbia Avenue) to the south. In addition, the closely spaced Ellett Road just south of the I-26 eastbound off ramp is expected to be realigned with this new Crooked Creek Road.

Policy Point #5: The proposal considers and is consistent with local and regional land use and transportation plans. Prior to receiving final approval, all requests for new or revised access must be included in an adopted Metropolitan Transportation Plan, in the adopted Statewide or Metropolitan Transportation Improvement Program (STIP or TIP), and the Congestion Management Process within transportation management areas, as appropriate, and as specified in 23 CFR part 450, and the transportation conformity requirements of 40 CFR parts 51 and 93.

The proposed project is consistent with the COATS 2035 Long Range Transportation Plan, and lists the S-48 (Columbia Avenue) project as a Prioritized Road Widening Project. The project is also included as a system upgrade in SCDOT's Statewide Transportation Improvement Program (STIP) for Lexington County. The STIP covers all federally funded transportation improvements for which funding has been approved and that are expected to be undertaken in the six-year period the STIP covers. The fiscally-constrained STIP includes approximately \$13,000,000 for preliminary design services, right-of-way acquisition, and project construction through 2019. Full funding is reasonably anticipated to be available for its completion.

Policy Point #6: In corridors where the potential exists for future multiple interchange additions, a comprehensive corridor or network study must accompany all requests for new or revised access with recommendations that address all of the proposed and desired access changes within the context of a longer-range system or network plan (23 U.S.C. 109(d), 23 CFR 625.2(a), 655.603(d), and 771.111).

There are currently no planned or programmed additional interchanges within the study area for the project or the expanded study area for analysis of the adjacent interchanges in the SCDOT STIP or the Central Midland Council of Governments (CMCOG) Long Range Plan.

In the event that a project to construct an interchange is initiated in the future it will also be subject to the FHWA policy for additional access to the Interstate System, and an Interchange Justification Report will be required.

<u>Policy Point #7:</u> When a new or revised access point is due to a new, expanded, or substantial change in current or planned future development or land use, requests must demonstrate

appropriate coordination has occurred between the development and any proposed transportation system improvements (23 CFR 625.2(a) and 655.603(d)). The request must describe the commitments agreed upon to assure adequate collection and dispersion of the traffic resulting from the development with the adjoining local street network and Interstate access point (23 CFR 625.2(a) and 655.603(d)).

The current report incorporates planned traffic volumes from two major developments in the area. The Chapin Technology Park (approved) and Chapin Commerce Village (planned). Chapin Technology Park is located south of the interchange along S-48 (Columbia Avenue) and Chapin Commerce Village (planned), located north of the interchange. Both development are planned generate a significant number of vehicles and were accounted for with the proposed design of diverging diamond interchange alternative. There have been a series of public meetings that have taken place.

Policy Point #8: The proposal can be expected to be included as an alternative in the required environmental evaluation, review and processing. The proposal should include supporting information and current status of the environmental processing (23 CFR 771.111).

The proposed alternative is expected to have minimal impact on natural environment such was water quality, floodplains, farmland, and cultural resources as a result retrofitting the existing diamond to a diverging diamond interchange.

A draft Environmental Assessment (EA) is currently being prepared for SCDOT and submitted to FHWA. Effects on human and natural environment was assessed.

Approval of this IMR can only be given by FHWA with the completion of a successful NEPA document.

APPENDIX A

S-48 TRAFFIC PROJECTIONS MEMO

AECOM 10 Patewood Drive, Building VI, Suite 500 Greenville, SC 29615 T 864-234-3000; www.aecom.com

Memorandum

To:	Mrs. Gaye Sprague, PE
	Sprague & Sprague Consulting Engineers
From:	Ryan Eckenrode, P.E., PTOE, Traffic Engineer, AECOM
Date:	June 14, 2016
Reference:	S-48 (Columbia Avenue) Corridor Improvement Project – Traffic Projections

As directed by Mead & Hunt / Lexington County and SCDOT, AECOM developed a traffic forecast for Opening Year (2020) and Design Year (2040) for the S-48 (Columbia Avenue) Corridor Improvement Project. AECOM originally recommended a 1.64% linear growth rate; however, SCDOT approved a 1.25% linear growth rate at the following intersections on July 24, 2014:

- 1. Columbia Avenue and I-26 Eastbound Ramps
- 2. Columbia Avenue and I-26 Westbound Ramps
- 3. I-26 Eastbound ramp and Crooked Creek Road
- 4. Ellet Road and Columbia Avenue
- 5. Columbia Avenue and Eagle Chase Court
- 6. Columbia Avenue and Woodthrush Road
- 7. Columbia Avenue and Ellet Road/Chapin High School (1)
- 8. Columbia Avenue and Chapin High School (2)
- 9. Columbia Avenue and Ellet Road/Chapin High School (3)
- 10. Columbia Avenue and East Boundary Street
- 11. Columbia Avenue and Clark Street/Peak Street
- 12. Lexington Street and Columbia Avenue
- 13. Lexington Street and Beaufort Street
- 14. Lexington Street and Chapin Road
- 15. Lexington Street and Water Street
- 16. Lexington Street and Clark Street
- 17. Amicks Ferry Road and Columbia Avenue
- 18. Amicks Ferry Road and Chapin Road
- 19. Amicks Ferry Road and Zion Church Road
- 20. Amicks Ferry Road and Broomstraw Road
- 21. Amicks Ferry Road and Virginia Street

AECOM used the 2014 existing traffic volumes and grew them at a linear rate of 1.25% to obtain the base Opening Year (2020) and Design Year (2040) traffic projections. After these projections were complete, a traffic study for the Chapin Technology Park and Chapin Commerce Village Development became available. These two developments are significant in size and impact the S-48 corridor. At the direction of Prime Consultant Mead & Hunt, Lexington County and SCDOT, AECOM added additional traffic volumes to the base volumes previously presented to be conservative and to better estimate the turning movement volumes to / from Columbia Avenue. The following describes the methods AECOM used to add the additional volumes:

- Chapin Technology Park (120 acre industrial park, 450 single family houses, and 350,000 SF of commercial). Based on the final traffic study submitted and approved by SCDOT on October 13, 2015 for the Chapin Technology Park, the opening year is 2019. AECOM added these new trips to the Opening Year (2020). The Chapin Technology Park is not expected to be complete until 2024 as these trips at full build-out were added to the Design Year (2040). The Technology Park is located north of Columbia Avenue near Woodthrush Road.
- Chapin Commerce Village (132,000 SF Specialty Retail, 8,350 SF Quality Restaurant, 8,350 SF General Office, 4,500 SF Fast Food Restaurant with Drive-Through, 8,350 High Turn-Over (Sit-Down) Restaurant, 4,050 SF Fast Food Restaurant with Drive-Through, 4,950 SF Convenience Market with Gasoline Pumps, 8,350 SF Quality Restaurant, 120 Room Hotel, 8,350 Quality Restaurant, and 4,050 SF General Office Building). This development has not had a traffic study and is only in the early planning stages. It is located just east of I-26 along S-48/Columbia Avenue.

Traffic volume figures showing how both of these developments were distributed within the study area are attached to this document. Once the 2020 and 2040 No-Build traffic volumes projections were developed, AECOM rerouted traffic for Alternative 9A. AECOM looked at the existing traffic patterns and the path of the new road to determine the percentage of traffic that would use the new facility. Based on these two criterions, the following engineering assumptions were made:

- 25% of Westbound Left-turns from Columbia Avenue onto Lexington Avenue are expected to use New Road as shown in alternative 9A.
- 25% of Westbound Left-turns from Columbia Avenue onto Amicks Ferry Road is expected to use New Road as shown in Alternative 9A.
- 25% of Northbound Right-turns from Lexington Avenue on Columbia Avenue is expected to use New Road as shown in Alternative 9A.
- 25% of Northbound Right-turns from Amicks Ferry Road on Columbia Avenue is expected to use New Road as shown in Alternative 9A.
- 50% of Westbound Left-turns from Chapin Road onto Amicks Ferry Road is expected to use New Road as shown in Alternative 9A.
- 50% of Westbound Left-turns from Chapin Road onto Lexington Avenue is expected to use New Road as shown in Alternative 9A.
- 50% of Northbound Right-turns from Amicks Ferry Road onto Chapin Road is expected to use New Road as shown in Alternative 9A.
- 50% of Northbound Right-turns from Lexington Road onto Chapin Road is expected to use New Road as shown in Alternative 9A.
- E. Boundary Street at Columbia Avenue becomes a Right-in Right-out, so 75% Eastbound Rightturns move to New Road / Clark Street. Also 75% of the Northbound Right turns move to New Road / Clark Street.

Each one of these engineering assumptions is documented in the attached figures with its own color to carefully track the new traffic patterns. It is to be noted that the traffic volume assumptions are likely to change if Columbia Avenue (between Boundary Street and Amicks Ferry Road) becomes over capacity. The New Road is not expected to be at capacity using these assumptions and therefore can handle additional traffic if necessary.

Volume Development Figures

٩.

Project: Chapin Commerce Village Date: 10/22/2014

Location	Description of Use	Un	iits	Trips/Unit	PM Peak Hours Trips
North Parcel A	Specialty Retail Center	132000	SF	0.00271	358
North Parcel B	Quality Restaurant	8350	SF	0.00749	63
North Parcel C	General Office Building	8350	SF	0.00149	12
North Parcel D	Fast Food Restaurant with Drive-Through	4500	SF	0.03384	152
		Total P	PM Peak	Hour Trips	585

Location	Description of Use	Ur	nits	Trips/Unit	PM Peak Hours Trips
South Parcel E	High-Turnover (Sit-Down) Restaurant	8350	SF	0.01115	93
South Parcel F	Fast Food Restaurant with Drive-Through	4050	SF	0.03384	137
South Parcel G	Convenience Market with Gasoline Pumps	4950	SF	0.05092	252
South Parcel H	Quality Restaurant	8350	SF	0.00749	63
South Parcel I	Hotel	120	Rooms	0.6	72
South Parcel J	Quality Restaurant	8350	SF	0.00749	63
South Parcel K	General Office Building	4050	SF	0.00149	6
		Total I	PM Peak	Hour Trips	685

CHAPIN COMMERCE VILLAGE

January 2014

SITE ELEMENTS

- TOTAL AREA 25 ACRES (NORTH PARCELS)
 TOTAL AREA 20.9 ACRES (SOUTH PARCELS)
- PARCEL A 17 ACRES (131500 SF BUILDING & 476 PARKING SPACES SHOWN)
- PARCEL B 2.1 ACRES
- PARCEL C 3.7 ACRES
- PARCEL C = 3.7 ACRES
 PARCEL D = 2.2 ACRES
- DADONE R . DO ACOPE
- PARCEL E 2.0 ACRES
 72500 SF BUILDING & 121 PARKING SPACES SHOWN
- PARCEL F L2 AGRES
 (4.000 SP BUILDING & 55 PARKING SPACES SHOWN)
- PARCEL G 2.0 ACRES
 02,500 SF BUILDING & 60 PARKING SPACES SHOWN
- PARCEL H 2.2 ACRES
 (7.500 SF BUILDING & 123 PARKING SPACES SHOWN
- PARCEL 1 2.8 ACRES (FOUR STORY HOTEL & 135 PARKING SPACES SHOWN)
- PARCEL J 20 ACRES
- PARCEL K LI ACRES

	Ċ	apin Co	Chapin Commerce Village	/illage							
	Ĕ	able 1 - T	Table 1 - Trip Generation	ration							
Land Use	Intensity	itv		Daily		AN	AM Peak Hour	ur	Å	PM Peak Hour	ur
		ſ	Total	n	Out	Total	u	Out	Total	5	Out
310 Hotel	120	rooms	702	351	351	64	38	26	72	37	35
710 General Office Building*	8,350	s.f.	92	46	46	13	11	2	12	2	10
710 General Office Building*	4,050	s.f.	46	23	23	9	ß	1	9	1	2
826 Speciality Retail	132,000	s.f.	5,686	2,843	2,843	ı	•	ı	338	149	189
853 Convenience Market with Gasoline Pumps	4,950	s.f.	4,186	2,093	2,093	203	102	101	252	126	126
931 Quality Restaurant	8,350	s.f.	752	376	376	7	9	1	63	52	11
931 Quality Restaurant	8,350	s.f.	752	376	376	7	9	1	63	52	11
931 Quality Restaurant	8,350	s,f.	752	376	376	7	9	1	63	52	11
932 High-Turnover (Sit Down) Restaurant	8,350	s.f.	1,062	531	531	06	50	40	82	49	33
934 Fast Food Restaurant with Drive-Through	4,500	s.f.	2,234	1,117	1,117	204	104	100	147	76	71
934 Fast Food Restaurant with Drive-Through	4,050	s.f.	2,010	1,005	1,005	184	94	90	132	69	63
Subtotal		1	18,274	9,137	9,137	785	422	363	1,230	665	565

*Rate was used due to the small square footage

AECOM

۰.,

Final Traffic Projection Figures

APPENDIX B

TRAFFIC COUNTS

Period			bound)		(Southbound)						bound)				bound)		TOLAI	Totals
Beginning At	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U		
12:30 PM	75	0	1	0	0	0	0	0	17	13	0	0	0	16	0	0	122	525
12:45 PM	68	0	3	0	0	0	0	0	17	15	0	0	0	16	4	0	123	509
1:00 PM	83	1	2	0	0	0	0	0	10	21	0	0	0	17	0	0	134	498
1:15 PM	71	0	2	0	0	0	0	0	17	14	0	0	0	15	1	0	120	499
1:30 PM	82	0	3	0	0	0	0	0	18	9	0	0	0	26	0	0	138	515
1:45 PM	74	0	3	0	0	0	0	0	15	23	0	0	0	22	4	0	141	533
2:00 PM	74	2	3	0	0	0	0	0	23	24	0	0	0	14	3	0	143	542
2:15 PM	94	1	4	0	0	0	0	0	21	19	0	0	0	18	2	0	159	581
2:30 PM	89	0	1	0	0	0	0	0	18	14	0	0	0	19	1	0	142	585
2:45 PM	97	0	0	0	0	0	0	0	19	18	0	0	0	22	1	0	157	601
3:00 PM	97	0	1	0	0	0	0	0	14	23	0	0	0	23	2	0	160	618
3:15 PM	105	0	2	0	0	0	0	0	18	19	0	0	0	24	4	0	172	631
3:30 PM	90	1	2	0	0	0	0	0	16	24	0	0	0	59	4	0	196	685
3:45 PM	101	0	2	0	0	0	0	0	25	68	0	0	0	40	2	0	238	766
4:00 PM	120	0	2	0	0	0	0	0	23	60	0	0	0	22	5	0	232	838
4:15 PM	150	0	2	0	0	0	0	0	16	30	0	0	0	32	2	0	232	898
4:30 PM	155	0	2	0	0	0	0	0	22	31	0	0	0	38	5	0	253	955
4:45 PM	166	1	2	0	0	0	0	0	27	37	0	0	0	39	1	0	273	990
5:00 PM	177	1	4	0	0	0	0	0	29	31	0	0	0	41	1	0	284	1042
5:15 PM	200	0	3	0	0	0	0	0	24	35	0	0	0	44	1	0	307	1117
5:30 PM	155	0	2	0	0	0	0	0	28	31	0	1	0	48	4	0	269	1133
5:45 PM	172	3	2	0	0	0	0	0	22	32	0	0	0	39	1	0	271	1131
6:00 PM	142	0	2	0	0	0	0	0	16	23	0	0	0	33	1	0	217	1064
6:15 PM	147	0	4	0	0	0	0	0	16	17	0	0	0	24	0	0	208	965
Peak 15-Min			orthbour			-	outhbou			-	astboun				/estboun			
Flowrates	Left	Thru	Right	<u> </u>	Left	Thru	Right	<u> </u>	Left	Thru	Right	<u> </u>	Left	Thru	Right	<u> </u>		tal
All Vehicles	800	0	12	0	0	0	0	0	96	140	0	0	0	176	4	0		28
Heavy Trucks	8	0	0		0	0	0		4	0	0		0	8	0			0
Pedestrians		0				0				0				0)
Bicycles	0	0	0		0	0	0		0	0	0		0	0	0		()
Railroad																		
Stopped Buses																		
Comments:																		

Report generated on 5/27/2014 8:30 AM

_				
Comments:				
Stopped Buses				
Railroad				
Bicycles	0	0	0	0

Report generated on 6/19/2014 10:34 AM

10:15 AM

10:30 AM

10:45 AM

11:00 AM

11:15 AM

11:30 AM

11:45 AM

12:00 PM

<u>12:15 PM</u>

Peak 15-Min

Flowrates

All Vehicles

Heavy Trucks

Pedestrians

Left

Thru

Northbound

Right

Left

<u>Thru</u>

Southbound

Right

Left

<u>Thru</u>

Eastbound

Right

Left

Thru

Westbound

Right

Total

Stopped Buses Comments:

Pedestrians

Bicycles

Railroad

Report generated on 6/19/2014 9:26 AM

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

2:45 PIVI	3	0	1	0	0	0	0	0	0	66	4	0	0	0	0	0	74	304
3:00 PM	0	0	2	0	0	0	0	0	0	80	6	0	0	0	0	0	88	314
3:15 PM	0	0	0	0	0	0	0	0	0	69	3	0	0	0	0	0	72	306
3:30 PM	0	0	1	0	0	0	0	0	0	72	4	0	0	0	0	0	77	311
3:45 PM	3	0	3	0	0	0	0	0	0	111	14	0	0	0	0	0	131	368
4:00 PM	6	0	0	0	0	0	0	0	0	119	7	0	0	0	0	0	132	412
4:15 PM	6	0	1	0	0	0	0	0	0	68	8	0	0	0	0	0	83	423
4:30 PM	4	0	0	0	0	0	0	0	0	100	2	0	0	0	0	0	106	452
4:45 PM	2	0	1	0	0	0	0	0	0	88	7	0	0	0	0	0	98	419
5:00 PM	1	0	0	0	0	0	0	0	0	139	4	0	0	0	0	0	144	431
5:15 PM	3	0	0	0	0	0	0	0	0	121	9	0	0	0	0	0	133	481
5:30 PM	0	0	3	0	0	0	0	0	0	115	9	0	0	0	0	0	127	502
5:45 PM	3	0	0	0	0	0	0	0	0	113	18	0	0	0	0	0	134	538
6:00 PM	3	0	5	0	0	0	0	0	0	96	7	0	0	0	0	0	111	505
6:15 PM	1	0	1	0	0	0	0	0	0	79	6	0	0	0	0	0	87	459
Peak 15-Min		N	orthbou	nd		S	outhbou	nd		E	astbour	nd		W	estboun	d		
Flowrates	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Тс	otal
All Vehicles	4	-		0	0	0	0	0	0	556	16	0	0	0	0	0	5	76
All vehicles	4	0	0	0	0	0	0	0	0	550	10	0	0	0	v	0		
Heavy Trucks	4	0	0	0	0	0	0	U	0	20	0	Ŭ	0	0	Ő	Ū		0
Heavy Trucks Pedestrians	-			0	-	0		U		20 0		Ű	-	0	-	Ū	2	0)
Heavy Trucks	-			U	-	-		U				Ū	-	-	-	Ū	2	
Heavy Trucks Pedestrians Bicycles Railroad	0	0	0	U	0	0	0	U	0	20 0	0	0	0	0	0	Ū	2)
Heavy Trucks Pedestrians Bicycles	0	0	0	U	0	0	0	0	0	20 0	0	0	0	0	0	Ū	2)

Report generated on 6/19/2014 9:26 AM

Comments:

Report generated on 5/27/2014 8:30 AM

Pedestrians

Bicycles

Railroad Stopped Buse

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

ype of peak hour being reported: Interse		Method f	or determining peak hour: To	-
LOCATION: SC Hwy 202 I-26 E CITY/STATE: Little Mountain, SC	B Ramps			#: 12491442 ie, May 13 2014
$ \begin{array}{c} 126 \\ 0.93 \\ 21 \\ 105 \\ 0 \\ 0.68 \\ 0 \\ 68 \\ 47 \\ 13 \\ 84 \\ 0 \\ 152 \\ 0.67 \\ 97 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	Peak 15-Min:	5:00 PM 6:00 PM 5:15 PM 5:30 PM	2.9 • 4.8 • 0.0 • 2.9 • 2.1 • 7.7 7.1 0	7 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	¢	9078		
		¢		NA NA
15-Min Count SC Hwy 202 Period (Northbound)	SC Hwy 202 (Southbound)	I-26 EB Ramps (Eastbound)	I-26 EB Ramps (Westbound)	Total Hourly Totals
Beginning At Left Thru Right U 4:00 PM 4 12 0 0 4:15 PM 8 19 0 0 4:30 PM 5 14 0 0	Left Thru Right U 0 16 5 0 0 25 3 0 0 27 6 0	Left Thru Right U 2 0 10 0 6 0 13 0 1 0 13 0	Left Thru Right U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	49 74 66
4:45 PM 5 13 0 0 5:00 PM 7 16 0 0	0 33 2 0 0 27 3 0	1 0 8 0 1 0 9 0	0 0 0 0 0 0 0 0	62 251 63 265
5:15 PM 3 33 0 0 5:30 PM 2 14 0 0	0 26 4 0 0 25 10 0	60181 4080	00000 0000	91 282 63 279
5:45 PM 1 21 0 0	0 27 4 0	9 0 12 0	0 0 0 0	74 291
Peak 15-Min Northbound	Southbound Left Thru Right U	Eastbound Left Thru Right U	Westbound Left Thru Right U	<u>Total</u> 364
FlowratesLeftThruRightUAll Vehicles1213200Heavy Trucks040Pedestrians00	0 104 16 0 0 0 0 0	24 0 72 4 4 0 0 0	0 0 0 0 0 0 0 0	8 0

Comments: Report generated on 5/27/2014 8:30 AM

Report generated on 5/27/2014 8:30 AM

Quality Counts, LLC

920 Blairhill Rd Ste B106 Charlotte, NC 28217

File Name : 12491446 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd

Site Code : 12491446

Start Date : 5/13/2014

Page No : 1 Groups Printed- Cars - Heavy Vehicles - Turns

		;	SC H	wy 20	2			I-2	26 WE	3 Ran		Group	51 111			wy 20	,	0100		I-:	26 W	3 Ram	nps		Meadowbrook Rd							
			From	North	h				Fron	n East	ť				From	Sout	h				From	Wes	ť			Fr	rom N	orthw	est			
Start Time	Left	Thru	Right	Right to Meadow brook Rd	Peds	App. Total	Left	Thru	Thru to Meadow brook Rd	Right	Peds	App. Total	Left	Left to Meadow brook Rd	Thru	Right	Peds	App. Total	Left to Meadow brook Rd	Left	Thru	Right	Peds	App. Total	Left to SC Hwy 202	Thru to I-26 WB Ramps	Right to SC Hwy 202	Right to I-26 WB Ramps	Peds	App. Total	Int. Total	
Factor	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0			
07:00 AM	0	23	1	0	0	24	0	0	0	0	0	0	7	0	3	0	0	10	0	2	0	2	0	4	0	0	3	0	0	3	41	
07:15 AM	0	30	6	0	0	36	0	0	0	0	0	0	10	0	10	0	0	20	0	2	0	7	0	9	0	0	3	0	0	3	68	
07:30 AM	0	30	2	0	0	32	0	0	0	0	0	0	19	1	10	0	0	30	0	1	0	6	0	7	0	0	1	0	0	1	70	
07:45 AM	0	31	2	0	0	33	0	0	0	0	0	0	16	0	13	0	0	29	0	2	0	2	0	4	0	0	1	0	0	1	67	
Total	0	114	11	0	0	125	0	0	0	0	0	0	52	1	36	0	0	89	0	7	0	17	0	24	0	0	8	0	0	8	246	
08:00 AM	0	23	1	0	0	24	0	0	0	0	0	0	8	1	12	0	0	21	0	2	0	3	1	6	0	0	0	1	0	1	52	
08:15 AM	0	10	2	0	0	12	0	0	0	0	0	0	7	0	5	0	0	12	0	2	0	4	0	6	1	0	0	0	0	1	31	
08:30 AM	0	20	1	0	0	21	0	0	0	0	0	0	7	0	11	0	0	18	0	3	0	0	1	4	0	0	0	0	0	0	43	
08:45 AM	0	10	0	0	0	10	0	0	0	0	0	0	0	1	1	0	0	2	0	0	0	0	0	0	0	0	1	0	0	1	13	
Total	0	63	4	0	0	67	0	0	0	0	0	0	22	2	29	0	0	53	0	7	0	7	2	16	1	0	1	1	0	3	139	
Grand Total	0	177	15	0	0	192	0	0	0	0	0	0	74	3	65	0	0	142	0	14	0	24	2	40	1	0	9	1	0	11	385	
Apprch %	0	92.2	7.8	0	0		0	0	0	0	0		52.1	2.1	45.8	0	0		0	35	0	60	5		9.1	0	81.8	9.1	0			
Total %	0	46	3.9	0	0	49.9	0	0	0	0	0	0	19.2	0.8	16.9	0	0	36.9	0	3.6	0	6.2	0.5	10.4	0.3	0	2.3	0.3	0	2.9		
Cars	0	169	9	0	0	178	0	0	0	0	0	0	64	3	57	0	0	124	0	11	0	22	0	33	1	0	9	1	0	11	346	
% Cars	0	95.5	60	0	0	92.7	0	0	0	0	0	0	86.5	100	87.7	0	0	87.3	0	78.6	0	91.7	0	82.5	100	0	100	100	0	100	89.9	
Heavy Vehicles % Heavy Vehicles	0	4.5	40	0	0	7.3	0	0	0	0	0	0	13.5	0	12.3	0	0	12.7	0	21.4	0	8.3	0	12.5	0	0	0	0	0	0	9.6	
Bikes & U-Turns % Bikes & U-Turns	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	5	0	0	0	0	0	0	0.5	

Quality Counts, LLC

920 Blairhill Rd Ste B106 Charlotte, NC 28217

File Name : 12491446 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd Site Code : 12491446 Start Date : 5/13/2014 Page No : 2 Meadowbrook Rd SC Hwy 202 Out 69 Total 247 In 0 178 0 11 14 25 0 0 0 80 192 272 0 OS 169 0 0 9 6 0 0 8 0 0 0 0 0 0 0 0 15 177 0 0 0 Right Right Thru Left Peds to Meadowbrook 4 Rd RdO 11 3 0 0 0 14 Rd0 eMeadcovfbn گ_و ' Rig 107 21 21 80 0000 Q Rd000 ♠ H-26 WB Ramps It In 74 33 16 5 0 2 90 40 0000 North 1-20 5/13/2014 07:00 AM 0000 Š 5/13/2014 08:45 AM Ramps 0000 0000 Cars 2005 Out 74 16 0 90 Heavy Vehicles Right t_eŧ Total 0 0 Bikes & U-Turns 0000 Peds **NN00** Peds Left Thru Right Peds Left to 644eadowb3r 57 0 0 10 Rd 0 8 0 0 0 0 0 74 65 0 0 3 200 124 324 10 18 28 0 0 0 210 142 352 Out In Total SC Hwy 202
920 Blairhill Rd Ste B106 Charlotte, NC 28217

File Name : 12491446 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd Site Code : 12491446 Start Date : 5/13/2014

Page No : 3

			SC H	wy 20	2			I-:	26 WE	8 Ram	nps				SC H	wy 20	2			I-:	26 WI	B Ran	nps			Me	eadow	brook	k Rd		
			From	North	۱				From	n East					From	Sout	h				From	n Wes	t			F	rom N	orthw	est		
Start Time	Left	Thru	Right	Right to Meadow brook Rd	Peds	App. Total	Left	Thru	Thru to Meadow brook Rd	Right	Peds	App. Total	Left	Left to Meadow brook Rd	Thru	Right	Peds	App. Total	Left to Meadow brook Rd	Left	Thru	Right	Peds	App. Total	Left to SC Hwy 202	Thru to I-26 WB Ramps	Right to SC Hwy 202	Right to I-26 WB Ramps	Peds	App. Total	Int. Total
Peak Hour	Analys	sis Fro	m 07:	:00 AN	1 to 08	3:45 AN	1 - Pea	ak 1 o	f 1																						
Peak Hour	for En	tire Int	ersec	tion B	egins	at 07:1	5 AM																								
07:15 AM	0	30	6	0	0	36	0	0	0	0	0	0	10	0	10	0	0	20	0	2	0	7	0	9	0	0	3	0	0	3	68
07:30 AM	0	30	2	0	0	32	0	0	0	0	0	0	19	1	10	0	0	30	0	1	0	6	0	7	0	0	1	0	0	1	70
07:45 AM	0	31	2	0	0	33	0	0	0	0	0	0	16	0	13	0	0	29	0	2	0	2	0	4	0	0	1	0	0	1	67
08:00 AM	0	23	1	0	0	24	0	0	0	0	0	0	8	1	12	0	0	21	0	2	0	3	1	6	0	0	0	1	0	1	52
Total Volume	0	114	11	0	0	125	0	0	0	0	0	0	53	2	45	0	0	100	0	7	0	18	1	26	0	0	5	1	0	6	257
% App. Total	0	91.2	8.8	0	0		0	0	0	0	0		53	2	45	0	0		0	26.9	0	69.2	3.8		0	0	83.3	16.7	0		
PHF	.000	.919	.458	.000	.000	.868	.000	.000	.000	.000	.000	.000	.697	.500	.865	.000	.000	.833	.000	.875	.000	.643	.250	.722	.000	.000	.417	.250	.000	.500	.918

920 Blairhill Rd Ste B106 Charlotte, NC 28217

920 Blairhill Rd Ste B106 Charlotte, NC 28217

File Name : 12491446 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd Site Code : 12491446 Start Date : 5/13/2014

Page No : 5

				wy 20				1-2	26 WE							wy 20				I-:		3 Ran						/brook			
			From	n North	ו				From	n East					From	Sout	h				From	i Wes	t			Fr	om N	orthw	est		
Start Time	Left	Thru	Right	Right to Meadow brook Rd	Peds	App. Total	Left	Thru	Thru to Meadow brook Rd	Right	Peds	App. Total	Left	Left to Meadow brook Rd	Thru	Right	Peds	App. Total	Left to Meadow brook Rd	Left	Thru	Right	Peds	App. Total	Left to SC Hwy 202	Thru to I-26 WB Ramps	Right to SC Hwy 202	Right to I-26 WB Ramps	Peds	App. Total	Int. Tota
Peak Hour	Analy	sis Fro	om 07:	:00 AN	/ to 08	3:45 AN	/ - Pea	ak 1 o	f 1																						
Peak Hour f																															
	07:00 AM		p. 0 0.0.				07:00 AM						07:15 AM						07:15 AM						07:00 AM						1
+0 mins.	0	23	1	0	0	24	0	0	0	0	0	0	10	0	10	0	0	20	0	2	0	7	0	9	0	0	3	0	0	3	
+15 mins.	0	30	6	0	0	36	0	0	0	0	0	0	19	1	10	0	0	30	0	1	0	6	0	7	0	0	3	0	0	3	
+30 mins.	0	30	2	0	0	32	0	0	0	0	0	0	16	0	13	0	0	29	0	2	0	2	0	4	0	0	1	0	0	1	
+45 mins.	0	31	2	0	0	33	0	0	0	0	0	0	8	1	12	0	0	21	0	2	0	3	1	6	0	0	1	0	0	1	
Total Volume	0	114	11	0	0	125	0	0	0	0	0	0	53	2	45	0	0	100	0	7	0	18	1	26	0	0	8	0	0	8	1
% App. Total	0	91.2	8.8	0	0		0	0	0	0	0		53	2	45	0	0		0	26.9	0	69.2	3.8		0	0	100	0	0		1
PHF	.000	.919	.458	.000	.000	.868	.000	.000	.000	.000	.000	.000	.697	.500	.865	.000	.000	.833	.000	.875	.000	.643	.250	.722	.000	.000	.667	.000	.000	.667	1

920 Blairhill Rd Ste B106 Charlotte, NC 28217

Report generated on 5/27/2014 8:30 AM

920 Blairhill Rd Ste B106 Charlotte, NC 28217

File Name : 12491447 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd

Site Code : 12491447

Start Date : 5/13/2014

Page No : 1 Groups Printed- Cars - Heavy Vehicles - Turns

				wy 20				I-2	26 WE			Croup			SC H	wy 20	2			I-:		3 Ram						brook			
			From	North	<u>1</u>				Fron	n Eas	[]				<u>+rom</u>	Sout	n _				<u>⊢rom</u>	<u> Wes</u> t	t			⊢r	om N	orthw	est		
Start Time	1.04	-		Right to Meadow			1.04	T 1	Thru to Meadow				1.04	Left to Meadow	-				Left to Meadow	1.044	-	_			Left to	Thru to	Right to	Right to			
Start Time	Left	Thru	Right	brook	Peds	App. Total	Left	Thru	brook	Right	Peds	App. Total	Left	brook	Thru	Right	Peds	App. Total	brook	Left	Inru	Right	Peds	App. Total	SC Hwy 202	I-26 WB Ramps	SC Hwy 202	I-26 WB Ramps	Peds	App. Total	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0		
04:00 PM	0	12	2	0	0	14	0	0	0	0	0	0	5	0	9	0	0	14	1	3	0	9	1	14	0	0	0	0	0	0	42
04:15 PM	0	13	3	0	0	16	0	0	0	0	0	0	3	0	21	0	0	24	0	9	0	15	1	25	1	0	0	0	0	1	66
04:30 PM	0	14	5	0	0	19	0	0	0	0	0	0	6	1	8	0	0	15	0	10	0	19	0	29	1	0	0	1	0	2	65
04:45 PM	0	12	9	0	0	21	0	0	0	0	0	0	5	0	9	0	0	14	0	6	0	24	0	30	0	0	0	0	0	0	65
Total	0	51	19	0	0	70	0	0	0	0	0	0	19	1	47	0	0	67	1	28	0	67	2	98	2	0	0	1	0	3	238
05:00 PM	0	16	7	0	0	23	0	0	0	0	0	0	5	0	10	0	0	15	0	7	0	13	1	21	0	0	0	0	0	0	59
05:15 PM	0	13	5	0	0	18	0	0	0	0	0	0	12	1	25	0	0	38	0	13	0	17	0	30	0	0	1	0	0	1	87
05:30 PM	0	22	5	0	0	27	0	0	0	0	0	0	5	4	9	0	0	18	0	17	0	12	0	29	0	0	1	0	0	1	75
05:45 PM	0	9	4	0	0	13	0	0	0	0	0	0	7	0	19	0	1	27	2	4	0	21	1	28	0	0	0	0	0	0	68
Total	0	60	21	0	0	81	0	0	0	0	0	0	29	5	63	0	1	98	2	41	0	63	2	108	0	0	2	0	0	2	289
Grand Total	0	111	40	0	0	151	0	0	0	0	0	0	48	6	110	0	1	165	3	69	0	130	4	206	2	0	2	1	0	5	527
Apprch %	0	73.5	26.5	0	0		0	0	0	0	0		29.1	3.6	66.7	0	0.6		1.5	33.5	0	63.1	1.9		40	0	40	20	0		
Total %	0	21.1	7.6	0	0	28.7	0	0	0	0	0	0	9.1	1.1	20.9	0	0.2	31.3	0.6	13.1	0	24.7	0.8	39.1	0.4	0	0.4	0.2	0	0.9	
Cars	0	104	39	0	0	143	0	0	0	0	0	0	47	6	105	0	0	158	3	68	0	125	0	196	0	0	2	1	0	3	500
% Cars	0	93.7	97.5	0	0	94.7	0	0	0	0	0	0	97.9	100	95.5	0	0	95.8	100	98.6	0	96.2	0	95.1	0	0	100	100	0	60	94.9
Heavy Vehicles		6.3	2.5	0	0	5.3	0	0	0	0	0	0	2.1	0	4.5	0	0	3.6	0	1.4	0	3.8	0	2.9	100	0	0	0	0	40	4.2
% Heavy Vehicles		0.3	2.5	0	0	<u> </u>	0	0	0	0	0	0	2.1	0	<u>4.5</u>	0	1	<u>3.0</u>		<u> </u>	0	<u> </u>		2.9					0	40	<u>4.2</u> 5
Bikes & U-Turns		0	0	0	0	0		0	0	0	0	0	0	0	0	0	100	0.6		0	0	0	4 100	4 1.9		0	0	0	0	0	с 0.9
% Bikes & U-Turns	U U	U	U	U	U	0	0	U	U	U	U	U	U	U	U	U	100	0.0	0	U	U	U	100	1.9	U	U	U	U	U	0	0.9

920 Blairhill Rd Ste B106 Charlotte, NC 28217

File Name : 12491447 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd Site Code : 12491447 Start Date : 5/13/2014 Page No : 2 Meadowbrook Rd SC Hwy 202 Out 173 Total 316 In 143 8 8 16 0 0 0 181 151 332 0 O ٥, 0 39 104 0 0 0 7 0 0 0 0 0 0 0 0 40 111 0 0 0 Right Right Left Peds Thru to Meadowbrook 4 Rd 68 68 1 1 0 0 0 69 Rd3 143 گو' Rig <u>Total</u> 283 8 4 0000 Q Rd000 I-26 WB Ramps Out In 87 196 2 6 0 4 4 89 206 0000 North 1-20 5/13/2014 04:00 PM 0000 Š 5/13/2014 05:45 PM Ramps 0000 0000 Cars 125 5 0 8 Heavy Vehicles t tet Righ Total 0 0 Bikes & U-Turns 0000 Peds 0044 Peds Left Thru Right Peds Left to M/ Readowber 105 0 0 Rd 0 5 0 0 0 0 1 0 48 6 110 0 1 231 158 389 12 0 6 18 1 243 408 165 Out In Total SC Hwy 202

920 Blairhill Rd Ste B106 Charlotte, NC 28217

File Name : 12491447 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd Site Code : 12491447 Start Date : 5/13/2014

Page No : 3

			SC H	wy 20	2			I-26 WB Ramps From East							SC H	wy 20	2			I-:	26 WI	3 Ran	nps			Me	eadow	brook	Rd		
			From	North	h				From	n East	t				From	Sout	h				From	ו Wes	t			F	rom N	orthw	est		
Start Time	Left	Thru	Right	Right to Meadow brook Rd	Peds	App. Total	Left	Thru	Thru to Meadow brook Rd	Right	Peds	App. Total	Left	Left to Meadow brook Rd	Thru	Right	Peds	App. Total	Left to Meadow brook Rd	Left	Thru	Right	Peds	App. Total	Left to SC Hwy 202	Thru to I-26 WB Ramps	Right to SC Hwy 202	Right to I-26 WB Ramps	Peds	App. Total	Int. Total
Peak Hour	Analys	sis Fro	om 04:	:00 PN	/I to 05	5:45 PN	/I - Pea	ak 1 o	f 1																						
Peak Hour	for En	tire Int	tersec	tion B	egins	at 05:0	0 PM																								
05:00 PM	0	16	7	0	0	23	0	0	0	0	0	0	5	0	10	0	0	15	0	7	0	13	1	21	0	0	0	0	0	0	59
05:15 PM	0	13	5	0	0	18	0	0	0	0	0	0	12	1	25	0	0	38	0	13	0	17	0	30	0	0	1	0	0	1	87
05:30 PM	0	22	5	0	0	27	0	0	0	0	0	0	5	4	9	0	0	18	0	17	0	12	0	29	0	0	1	0	0	1	75
05:45 PM	0	9	4	0	0	13	0	0	0	0	0	0	7	0	19	0	1	27	2	4	0	21	1	28	0	0	0	0	0	0	68
Total Volume	0	60	21	0	0	81	0	0	0	0	0	0	29	5	63	0	1	98	2	41	0	63	2	108	0	0	2	0	0	2	289
% App. Total	0	74.1	25.9	0	0		0	0	0	0	0		29.6	5.1	64.3	0	1		1.9	38	0	58.3	1.9		0	0	100	0	0		
PHF	.000	.682	.750	.000	.000	.750	.000	.000	.000	.000	.000	.000	.604	.313	.630	.000	.250	.645	.250	.603	.000	.750	.500	.900	.000	.000	.500	.000	.000	.500	.830

920 Blairhill Rd Ste B106 Charlotte, NC 28217

920 Blairhill Rd Ste B106 Charlotte, NC 28217

File Name : 12491447 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd Site Code : 12491447 Start Date : 5/13/2014

Page No : 5

				wy 20				1-2	26 WE							wy 20				I-:		3 Ran						brook			
			From	North	ו				From	n East					From	Sout	h				From	i Wes	t			Fr	rom N	orthw	est		
Start Time	Left	Thru	Right	Right to Meadow brook Rd	Peds	App. Total	Left	Thru	Thru to Meadow brook Rd	Right	Peds	App. Total	Left	Left to Meadow brook Rd	Thru	Right	Peds	App. Total	Left to Meadow brook Rd	Left	Thru	Right	Peds	App. Total	Left to SC Hwy 202	Thru to I-26 WB Ramps	Right to SC Hwy 202	Right to I-26 WB Ramps	Peds	App. Total	Int. Tota
Peak Hour	Analys	sis Fro	om 04:	:00 PN	/ to 05	5:45 PN	1 - Pea	ak 1 o	f 1																						
Peak Hour f																															
<u>. outriour</u>	04:45 PM		p.040.	. 209			04:00 PM						05:00 PM						04:30 PM						04:00 PM						1
+0 mins.	0	12	9	0	0	21	0	0	0	0	0	0	5	0	10	0	0	15	0	10	0	19	0	29	0	0	0	0	0	0	
+15 mins.	0	16	7	0	0	23	0	0	0	0	0	0	12	1	25	0	0	38	0	6	0	24	0	30	1	0	0	0	0	1	
+30 mins.	0	13	5	0	0	18	0	0	0	0	0	0	5	4	9	0	0	18	0	7	0	13	1	21	1	0	0	1	0	2	
+45 mins.	0	22	5	0	0	27	0	0	0	0	0	0	7	0	19	0	1	27	0	13	0	17	0	30	0	0	0	0	0	0	
Total Volume	0	63	26	0	0	89	0	0	0	0	0	0	29	5	63	0	1	98	0	36	0	73	1	110	2	0	0	1	0	3	1
% App. Total	0	70.8	29.2	0	0		0	0	0	0	0		29.6	5.1	64.3	0	1		0	32.7	0	66.4	0.9		66.7	0	0	33.3	0		
PHF	.000	.716	.722	.000	.000	.824	.000	.000	.000	.000	.000	.000	.604	.313	.630	.000	.250	.645	.000	.692	.000	.760	.250	.917	.500	.000	.000	.250	.000	.375	1

920 Blairhill Rd Ste B106 Charlotte, NC 28217

Report generated on 5/27/2014 8:30 AM

Report generated on 5/27/2014 8:30 AM

	Irmo, SC		iver R	d I-:	26 WB	Ramp	S				ethod to					#: 1249′ nu, Jun 2	
$40 \bigcirc 0$ $0.75 4$ $10 \bigcirc 6$	0.91 0.58 1 0.98	• 197 • 17 • 365	 ◆ 579 0.93 ◆ 125 			Peak-H eak 15	-Min:	T:30 A	ty C	7:45 A	ts] ↓ .0 ♪ 5.0 ↓ く 6.7 ↓ ↑		• 10.2 ◆ • 5.9 • <u>3.8</u> ●	
0	0 1 1 1 1 1 1 1 1	• • •	-		_	\$, ↓ ↓				_		0 0 0	/			
NA T	NA	NA	• •					٩	1 1	<u>*</u>	_		N	د [د ۱۹ + ۱۹	NA + 4 NA	NA NA	
Period		bound)			(South	ad Rive			(Eastb	Ramps ound)			(West	Ramps bound)		Total	Hourl Total
7:00 AM	eft Thru 5 26	Right 17	U 0	Left 7	Thru 179	Right 0	U 0	Left 0	Thru 1	Right 1	U 0	Left 87	Thru 2	Right 43	<u>U</u> 0	368	
	4 16	31 36	0	5	168 151	0	0	0	0	3	0	93	6 3	57 47	0	383	
	9 38			4								98				387	
7:45 AM	9 <u>38</u> 5 <u>45</u> 332	19 25	0	4 2 6	160 131	0	0	0	2	2	0	98 87 88	6 5	50 33	0		1516 1479
7:45 AM 8:00 AM 8:15 AM 8:30 AM	5 45	19	0	2	160	0		0	2	2		87	6	50	0	387 378	

Report generated on 6/30/2014 8:44 AM

N: US [·] TE: Irm	ing reported 176/Broad io, SC		d 1-2	26 WB	Ramp	S							QC	JOB a	otal Enter #: 1249 ed, Jun 2	1431
0 24 € 13 € 103 4 48	0.94 726 12 • • 5 0.96 • 5 236 145	79 0.90				-Min:	5:15 F	ty C	Coun	ts		(4.2 → 0.0 →	3.0 0 • • • • • • 3.8 1	.0 2.8 0.0 2.2 .4	2.4
] • • 1 •		0			*]] [_		(0 0 0 0 0 0 0 0 0 0 0 0 0 0		• 0 • 0 • 0	
NA +		◆ NA ◆					•) † (* 	<u>*</u>	_		 ! 	در و م م م	NA + 4 NA	NA	
	(Northbound	d)		(South	bound)			(Eastl	oound)			(West	bound)		Total	Hourly Totals
t Left 11 16 5 13 10 9 16 13	Thru Righ 41 27 30 33 40 23 53 30 55 37 55 29 62 39 64 40	0 0 0 0 0 0	Left 2 9 5 3 4 3 1 4	Thru 95 105 122 194 185 181 172 188	Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	U 0 0 0 0 0 0 0	Left 2 4 0 2 1 7 10 6	Thru 2 1 3 5 4 2	Right 6 10 7 10 26 31 26 20	U 0 0 0 0 0 0 0	Left 100 116 118 128 110 151 160 157	Thru 12 13 15 14 18 25 17 19	Right 74 99 112 97 116 155 133 125	U 0 0 1 0 0 0 0	372 437 448 548 567 650 638 638	1805 2000 2213 2403 2493
		ound		So	outhbour	nd	Left	E	astbour Right	nd U	Left	V	<u>/estbou</u> Right	nd U	Т	
	738 0 24 13 103 48 48 1407 48 48 1407 103 0 104 105 10 10 10 10 10 10 10 10 10 10	$ \begin{array}{c} 738 \\ 0.94 \\ 0.94 \\ 0.726 \\ 12 \\ 0.96 \\ 13 \\ 0.96 \\ 103 \\ 48 \\ 236 \\ 145 \\ 1407 \\ 0.92 \\ 429 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} 738 \\ 0.94 \\ 789 \\ 0.726 \\ 12 \\ 48 \\ 24 \\ 0.96 \\ 79 \\ 0.90 \\ 103 \\ 48 \\ 236 \\ 145 \\ 1407 \\ 0.92 \\ 429 \\ 170 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Peak-Hour: 5:00 PM 6:00 PM 738 0.8 2.6 0 728 12 24 520 1186 13 0.96 79 0.90 103 48 235 145 1407 578 170 0.8 0.7 48 235 145 0.7 0.7 103 429 0.90 0.7 0.7 103 0.9 0.9 0.7 0.7 103 0.9 0.9 0.7 0.7 0.9 0.9 0.9 0.7 0.7 0.9 0.9 0.7 0.7 0.7 0.9 0.9 0.9 0.7 0.7 0.9 0.9 0.9 0.7 0.7 0.7 0.9 0.9 0.9 0.7 0.7 0.7 0.9 0.9 0.9 0.9 0.7 0.7 0.7 0.9 0.9 0.9 0.9	$\frac{738}{0.941} \xrightarrow{729}{12}$ $\frac{799}{12} \xrightarrow{729}{12}$ $\frac{738}{10.941} \xrightarrow{729}{12}$ $\frac{728}{12} \xrightarrow{729}{12}$ $\frac{728}{13} \xrightarrow{529}{116}$ $\frac{529}{145} \xrightarrow{578}{170}$ $\frac{79}{0.98} \xrightarrow{529}{12}$ $\frac{79}{143} \xrightarrow{578}{170}$ $\frac{79}{143} \xrightarrow{578}{170}$ $\frac{79}{143} \xrightarrow{578}{170}$ $\frac{7}{143} \xrightarrow{578}{170}$ $\frac{7}{10} \xrightarrow{578}{170}$ $\frac{7}{110} \xrightarrow{578}{170}$ $\frac{7}{117} \xrightarrow{578}{117}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{789}{99} \underbrace{120}{100} \underbrace{1100}{100} \underbrace{120}{1100} \underbrace{1100}{100} \underbrace{120}{100} \underbrace{1100}{100} \underbrace{120}{100} \underbrace{120}{10} \underbrace{120}{$

Report generated on 6/30/2014 8:44 AM

APPENDIX C

CRASH DATA

Crash Summary

I- 26 (26 E) from MPT 90.557 to MPT 91.670

LEXINGTON County

01/01/2012 - 05/31/2015 (3.4 years)

Length = 1.113 miles

AADT = 43,975

Functional Class = Rural -- Principal Arterial - Interstate

Crashes by Injury ClassFatality Crashes1Injury Crashes8PDO Crashes31Total Crashes40

Crashes by Manner Of Collision

Rear End	14
Angle	2
Sideswipe	4
Head On	0
Run Off Road	15
Other	5
Total Crashes	40

Special Contributing Factors

Animal	2
Bicycle	0
Pedestrian	1

I- 26 (26 E) from MPT 90.557 to MPT 91.670 LEXINGTON County 01/01/2012 - 05/31/2015 (3.4 years)

Length = 1.113 miles AADT = 43,975

Functional Class = Rural -- Principal Arterial - Interstate

I- 26 (26 E) from MPT 90.557 to MPT 91.670

LEXINGTON County

01/01/2012 - 05/31/2015 (3.4 years)

Length = 1.113 miles AADT = 43,975

Functional Class = Rural -- Principal Arterial - Interstate

Segment Range

Section Crashes

MPT 90.557 to 90.657 (Stack #1)

Total Crashes: 3	Light: 3	Dark: 0	Dry: 1	Wet: 2	Fatalities: 0	Injuries: 2	PDO: 1	
1 13535244	90.573 INJ1	DAY		WET	MOTOR VEI	HICLE (IN TRAN	NSPORT)	REAR END
2 12573088	90.583 INJ0	DAY		DRY	MOTOR VEI	HICLE (IN TRAN	NSPORT)	REAR END
3 13532800	90.642 INJ1	DAY		WET	MOTOR VEI	HICLE (STOPPE	ED)	REAR END

MPT 90.657 to 90.757 (Stack #2)

Total Crashes: 2	Light: 1	Dark: 1	Dry: 1	Wet: 1	Fatalities: 0	Injuries: 0	PDO: 2	
1 14623574	90.712 INJ0	DAY		WET	MEDIAN BA	RRIER		NO COLLISION W/MV
2 14606230	90.726 INJ0	DARK		DRY	Y ANIMAL (DE	ER ONLY)		NO COLLISION W/MV

MPT 90.757 to 90.857 (Stack #3)

Total Crashes: 1	Light: 0	Dark: 1	Dry: 0	Wet: 1	Fatalities: 0	Injuries: 0	PDO: 1	
1 14508930	90.773 INJ0	DARK		WET	MOTOR VE	HICLE (IN TRAN	ISPORT)	SIDESWIPE SAME DIR

MPT 90.857 to 90.957 (Stack #4)

Total Crashes: 8	B Light: 6	Dark: 2	Dry: 7	Wet: 1 F	atalities: 0	Injuries: 1	PDO: 7	
1 14506828	90.876 INJ0	DARK		SNOW	TREE			NO COLLISION W/MV
2 14592718	90.877 INJ0	DAY		DRY	MEDIAN BA	RRIER		NO COLLISION W/MV
3 13554860	90.901 INJ0	DAY		DRY	DITCH			NO COLLISION W/MV
4 14592689	90.917 INJ0	DAY		DRY	EMBANKME	NT		NO COLLISION W/MV
5 12549186	90.918 INJ2	DAY		DRY	SPILL (TWO	-WHEELED VE	H)	NO COLLISION W/MV
6 12568711	90.920 INJ0	DAY		DRY	MOTOR VEH	HICLE (IN TRAM	ISPORT)	SIDESWIPE SAME DIR
7 12506514	90.921 INJ0	DARK		DRY	ANIMAL (DE	ER ONLY)		NO COLLISION W/MV
8 14505005	90.923 INJ0	DAY		DRY	OTHER MOV	ABLE OBJECT	Г	NO COLLISION W/MV

MPT 90.957 to 91.057 (Stack #5)

Total Crashes: 1	Light: 1	Dark: 0	Dry: 0	Wet: 1	Fatalities: 0	Injuries: 0	PDO: 1
1 15527428	90.994 INJ0	DAY		WET	TREE		NO COLLISION W/MV

MPT 91.057 to 91.157 (Stack #6)

Total Crashes: 9	Light: 6	Dark: 3	Dry: 7	Wet: 2	Fatalities: 0	Injuries: 2	PDO: 7	
1 14580416	91.107 INJ0	DAY		DRY	MOTOR VEH	HICLE (IN TRAN	SPORT)	REAR END
2 12576226	91.122 INJ0	DARK		DRY	MOTOR VEH	HICLE (STOPPE	ED)	NO COLLISION W/MV
3 13509164	91.123 INJ0	DAY		WET	MOTOR VEH	HICLE (STOPPE	ED)	REAR END
4 14620354	91.126 INJ0	DARK		DRY	MOTOR VEH	HICLE (STOPPE	ED)	REAR END

Section Crashes

5 14560207	91.134 INJ1	DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END
6 15545968	91.138 INJ0	DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END
7 13621256	91.141 INJ0	DAY	WET	MOTOR VEHICLE (STOPPED)	REAR END
8 12522173	91.151 INJ2	DARK	DRY	MOTOR VEHICLE (STOPPED)	REAR END
9 13028770	91.151 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	REAR END

MPT 91.157 to 91.257 (Stack #7)

Total Crashes: 4	Light: 2	Dark: 2	Dry: 3	Wet: 1 F	Fatalities: 0	Injuries: 0	PDO: 4	
1 14512428	91.169 INJ0	DAY		DRY	MOTOR VEH	IICLE (IN TRAN	ISPORT)	ANGLE
2 13607832	91.170 INJ0	DARK		DRY	MOTOR VEH	IICLE (STOPPE	ED)	REAR END
3 14576684	91.196 INJ0	DAY		WET	OVERHEAD	SIGN SUPPOR	Т	NO COLLISION W/MV
4 14004663	91.220 INJ0	DARK		SNOW	MEDIAN BAR	RRIER		NO COLLISION W/MV

MPT 91.257 to 91.357 (Stack #8)

Total Crashes: 5	Light: 4	Dark: 1	Dry: 4	Wet: 1	Fatalities: 0	Injuries: 2	PDO: 3	
1 13615213	91.291 INJ2	DAY		DRY	MOTOR VEH	HICLE (IN TRAN	ISPORT)	SIDESWIPE SAME DIR
2 13541303	91.301 INJ0	DAY		DRY	MOTOR VEH	HICLE (IN TRAN	ISPORT)	SIDESWIPE SAME DIR
3 13536711	91.310 INJ2	DAWN		WET	TREE			NO COLLISION W/MV
4 15560792	91.320 INJ0	DAY		DRY	MEDIAN BA	RRIER		NO COLLISION W/MV
5 12565324	91.334 INJ0	DARK		DRY	OTHER NON	COLLISION		NO COLLISION W/MV

MPT 91.357 to 91.457 (Stack #9)

Total Crashes: 1	Light: 1	Dark: 0	Dry: 1	Wet: 0	Fatalities: 0	Injuries: 1	PDO: 0	
1 14519195	91.381 INJ1	DAWN		DRY	OVERTURN	/ROLLOVER		NO COLLISION W/MV

MPT 91.457 to 91.557 (Stack #10)

Total Crashes: 2	2 Light: 2	Dark: 0	Dry: 2	Wet: 0	Fatalities: 0	Injuries: 0	PDO: 2	
1 12589179	91.496 INJ0	DAY		DRY	MOTOR VEH	HICLE (IN TRAN	ISPORT)	REAR END
2 13523409	91.525 INJ0	DUSK		DRY	JACKKNIFE			NO COLLISION W/MV

MPT 91.557 to 91.657 (Stack #11)

Total Crashes: 4 Light:	3 Dark: 1	Dry: 3 Wet:	1 Fatalities: 1	Injuries: 0 PD	00: 3
1 14605635 91.577 IN	J4 DARK	[DRY PEDESTRIA	N	NO COLLISION W/MV
2 15536619 91.577 IN	J0 DAY	١	WET MOTOR VEH	HICLE (IN TRANSPO	DRT) ANGLE
3 13551630 91.581 IN	J0 DAY	ſ	DRY MOTOR VE	HICLE (STOPPED)	REAR END
4 14541624 91.645 IN	J0 DAY	ſ	DRY EMBANKME	NT	NO COLLISION W/MV

APPENDIX D

EXISTING 2014 SYNCHRO AND SIM TRAFFIC REPORTS

1.9

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷			eî 👘			ا	
Traffic Vol, veh/h	6	7	88	9	0	13	0	177	672	15	622	0
Future Vol, veh/h	6	7	88	9	0	13	0	177	672	15	622	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	7	8	98	10	0	14	0	197	747	17	691	0

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1301	1667	691	1347	1294	570	-	0	0	943	0	0
Stage 1	724	724	-	570	570	-	-	-	-	-	-	-
Stage 2	577	943	-	777	724	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	-	-	-	2.218	-	-
Pot Cap-1 Maneuver	138	96	445	128	163	521	0	-	-	727	-	0
Stage 1	417	430	-	506	505	-	0	-	-	-	-	0
Stage 2	502	341	-	390	430	-	0	-	-	-	-	0
Platoon blocked, %								-	-		-	
Mov Cap-1 Maneuver	130	92	445	91	157	521	-	-	-	727	-	-
Mov Cap-2 Maneuver	130	92	-	91	157	-	-	-	-	-	-	-
Stage 1	417	414	-	506	505	-	-	-	-	-	-	-
Stage 2	488	341	-	287	414	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	22.5			28.4			0			0.2		
HCM LOS	С			D								

Minor Lane/Major Mvmt	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	
Capacity (veh/h)	-	-	316	178	727	-	
HCM Lane V/C Ratio	-	-	0.355	0.137	0.023	-	
HCM Control Delay (s)	-	-	22.5	28.4	10.1	0	
HCM Lane LOS	-	-	С	D	В	Α	
HCM 95th %tile Q(veh)	-	-	1.6	0.5	0.1	-	

Lanes, Volumes, Timings 2: Columbia Ave & I-26 WB Ramps

	<u>></u>	Jitan	-		-					``	1	
		-	•	•				T	1	*	÷	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					- 4 >			सी			ef 👘	
Traffic Volume (vph)	0	0	0	432	2	8	67	129	0	0	205	29
Future Volume (vph)	0	0	0	432	2	8	67	129	0	0	205	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	0	0	0	1772	0	0	1831	0	0	1831	0
Flt Permitted					0.953			0.784				
Satd. Flow (perm)	0	0	0	0	1772	0	0	1460	0	0	1831	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					2						9	
Link Speed (mph)		45			45			35			35	
Link Distance (ft)		883			668			593			885	
Travel Time (s)		13.4			10.1			11.6			17.2	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	491	0	0	217	0	0	260	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0	J -		0	J -		0	0 -		0	J -
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane					.•							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1.00	9	15	1.00	9	15		9	15	1.00	9
Turn Type			Ű	Perm	NA	Ŭ	Perm	NA	Ū	10	NA	Ű
Protected Phases					4			6			2	
Permitted Phases				4			6	Ŭ			-	
Detector Phase				4	4		6	6			2	
Switch Phase							Ŭ	Ŭ			-	
Minimum Initial (s)				10.0	10.0		10.0	10.0			10.0	
Minimum Split (s)				22.0	22.0		22.0	22.0			22.0	
Total Split (s)				52.0	52.0		38.0	38.0			38.0	
Total Split (%)				57.8%	57.8%		42.2%	42.2%			42.2%	
Maximum Green (s)				46.0	46.0		31.7	31.7			31.7	
Yellow Time (s)				4.0	4.0		4.3	4.3			4.3	
All-Red Time (s)				2.0	2.0		2.0	2.0			2.0	
Lost Time Adjust (s)				2.0	0.0		2.0	0.0			0.0	
Total Lost Time (s)					6.0			6.3			6.3	
Lead/Lag					0.0			0.0			0.0	
Lead-Lag Optimize?												
Vehicle Extension (s)				4.0	4.0		3.0	3.0			3.0	
Recall Mode				None	None		Min	Min			Min	
Act Effct Green (s)				None	19.7		IVIIII	13.6			13.6	
Actuated g/C Ratio					0.43			0.29			0.29	
v/c Ratio					0.65			0.23			0.48	
Control Delay					15.3			19.8			17.6	
Queue Delay					0.0			0.0			0.0	
Total Delay					15.3			19.8			17.6	
LOS					13.3 B			19.0 B			B	
Approach Delay					15.3			19.8			17.6	
Approach Delay					10.0			19.0			17.0	

Synchro 9 Report

Lanes, Volumes, Timings 2: Columbia Ave & I-26 WB Ramps

	٦	+	*	4	+	•	•	1	1	*	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					В			В			В	
Queue Length 50th (ft)					88			45			52	
Queue Length 95th (ft)					211			125			137	
Internal Link Dist (ft)		803			588			513			805	
Turn Bay Length (ft)												
Base Capacity (vph)					1634			1053			1323	
Starvation Cap Reductn					0			0			0	
Spillback Cap Reductn					0			0			0	
Storage Cap Reductn					0			0			0	
Reduced v/c Ratio					0.30			0.21			0.20	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 46	5.3											
Natural Cycle: 45												
Control Type: Actuated-Ur	ncoordinated											
Maximum v/c Ratio: 0.65												
Intersection Signal Delay:					tersectior							
Intersection Capacity Utiliz	zation 63.1%			IC	U Level o	of Service	B					
Analysis Period (min) 15												

Splits and Phases: 2: Columbia Ave & I-26 WB Ramps

Ø2	·	₩ Ø4	
38 s		52 s	
38 s			

	≯	-	$\mathbf{\hat{z}}$	∢	-	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			र्च			4	
Traffic Volume (veh/h)	0	0	0	432	2	8	67	129	0	0	205	29
Future Volume (veh/h)	0	0	0	432	2	8	67	129	0	0	205	29
Number				7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				1900	1863	1900	1900	1863	0	0	1863	1900
Adj Flow Rate, veh/h				480	2	9	74	143	0	0	228	32
Adj No. of Lanes				0	1	0	0	1	0	0	1	0
Peak Hour Factor				0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %				0	2	0	2	2	0	0	2	2
Cap, veh/h				697	3	13	206	303	0	0	441	62
Arrive On Green				0.40	0.40	0.40	0.28	0.28	0.00	0.00	0.28	0.28
Sat Flow, veh/h				1731	7	32	291	1098	0	0	1599	224
Grp Volume(v), veh/h				491	0	0	217	0	0	0	0	260
Grp Sat Flow(s), veh/h/ln				1770	0	0	1389	0	0	0	0	1823
Q Serve(g_s), s				8.8	0.0	0.0	1.0	0.0	0.0	0.0	0.0	4.6
Cycle Q Clear(g_c), s				8.8	0.0	0.0	5.7	0.0	0.0	0.0	0.0	4.0
Prop In Lane				0.98	0.0	0.02	0.34	0.0	0.00	0.00	0.0	0.12
				713	0		0.34 509	0			0	503
Lane Grp Cap(c), veh/h					0 0.00	0 0.00		0 0.00	0	0 0.00	0	
V/C Ratio(X)				0.69			0.43		0.00		0.00	0.52
Avail Cap(c_a), veh/h				2129	0	0	1348	0	0	0	0	1511
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh				9.4	0.0	0.0	11.6	0.0	0.0	0.0	0.0	11.7
Incr Delay (d2), s/veh				1.7	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.8
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In				4.6	0.0	0.0	2.1	0.0	0.0	0.0	0.0	2.4
LnGrp Delay(d),s/veh				11.1	0.0	0.0	12.2	0.0	0.0	0.0	0.0	12.5
LnGrp LOS				В			В					<u> </u>
Approach Vol, veh/h					491			217			260	
Approach Delay, s/veh					11.1			12.2			12.5	
Approach LOS					В			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6						
Phs Duration (G+Y+Rc), s		16.8		21.4		16.8						
Change Period (Y+Rc), s		6.3		6.0		6.3						
Max Green Setting (Gmax), s		31.7		46.0		31.7						
Max Q Clear Time (g_c+11) , s		6.6		10.8		7.7						
Green Ext Time (p_c), s		2.9		4.7		2.9						
Intersection Summary												
HCM 2010 Ctrl Delay			11.7									
HCM 2010 LOS			B									
			D									

Summary of All Intervals

Dun Number	1	2	2	٨٠٠٣	
Run Number		_	3	Avg	
Start Time	7:20	7:20	7:20	7:20	
End Time	8:30	8:30	8:30	8:30	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	3756	3731	3647	3712	
Vehs Exited	3764	3730	3631	3708	
Starting Vehs	102	105	86	96	
Ending Vehs	94	106	102	100	
Travel Distance (mi)	4252	4192	4111	4185	
Travel Time (hr)	94.5	100.1	87.0	93.9	
Total Delay (hr)	16.8	23.7	12.6	17.7	
Total Stops	935	948	837	907	
Fuel Used (gal)	160.6	160.5	153.3	158.2	

Interval #0 Information Seeding

Start Time	7:20	
End Time	7:30	
Total Time (min)	10	
Volumes adjusted by Gro	wth Factors.	
No data recorded this inte	erval.	

Interval #1 Information Recording

Start Time	7:30	
End Time	8:30	
Total Time (min)	60	
Volumes adjusted by	Growth Factors.	

Run Number	1	2	3	Avg	
Vehs Entered	3756	3731	3647	3712	
Vehs Exited	3764	3730	3631	3708	
Starting Vehs	102	105	86	96	
Ending Vehs	94	106	102	100	
Travel Distance (mi)	4252	4192	4111	4185	
Travel Time (hr)	94.5	100.1	87.0	93.9	
Total Delay (hr)	16.8	23.7	12.6	17.7	
Total Stops	935	948	837	907	
Fuel Used (gal)	160.6	160.5	153.3	158.2	

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement			ND	CD.
Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	TR	LT
Maximum Queue (ft)	284	47	51	438
Average Queue (ft)	97	16	12	86
95th Queue (ft)	265	40	37	321
Link Distance (ft)	743	38	20	508
Upstream Blk Time (%)		2	1	2
Queuing Penalty (veh)		0	6	12
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 2: Columbia Ave & I-26 WB Ramps

Movement	WB	NB	SB
Directions Served	LTR	LT	TR
Maximum Queue (ft)	343	193	204
Average Queue (ft)	119	78	81
95th Queue (ft)	279	157	153
Link Distance (ft)	537	508	858
Upstream Blk Time (%)	1		
Queuing Penalty (veh)	5		
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

2.9

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 44			- 44			_ î⊧			- सी	
Traffic Vol, veh/h	11	7	85	1	0	9	0	229	490	49	830	0
Future Vol, veh/h	11	7	85	1	0	9	0	229	490	49	830	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	12	8	94	1	0	10	0	254	544	54	922	0

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1563	1830	922	1609	1558	527	-	0	0	799	0	0
Stage 1	1031	1031	-	527	527	-	-	-	-	-	-	-
Stage 2	532	799	-	1082	1031	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	-	-	-	2.218	-	-
Pot Cap-1 Maneuver	91	76	327	84	112	551	0	-	-	824	-	0
Stage 1	281	310	-	535	528	-	0	-	-	-	-	0
Stage 2	531	398	-	263	310	-	0	-	-	-	-	0
Platoon blocked, %								-	-		-	
Mov Cap-1 Maneuver	80	66	327	49	97	551	-	-	-	824	-	-
Mov Cap-2 Maneuver	80	66	-	49	97	-	-	-	-	-	-	-
Stage 1	281	268	-	535	528	-	-	-	-	-	-	-
Stage 2	521	398	-	157	268	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	42.7			18.8			0			0.5		
HCM LOS	E			С								

Minor Lane/Major Mvmt	NBT	NBR EBLr	1WBLn1	SBL	SBT	
Capacity (veh/h)	-	- 20	5 272	824	-	
HCM Lane V/C Ratio	-	- 0.55	8 0.041	0.066	-	
HCM Control Delay (s)	-	- 42	7 18.8	9.7	0	
HCM Lane LOS	-	-	E C	А	Α	
HCM 95th %tile Q(veh)	-	-	3 0.1	0.2	-	

Lanes, Volumes, Timings 2: Columbia Ave & I-26 WB Ramps

		Jitan	ipo									
	٠	→	\rightarrow	1	+	•	1	Ť	1	>	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			र्स			eî 👘	
Traffic Volume (vph)	0	0	0	704	2	11	109	140	0	0	175	7
Future Volume (vph)	0	0	0	704	2	11	109	140	0	0	175	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	0	0	0	1772	0	0	1824	0	0	1853	0
Flt Permitted					0.953			0.763				
Satd. Flow (perm)	0	0	0	0	1772	0	0	1421	0	0	1853	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					1						2	
Link Speed (mph)		45			45			35			35	
Link Distance (ft)		883			668			593			885	
Travel Time (s)		13.4			10.1			11.6			17.2	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lane Group Flow (vph)	0	0	0	0	796	0	0	277	0	0	202	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lon	0	rugni	Lon	0	rugitt	Lon	0	rugitt	Lon	0	rtight
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9
Turn Type	15		9	Perm	NA	9	Perm	NA	9	15	NA	9
Protected Phases				Feiiii	4		Feilli	6			2	
Permitted Phases				4	4		6	0			2	
Detector Phase				4	4		6	6			2	
Switch Phase				4	4		0	0			2	
Minimum Initial (s)				10.0	10.0		10.0	10.0			10.0	
Minimum Split (s)				22.0	22.0		22.0	22.0			22.0	
Total Split (s)				56.0	56.0		34.0	34.0			34.0	
Total Split (%)				62.2%	62.2%		37.8%	37.8%			37.8%	
Maximum Green (s)				50.0	50.0		27.7	27.7			27.7	
Yellow Time (s)				4.0	4.0		4.3	4.3			4.3	
All-Red Time (s)				2.0	2.0		2.0	2.0			4.5	
Lost Time Adjust (s)				2.0	0.0		2.0	0.0			0.0	
2 ,					6.0			6.3			6.3	
Total Lost Time (s)					0.0			0.3			0.5	
Lead/Lag												
Lead-Lag Optimize?				4.0	10		2.0	2.0			3.0	
Vehicle Extension (s)					4.0		3.0	3.0				
Recall Mode				None	None		Min	Min			Min	
Act Effct Green (s)					38.1			19.9			19.9 0.28	
Actuated g/C Ratio					0.54			0.28				
v/c Ratio					0.84			0.70			0.39	
Control Delay					24.2			35.3			24.9	
Queue Delay					0.0			0.0			0.0	
Total Delay					24.2			35.3			24.9	
LOS Annarach Dalau					C			D			C	
Approach Delay					24.2			35.3			24.9	

Synchro 9 Report

Lanes, Volumes, Timings 2: Columbia Ave & I-26 WB Ramps

	٨	+	\mathbf{F}	4	+	•	•	1	1	*	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					С			D			С	
Queue Length 50th (ft)					274			111			73	
Queue Length 95th (ft)					519			217			147	
Internal Link Dist (ft)		803			588			513			805	
Turn Bay Length (ft)												
Base Capacity (vph)					1290			594			776	
Starvation Cap Reductn					0			0			0	
Spillback Cap Reductn					0			0			0	
Storage Cap Reductn					0			0			0	
Reduced v/c Ratio					0.62			0.47			0.26	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 71	.2											
Natural Cycle: 60												
Control Type: Actuated-Un	coordinated											
Maximum v/c Ratio: 0.84												
Intersection Signal Delay:					tersectior							
Intersection Capacity Utiliz	zation 78.3%			IC	U Level	of Service	D					
Analysis Period (min) 15												

Splits and Phases: 2: Columbia Ave & I-26 WB Ramps

↓ ø2	₩ Ø4
34 s	56 s
1 ø6	
34 s	

	≯	-	\mathbf{F}	•	-	*	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					- 4 >			- सी			ef 👘	
Traffic Volume (veh/h)	0	0	0	704	2	11	109	140	0	0	175	7
Future Volume (veh/h)	0	0	0	704	2	11	109	140	0	0	175	7
Number				7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				1900	1863	1900	1900	1863	0	0	1863	1900
Adj Flow Rate, veh/h				782	2	12	121	156	0	0	194	8
Adj No. of Lanes				0	1	0	0	1	0	0	1	0
Peak Hour Factor				0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %				0	2	0	2	2	0	0	2	2
Cap, veh/h				929	2	14	202	229	0	0	497	20
Arrive On Green				0.53	0.53	0.53	0.28	0.28	0.00	0.00	0.28	0.28
Sat Flow, veh/h				1740	4	27	443	821	0	0	1777	73
Grp Volume(v), veh/h				796	0	0	277	0	0	0	0	202
Grp Sat Flow(s), veh/h/ln				1771	0	0	1264	0	0	0	0	1850
Q Serve(g_s), s				25.1	0.0	0.0	8.4	0.0	0.0	0.0	0.0	5.8
Cycle Q Clear(g_c), s				25.1	0.0	0.0	14.3	0.0	0.0	0.0	0.0	5.8
Prop In Lane				0.98	0.0	0.02	0.44	0.0	0.00	0.00	0.0	0.04
Lane Grp Cap(c), veh/h				0.90 945	0	0.02	432	0	0.00	0.00	0	517
V/C Ratio(X)				0.84	0.00	0.00	432 0.64	0.00	0.00	0.00	0.00	0.39
				1343			0.64 640				0.00	0.39
Avail Cap(c_a), veh/h					0	0		0	0	0		
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh				13.0	0.0	0.0	22.8	0.0	0.0	0.0	0.0	19.2
Incr Delay (d2), s/veh				4.2	0.0	0.0	1.6	0.0	0.0	0.0	0.0	0.5
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In				13.3	0.0	0.0	4.9	0.0	0.0	0.0	0.0	3.0
LnGrp Delay(d),s/veh				17.2	0.0	0.0	24.4	0.0	0.0	0.0	0.0	19.7
LnGrp LOS				В			С					B
Approach Vol, veh/h					796			277			202	
Approach Delay, s/veh					17.2			24.4			19.7	
Approach LOS					В			С			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6						
Phs Duration (G+Y+Rc), s		24.7		41.2		24.7						
Change Period (Y+Rc), s		6.3		6.0		6.3						
Max Green Setting (Gmax), s		27.7		50.0		27.7						
Max Q Clear Time (g_c+I1), s		7.8		27.1		16.3						
Green Ext Time (p_c), s		2.8		8.1		2.2						
Intersection Summary												
HCM 2010 Ctrl Delay			19.1									
HCM 2010 LOS			В									

Summary of All Intervals

Run Number	1	2	3	Δια	
				Avg	
Start Time	4:35	4:35	4:35	4:35	
End Time	5:45	5:45	5:45	5:45	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	4185	4108	4180	4157	
Vehs Exited	4182	4112	4211	4168	
Starting Vehs	110	111	108	113	
Ending Vehs	113	107	77	96	
Travel Distance (mi)	4855	4746	4877	4826	
Travel Time (hr)	112.3	114.1	111.0	112.5	
Total Delay (hr)	24.8	27.4	22.9	25.0	
Total Stops	1154	1303	1116	1191	
Fuel Used (gal)	180.7	179.3	182.6	180.9	

Interval #0 Information Seeding

Start Time	4:35	
End Time	4:45	
Total Time (min)	10	
Volumes adjusted by Gro	owth Factors.	
No data recorded this inte	erval.	

Interval #1 Information Recording

Start Time	4:45	
End Time	5:45	
Total Time (min)	60	
Volumes adjusted by Growth Factor	S.	

Run Number 2 3 Avg 1 4157 Vehs Entered 4185 4108 4180 Vehs Exited 4182 4112 4211 4168 Starting Vehs 110 111 108 113 Ending Vehs 113 107 77 96 Travel Distance (mi) 4855 4746 4877 4826 Travel Time (hr) 112.3 114.1 111.0 112.5 Total Delay (hr) 24.8 27.4 22.9 25.0 Total Stops 1154 1303 1116 1191 Fuel Used (gal) 180.7 179.3 182.6 180.9

Intersection: 1: Columbia Ave & I-26 EB Ramps

Mayamont	ГР		ND	CD.
Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	TR	LT
Maximum Queue (ft)	293	32	57	519
Average Queue (ft)	87	5	10	197
95th Queue (ft)	223	23	35	522
Link Distance (ft)	743	38	20	508
Upstream Blk Time (%)		0	1	4
Queuing Penalty (veh)		0	4	33
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 2: Columbia Ave & I-26 WB Ramps

Movement	WB	NB	SB
Directions Served	LTR	LT	TR
Maximum Queue (ft)	696	252	222
Average Queue (ft)	256	110	91
95th Queue (ft)	529	198	175
Link Distance (ft)	537	508	858
Upstream Blk Time (%)	5		
Queuing Penalty (veh)	33		
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

APPENDIX E

EXISTING 2014 HCS REPORTS

Phone: E-mail: _____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 EB From/To: West of SC 202 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1199 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 333 v Trucks and buses 4 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % -Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 706 pc/h/ln Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ 706 Flow rate, vp pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N 2 Density, D 9.4 pc/mi/ln Level of service, LOS А

Fax:
Phone:

E-mail: _____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 EB From/To: Between S-48 and SC 202 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1349 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 375 v Trucks and buses 4 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % -Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 794 pc/h/ln Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base 75.4 FFS or BFFS mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ 794 Flow rate, vp pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N 2 Density, D 10.6 pc/mi/ln Level of service, LOS А

Fax:

Phone:

E-mail: _____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 EB From/To: Between S-48 and US 176 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1981 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 550 v 4 Trucks and buses 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln 1167 Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base 75.4 FFS or BFFS mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1167 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 74.7 mi/h Number of lanes, N 2 Density, D 15.6 pc/mi/ln Level of service, LOS B

Fax:

Phone: Fax: E-mail: _____Operational Analysis_____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 EB From/To: East of US176 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 3315 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 921 v 4 Trucks and buses 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 1952 pc/h/ln Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1952 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 65.0 mi/h Number of lanes, N 2 Density, D 30.0 pc/mi/ln Level of service, LOS D

Phone: Fax: E-mail: _____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 WB From/To: East of US 176 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1476 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 410 v Trucks and buses 4 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % -Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 869 pc/h/ln Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 869 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N 2 Density, D 11.6 pc/mi/ln Level of service, LOS B

Fax:

Phone:

E-mail: _____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 WB From/To: Between S-48 and US 176 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1195 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 332 v Trucks and buses 4 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 704 pc/h/ln Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base 75.4 FFS or BFFS mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ 704 Flow rate, vp pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N 2 Density, D 9.4 pc/mi/ln Level of service, LOS А

Phone:

E-mail: _____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 WB From/To: Between S-48 and SC 202 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 851 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 236 v Trucks and buses 4 % Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 501 pc/h/ln Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base 75.4 FFS or BFFS mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 501 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N 2 Density, D 6.7 pc/mi/ln Level of service, LOS А

Fax:

Phone: E-mail: _____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 WB From/To: West of SC 202 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 891 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 248 v Trucks and buses 4 % Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 525 pc/h/ln Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 525 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N 2 Density, D 7.0 pc/mi/ln Level of service, LOS А

Fax:

Phone: Fax: E-mail: _____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 EB From/To: West of SC 202 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1440 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 400 v 4 Trucks and buses 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 848 pc/h/ln Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base 75.4 FFS or BFFS mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 848 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N 2 Density, D 11.3 pc/mi/ln Level of service, LOS B

Fax:

Phone:

E-mail: _____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 EB From/To: Between S-48 and SC 202 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1406 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 391 v Trucks and buses 4 % Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 828 pc/h/ln Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base 75.4 FFS or BFFS mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 828 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N 2 Density, D 11.0+ pc/mi/ln Level of service, LOS B

Fax:

Phone:

E-mail: _____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 EB From/To: Between S-48 and US 176 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ 1804 Volume, V veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 501 v Trucks and buses 4 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % -Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln 1062 Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base 75.4 FFS or BFFS mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1062 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N 2 Density, D 14.2 pc/mi/ln Level of service, LOS B

Phone: Fax: E-mail: _____Operational Analysis_____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 EB From/To: East of US176 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 2404 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 668 v 4 Trucks and buses 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln 1416 Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base 75.4 FFS or BFFS mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1416 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 73.1 mi/h Number of lanes, N 2 Density, D 19.4 pc/mi/ln Level of service, LOS С

Phone: E-mail: _____Operational Analysis_____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 WB From/To: East of US 176 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 3049 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 847 v 4 Trucks and buses 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 1796 pc/h/ln Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base 75.4 FFS or BFFS mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1796 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 68.0 mi/h Number of lanes, N 2 Density, D 26.4 pc/mi/ln Level of service, LOS D

Fax:

Phone:

E-mail: _____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 WB From/To: Between S-48 and US 176 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1870 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 519 v Trucks and buses 4 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln 1101 Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base 75.4 FFS or BFFS mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1101 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 74.9 mi/h Number of lanes, N 2 Density, D 14.7 pc/mi/ln Level of service, LOS B

Fax:

Fax:

Phone:

E-mail: _____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 WB From/To: Between S-48 and SC 202 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1271 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 353 v Trucks and buses 4 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 748 pc/h/ln Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base 75.4 FFS or BFFS mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ 748 Flow rate, vp pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N 2 Density, D 10.0 pc/mi/ln Level of service, LOS А

Phone: Fax: E-mail: _____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 WB From/To: West of SC 202 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1215 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 338 v Trucks and buses 4 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 716 pc/h/ln Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 716 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N 2 Density, D 9.5 pc/mi/ln Level of service, LOS А

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: SC-202 EB On-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1164 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 25.0 mph Volume on ramp 185 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 35 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1050 ft _____Conversion to pc/h Under Base Conditions_____ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 1164 185 35 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 323 51 10 v 2 0 4 2 0 Trucks and buses 8 Recreational vehicles 0 8 Rolling Rolling Terrain type: Rolling e mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 1371	0.971 1.00 212	0.971 1.00 40	pcph		
Estimation	of V12 Merge	Areas				
L = (E)	quation 13-6	or 13-7)				
P = 1.000 Us FM	ing Equation	0				
v = v (P) = 1 12 F FM	371 pc/h					
Capac	ity Checks					
Actual v 1583 FO	Maximum 4800		LOS F? No			
	(Equati	(Equation 13-14 or 13-17)				
Is v or v > 2700 pc/h?	No					
3 av34 Is v or v > 1.5 v /2	No					
3 av34 12 If yes, v = 1371 12A	(Equation	13-15, 13-	-16, 13-18,	or 13-19)		
v 1583	g Merge Infl Max Desirabl 4600		a Violation? No			
R12 Level of Service De	termination	(if not F)			
Density, D = $5.475 + 0.00734 v + 0.$ R R Level of service for ramp-freeway ju	12	A		pc/mi/ln		
Speed E	stimation					
Intermediate speed variable,	M	= 0.320				
Space mean speed in ramp influence a	rea, S	= 64.4	mph			
Space mean speed in outer lanes,		= N/A	mph			
Space mean speed for all vehicles,	0 S	= 64.4	mph			

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB On-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1248 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 45.0 mph Volume on ramp 733 vph Length of first accel/decel lane 1500 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 101 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1725 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1248 733 101 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 347 204 28 v 4 2 0 Trucks and buses 2 8 0 Recreational vehicles 0 8 Rolling Rolling Terrain type: Rolling e mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 1470	0.971 1.00 839	0.971 1.00 116	pcph			
Estimatic	on of V12 Merge	e Areas					
L =	(Equation 13-0	6 or 13-7)					
EQ P = 1.000 FM	Using Equation	n 0					
v = v (P) = 12 F FM	1470 pc/h						
Capacity Checks							
Actual v 2309 FO	Maximur 4800	m Lo No	OS F? O				
v or v 0 pc	c/h (Equat:	ion 13-14 o:	r 13-17)				
3 av34 Is v or v > 2700 pc/h?	No						
3 av34 Is v or v > 1.5 v /2	No						
3 av34 12 If yes, v = 1470 12A	(Equation	13-15, 13-3	16, 13-18,	or 13-19)			
	ting Merge Inf Max Desirab 4600 Determination	le	Violation? No				
Density, D = $5.475 + 0.00734 v + R R$ Level of service for ramp-freeway	12	A		pc/mi/ln			
Speed	l Estimation						
Intermediate speed variable,	M	= 0.225					
Space mean speed in ramp influence	e area, S	= 67.6	mph				
Space mean speed in outer lanes,	R S O	= N/A 1	mph				
Space mean speed for all vehicles,	0	= 67.6	mph				

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: US176 EB On-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1869 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 25.0 mph Volume on ramp 1446 vph Length of first accel/decel lane 1500 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 112 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 900 ft _____Conversion to pc/h Under Base Conditions_____ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 1869 1446 112 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 519 402 31 v 2 0 Trucks and buses 4 2 8 0 Recreational vehicles 0 8 Rolling Terrain type: Rolling Level e mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 1.5 Recreational vehicle PCE, ER 2.0 2.0 1.2
Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 2201		1.00	pcph
Estimation of	V12 Merge	Areas		
	ation 13-6	or 13-7)		
EQ P = 1.000 Usin FM	g Equation	0		
v = v (P) = 220 12 F FM	1 pc/h			
Capacit	y Checks			
Actual v 3856 FO	Maximum 4800		LOS F? No	
v or v 0 pc/h 3 av34	(Equatio	on 13-14	or 13-17)	
Is v or v > 2700 pc/h? 3 av34	No			
Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 2201 12A	(Equation 2	13-15, 13	-16, 13-18,	or 13-19)
Flow Entering Actual Ma v 3856 46 R12 Level of Service Dete	x Desirable	2	Violation? No	
Density, D = $5.475 + 0.00734 v + 0.00$ R R Level of service for ramp-freeway junc	12	A		pc/mi/ln
Speed Est	imation			
Intermediate speed variable,	M = S	= 0.430		
Space mean speed in ramp influence are	a, S	= 60.8	mph	
Space mean speed in outer lanes,	R S = 0	= N/A	mph	
Space mean speed for all vehicles,	•	= 60.8	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: US 176 WB On-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1028 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 25.0 mph Volume on ramp 167 vph Length of first accel/decel lane 1425 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 448 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 775 ft _____Conversion to pc/h Under Base Conditions_____ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 1028 167 448 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 286 46 124 v 2 0 2 0 Trucks and buses 4 Ŷ Recreational vehicles 0 8 Rolling Rolling Terrain type: Rolling e mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Driver population factor, fP	0.943 1.00 1211	0.971 1.00 191		pcph
Estimation of	V12 Merge	Areas		
L = (Equa EQ	tion 13-6	or 13-7)		
P = 1.000 Using FM	Equation	0		
v = v (P) = 1211 12 F FM	pc/h			
Capacity	Checks			
Actual v 1402 FO	Maximum 4800		LOS F? No	
vorv 0 pc/h 3 av34	(Equatio	n 13-14	or 13-17)	
Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 1211 (12A	Equation 1	3-15, 13	-16, 13-18,	or 13-19)
Flow Entering M Actual Max v 1402 460 R12 Level of Service Deter	Desirable 0		Violation? No	
Density, D = $5.475 + 0.00734 v + 0.007$ R R Level of service for ramp-freeway junct	12	A		pc/mi/ln
Speed Esti	mation			
Intermediate speed variable,	M = S	0.266		
Space mean speed in ramp influence area		66.2	mph	
Space mean speed in outer lanes,		N/A	mph	
Space mean speed for all vehicles,	0	66.2	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB On-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 Free-flow speed on freeway 75.0 mph Volume on freeway 753 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 45.0 mph Volume on ramp 98 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 442 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1475 ft _____Conversion to pc/h Under Base Conditions_____ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 753 98 442 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 209 27 123 v 2 0 2 % 0 % Trucks and buses 4 Recreational vehicles 0 Rolling Rolling Terrain type: Rolling e mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 887	0.971 1.00 112		pcph
Estimation of	V12 Merge	Areas		
—	ation 13-6	or 13-7)		
EQ P = 1.000 Using	g Equation	0		
FM v = v (P) = 887 12 F FM	pc/h			
Capacity	/ Checks			
Actual v 999 FO	Maximum 4800		LOS F? No	
v or v 0 pc/h 3 av34	(Equatio	on 13-14	or 13-17)	
Is v or v > 2700 pc/h? 3 av34	No			
Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 887 (12A	Equation 1	L3-15, 13	-16, 13-18,	or 13-19)
Flow Entering M Actual Max v 999 460 R12 Level of Service Deter	Desirable 0	2	Violation? No	
Density, D = $5.475 + 0.00734 v + 0.007$ R R Level of service for ramp-freeway junct	12	A		pc/mi/ln
Speed Esti	mation			
Intermediate speed variable,	M = S	= 0.221		
Space mean speed in ramp influence area	a, S =	= 67.7	mph	
Space mean speed in outer lanes,	_	= N/A	mph	
Space mean speed for all vehicles,	0 S =	= 67.7	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: SC-202 WB On-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 Free-flow speed on freeway 75.0 mph Volume on freeway 826 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 45.0 mph Volume on ramp 65 vph Length of first accel/decel lane 525 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 25 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1000 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 826 25 65 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 229 18 7 v 2 0 4 2 0 Trucks and buses 8 Recreational vehicles 0 8 Rolling Rolling Terrain type: Rolling e mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 973	0.971 1.00 74	0.971 1.00 29	pcph
Estimatio	n of V12 Merge	e Areas		
	(Equation 13-6	5 or 13-7)		
EQ P = 1.000 FM	Using Equatior	n 0		
v = v (P) = 12 F FM	973 pc/h			
Cap	acity Checks			
Actual v 1047 FO	Maximun 4800	n LO No	DS F? D	
-	/h (Equati	on 13-14 or	c 13-17)	
Is v or v > 2700 pc/h? 3 av34	No			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No			
If yes, v = 973 12A	(Equation	13-15, 13-1	L6, 13-18, d	or 13-19)
	ing Merge Infl Max Desirabl 4600 Determination	le V	/iolation? No	
Density, D = $5.475 + 0.00734 v + R$ R R Level of service for ramp-freeway	12	A		pc/mi/ln
Speed	Estimation			
Intermediate speed variable,	M	= 0.285		
Space mean speed in ramp influence	area, S	= 65.6 m	nph	
Space mean speed in outer lanes,	R S O	= N/A n	nph	
Space mean speed for all vehicles,	v	= 65.6 m	nph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: SC-202 EB On-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1372 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 25.0 mph Volume on ramp 34 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 68 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1050 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1372 34 68 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 381 9 19 v 2 0 2 0 Trucks and buses 4 8 Recreational vehicles 0 8 Rolling Rolling Terrain type: Rolling 0/0 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 1616	0.971 1.00 39	0.971 1.00 78	pcph
Estimatio	n of V12 Merge	e Areas		
	(Equation 13-6	5 or 13-7)		
EQ P = 1.000 FM	Using Equatior	n 0		
v = v (P) = 12 F FM	1616 pc/h			
Cap	acity Checks			
Actual v 1655 FO		n Lo No	DS F? D	
v or v 0 pc	/h (Equati	ion 13-14 o:	r 13-17)	
3 av34 Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 1616 12A	(Equation	13-15, 13-3	16, 13-18,	or 13-19)
	ing Merge Infl Max Desirabl 4600 Determination	Le I	Violation? No	
Density, D = $5.475 + 0.00734 v + R R$ Level of service for ramp-freeway	12	A		pc/mi/ln
Speed	Estimation			
Intermediate speed variable,	M	= 0.321		
Space mean speed in ramp influence	area, S	= 64.4	nph	
Space mean speed in outer lanes,	RS	= N/A 1	nph	
Space mean speed for all vehicles,	0 S	= 64.4	nph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB On-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1303 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 45.0 mph Volume on ramp 501 vph Length of first accel/decel lane 1500 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 103 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1725 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1303 501 103 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 362 139 29 v 4 2 0 Trucks and buses 2 8 0 Recreational vehicles 0 8 Rolling Terrain type: Rolling Rolling e mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 1535	0.971 1.00 573	0.971 1.00 118	pcph
Estimation o	f V12 Merge	Areas		
_	uation 13-6	or 13-7)		
EQ P = 1.000 Usi FM	ng Equation	0		
v = v (P) = 15 12 F FM	35 pc/h			
Capaci	ty Checks			
Actual v 2108 FO	Maximum 4800		LOS F? No	
v or v 0 pc/h	(Equatio	on 13-14 d	or 13-17)	
3 av34 Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 1535 12A	(Equation	13-15, 13-	-16, 13-18,	or 13-19)
	ax Desirable 600	e	Violation? No	
Density, D = $5.475 + 0.00734 v + 0.0$ R R Level of service for ramp-freeway jun	12	A		pc/mi/ln
Speed Es	timation			
Intermediate speed variable,	M ·	= 0.218		
Space mean speed in ramp influence ar	ea, S	= 67.8	mph	
Space mean speed in outer lanes,	-	= N/A	mph	
Space mean speed for all vehicles,	0 S :	= 67.8	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: US176 EB On-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1590 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 25.0 mph Volume on ramp 814 vph Length of first accel/decel lane 1500 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 214 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 900 ft _____Conversion to pc/h Under Base Conditions_____ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 1590 814 214 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 442 226 59 v 2 0 4 Trucks and buses 2 8 0 0 Recreational vehicles 8 Rolling Rolling Terrain type: Level َ mi 0/0 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 1.5 Recreational vehicle PCE, ER 2.0 2.0 1.2

Driver population factor, fP	0.943 1.00 1873	0.971 1.00 932		pcph
Estimation of `	V12 Merge .	Areas		
L = (Equa EQ	tion 13-6	or 13-7)		
P = 1.000 Using FM	Equation	0		
v = v (P) = 1873 12 F FM	pc/h			
Capacity	Checks			
Actual v 2805 FO	Maximum 4800		LOS F? No	
vorv 0 pc/h 3 av34	(Equatio	n 13-14	or 13-17)	
Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 1873 (1 12A	Equation 1	3-15, 13	-16, 13-18,	or 13-19)
Flow Entering Max Actual Max v 2805 460 R12 Level of Service Determ	Desirable 0		Violation? No	
Density, D = 5.475 + 0.00734 v + 0.007 R R Level of service for ramp-freeway junct	12	A		pc/mi/ln
Speed Estin	mation			
Intermediate speed variable,	M = S	0.310		
Space mean speed in ramp influence area	, S =	64.8	mph	
Space mean speed in outer lanes,	R S = 0	N/A	mph	
Space mean speed for all vehicles,	•	64.8	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: US 176 WB On-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1737 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 25.0 mph Volume on ramp 133 vph Length of first accel/decel lane 1425 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 1312 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 775 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1737 133 1312 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 483 37 364 v 4 2 0 2 % 0 % Trucks and buses Recreational vehicles 0 Rolling Terrain type: Rolling Rolling e mi 0/0 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 2046	0.971 1.00 152	1.00	pcph
Estimation of	V12 Merge	Areas		
_	ation 13-6	or 13-7)		
EQ P = 1.000 Usir FM	ng Equation	0		
v = v (P) = 204 12 F FM	l6 pc/h			
Capacit	y Checks			
Actual v 2198 FO	Maximum 4800		LOS F? No	
v or v 0 pc/h 3 av34	(Equation	on 13-14	or 13-17)	
Is v or v > 2700 pc/h? 3 av34	No			
Is v or v > $1.5 v / 2$ 3 av 34 12	No			
If yes, $v = 2046$ 12A	(Equation	13-15, 13	8-16, 13-18,	or 13-19)
	ax Desirabl 500	e	Violation? No	
Density, D = $5.475 + 0.00734 v + 0.00784 v$ R R Level of service for ramp-freeway junc	12	P	7	pc/mi/ln
Speed Est	imation			
Intermediate speed variable,		= 0.285		
Space mean speed in ramp influence are		= 65.6	mph	
Space mean speed in outer lanes,	R S O	= N/A	mph	
Space mean speed for all vehicles,	9	= 65.6	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB On-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1153 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 45.0 mph Volume on ramp 118 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 717 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1475 ft _____Conversion to pc/h Under Base Conditions_____ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 118 1153 717 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 320 33 199 v 4 2 0 2 0 Trucks and buses 8 Recreational vehicles 0 8 Rolling Rolling Terrain type: Rolling 00 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 1358			pcph
Estimation of	V12 Merge	Areas		
_	ation 13-6	or 13-7)		
EQ P = 1.000 Usin	g Equation	0		
FM v = v (P) = 135 12 F FM	8 pc/h			
Capacit	y Checks			
V Actual FO	Maximum 4800		LOS F? No	
v or v 0 pc/h 3 av34	(Equatio	on 13-14 d	or 13-17)	
Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 1358 12A	(Equation 1	13-15, 13	-16, 13-18,	or 13-19)
Flow Entering Actual Ma v 1493 46 R12 Level of Service Dete	x Desirable 00	2	Violation? No	
Density, D = $5.475 + 0.00734 v + 0.00$ R R R Level of service for ramp-freeway junc	12	A		pc/mi/ln
Speed Est	imation			
Intermediate speed variable,		= 0.228		
Space mean speed in ramp influence are		= 67.5	mph	
Space mean speed in outer lanes,	-	= N/A	mph	
Space mean speed for all vehicles,	0 S =	= 67.5	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: SC-202 WB On-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1165 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 45.0 mph Volume on ramp 50 vph Length of first accel/decel lane 525 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 106 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1000 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 50 1165 106 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 324 14 29 v 4 2 0 2 0 Trucks and buses 8 Recreational vehicles 0 8 Rolling Terrain type: Rolling Rolling َ mi 0/0 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.94 1.00 1372		0.971 1.00 57	0.971 1.00 121	pcph
Estima	tion of V12	Merge A	areas		
L =	(Equation	13-6 c	or 13-7)		
EQ P = 1.000 FM	Using Equ	ation	0		
v = v (P) 12 F FM	= 1372 p	oc/h			
	Capacity Che	ecks			
Actu v 1429 FO		ximum 000		LOS F? No	
v or v 0	pc/h (H	quation	n 13-14	or 13-17)	
3 av34 Is v or v > 2700 pc/h?	Nc)			
3 av34 Is v or v > 1.5 v /2	Nc)			
3 av34 12 If yes, v = 1372 12A	(Equa	tion 13	8-15, 13	-16, 13-18	, or 13-19)
Flow En Actual v 1429 R12 Level of Servi	tering Merge Max Des 4600 ce Determina	irable		Violation: No	2
Density, D = $5.475 + 0.00734$ v R R Level of service for ramp-freew	. 1	.2	P	L	pc/mi/ln
Sp	eed Estimati	.on			
Intermediate speed variable,		M =	0.290		
Space mean speed in ramp influe	nce area,	S_ =	65.4	mph	
Space mean speed in outer lanes	1	-	N/A	mph	
Space mean speed for all vehicl	es,	0 S =	65.4	mph	

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: SC 202 EB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1199 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 35 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 185 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1050 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1199 35 185 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 333 10 51 v 2 0 Trucks and buses 4 2 Ŷ Recreational vehicles 0 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustmer Driver population facto Flow rate, vp		0.943 1.00 1412	0.971 1.00 40		pcph
	Estimation	of V12 Diverg	e Areas		
L = EQ	(E	quation 13-12	or 13-13)		
P = FD	1.000 Us	ing Equation	0		
v = 12	v + (v - v) R F R	P = 1412 FD	pc/h		
	Capac	ity Checks			
v = v Fi F	Actual 1412	Maximum 4800	LC Nc	OS F?	
v = v - v	1372	4800	Nc)	
FO F R V	40	2100	Nc)	
R v or v	0 pc/h	(Equatio	n 13-14 or	13-17)	
3 av34 Is v or v > 270	00 pc/h?	No			
3 av34 Is v or v > 1.5		No			
3 av34 If yes, v = 1412 12A	12	(Equation 1	3-15, 13-1	.6, 13-18,	or 13-19)
F		Diverge Influ			
		Max Desirable 4400		'iolation? No	
12 Level	of Service De	termination (if not F)_		
Density,		.0086 v - 0.		12.8	pc/mi/ln
Level of service for ra	R mp-freeway ju	12 Inction areas	D of influer	ice B	
	Speed E	stimation			
Intermediate speed vari	able,		0.302		
Space mean speed in ran	np influence a		65.0 m	ıph	
Space mean speed in out	er lanes,		N/A m	ıph	
Space mean speed for al	l vehicles,	0 S =	65.0 m	ıph	

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1349 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 101 vph Length of first accel/decel lane 975 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 733 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1725 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1349 101 733 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 375 28 204v 2 2 0 Trucks and buses 4 Ŷ Recreational vehicles 0 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adj Driver population Flow rate, vp		0.943 1.00 1589	0.971 1.00 116	1.00	pcph
	Estimation	n of V12 Dive	rge Areas		
	L = (EQ	Equation 13-	12 or 13-13	3)	
		Jsing Equation	n 0		
	v = v + (v - v) 12 R F R		pc/h		
	Capa	city Checks_			
v = v Fi F	Actual 1589	Maximu 4800		LOS F? No	
v = v - v FO F R	1473	4800	1	No	
v R	116	2100	1	No	
v or v 3 av34	-	'h (Equat	ion 13-14 d	or 13-17)	
	> 2700 pc/h?	No			
	> 1.5 v /2	No			
If yes, v = 15 12A		(Equation	13-15, 13-	-16, 13-18,	or 13-19)
	Flow Entering				
v	Actual 1589	Max Desirab 4400	le	Violation? No	
12	Level of Service D	etermination	(if not F)	
Density,	D = 4.252 +		0.009 L	= 9.1	pc/mi/ln
Level of service :	R for ramp-freeway j	12 junction area	D s of influe	ence A	
	Speed	Estimation			
Intermediate speed	d variable,	D	= 0.308		
Space mean speed	in ramp influence		= 64.8	mph	
Space mean speed	in outer lanes,	R S	= N/A	mph	
Space mean speed :	for all vehicles,	0 S	= 64.8	mph	

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: US 176 EB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1981 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 112 vph Length of first accel/decel lane 1000 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 1446 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 900 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1981 112 1446 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 550 31 402 v 2 2 0 Trucks and buses 4 Ŷ Recreational vehicles 0 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustm Driver population fac Flow rate, vp		0.943 1.00 2333	0.971 1.00 128		pcph
	Estimation	of V12 Diver	ge Areas		
L EQ		Equation 13-12	2 or 13-13)		
	= 1.000 U	sing Equation	0		
v 12) P = 2333 FD	pc/h		
	Capa	city Checks			
v = v Fi F	Actual 2333	Maximum 4800	LC Nc	SF?	
v = v - v FO F R	2205	4800	Nc)	
v	128	2100	Nc	,	
R v or v	0 pc/	h (Equatio	on 13-14 or	13-17)	
3 av34 Is v or v > 2	700 pc/h?	No			
	.5 v /2	No			
3 av34 If yes, v = 2333 12A	12	(Equation 1	13-15, 13-1	6, 13-18,	or 13-19)
		Diverge Influ			
v	Actual 2333	Max Desirable 4400		'iolation? No	
12 Leve	l of Service D	etermination ((if not F)_		
Density,		0.0086 v - 0.		15.3	pc/mi/ln
Level of service for	R ramp-freeway	12 unction areas	D of influen	ice B	
	Speed	Estimation			
Intermediate speed va	riable,		= 0.310		
Space mean speed in r	amp influence	S area, S = R	= 64.8 m	ıph	
Space mean speed in o	uter lanes,	S =	= N/A m	ıph	
Space mean speed for	all vehicles,	0 S =	= 64.8 m	iph	

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: US 176 WB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1476 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 448 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 167 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 775 ft _____Conversion to pc/h Under Base Conditions______ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 1476 448 167 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 410 124 46 v 2 0 Trucks and buses 4 2 8 Recreational vehicles 0 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, Driver population factor, Flow rate, vp		0.943 1.00 1738	0.971 1.00 513	1.00	pcph	
	Estimation of	V12 Diverg	e Areas_			
L = EQ	(Equ	ation 13-12	or 13-1	.3)		
P = FD	1.000 Usir	ng Equation	0			
	+ (v - v) F F R		pc/h			
	Capacit	y Checks				
v = v Fi F	Actual 1738	Maximum 4800		LOS F? No		
v = v - v	1225	4800		No		
FO F R V	513	2100		No		
R V or V	0 pc/h	(Equatio	n 13-14	or 13-17)		
3 av34 Is v or v > 2700	pc/h?	No				
3 av34 Is v or v > 1.5 v		No				
3 av34 If yes, v = 1738 12A	12	(Equation 1	3-15, 13	8-16, 13-18,	or 13-19)	
	w Entering Di					
V 173		x Desirable		Violation? No		
12 Level of	Service Dete	ermination (if not F	r)		
Density, D = 4.252 + 0.0086 v - 0.009 L = 8.2 pc/mi/ln						
R 12 D Level of service for ramp-freeway junction areas of influence A						
Speed Estimation						
Intermediate speed variab	le,		0.344			
Space mean speed in ramp	influence are		63.6	mph		
Space mean speed in outer	lanes,		N/A	mph		
Space mean speed for all	vehicles,	0 S =	63.6	mph		

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1195 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 442 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 98 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1475 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1195 442 98 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 332 123 27 v 2 0 Trucks and buses 4 2 8 Recreational vehicles 0 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, Driver population factor, Flow rate, vp		0.943 1.00 1407	0.971 1.00 506		pcph
]	Estimation of	E V12 Diverge	e Areas		
L = EQ	(Equ	ation 13-12	or 13-13	3)	
	1.000 Usir	ng Equation	0		
	+ (v - v) I F R		pc/h		
	Capacit	cy Checks			
v = v Fi F	Actual 1407	Maximum 4800		LOS F? No	
v = v - v FO F R	901	4800	1	ло	
v R	506	2100	1	10	
v or v 3 av34	0 pc/h	(Equation	n 13-14 c	or 13-17)	
Is v or v > 2700 g 3 av34	pc/h?	No			
Is v or v > 1.5 v 3 av34		No			
If yes, v = 1407 12A		(Equation 1)	3-15, 13-	-16, 13-18,	or 13-19)
	w Entering D				
v 140	ual Ma 7 44	ax Desirable 400		Violation? No	
12 Level of	Service Dete	ermination (if not F))	
	= 4.252 + 0.0			= 5.3	pc/mi/ln
R Level of service for ramp	-freeway jund	12 ction areas o	D of influe	ence A	
	Speed Est	cimation			
Intermediate speed variab	le,		0.344		
Space mean speed in ramp :	influence are		63.7	mph	
Space mean speed in outer	lanes,	R S = 0	N/A	mph	
Space mean speed for all		0			

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: SC 202 WB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 Free-flow speed on freeway 75.0 mph Volume on freeway 851 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 25.0 mph Volume on ramp 25 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 65 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1000 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 851 25 65 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 236 7 18 v 2 0 Trucks and buses 2 4 8 0 Recreational vehicles 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adju Driver population : Flow rate, vp		0.943 1.00 1002			pcph
	Estimatior	n of V12 Dive	erge Areas_		
:	L = (EQ	Equation 13-	-12 or 13-1	3)	
1	Ρ = 1.000 τ FD	Jsing Equatio	on O		
	v = v + (v - v 12 R F F		2 pc/h		
	Сара	acity Checks_			
v = v Fi F	Actual 1002	Maximu 4800		LOS F? No	
V = V - V FO F R	973	4800	1	No	
v R	29	1900	1	No	
v or v	0 pc/	h (Equat	tion 13-14	or 13-17)	
3 av34 Is v or v 3 3 av34	> 2700 pc/h?	No			
Is v or v		No			
3 av34 If yes, v = 100 12A		(Equation	n 13-15, 13	-16, 13-18,	or 13-19)
	Flow Entering				
v	Actual 1002	Max Desiral 4400	ole	Violation? No	
12 Lo	evel of Service I	Determination	n (if not F)	
Density,	D = 4.252 +	0.0086 v -	0.009 L	= 9.3	pc/mi/ln
Level of service for	R or ramp-freeway <u>:</u>	12 junction area	D as of influ	ence A	
	Speed	Estimation_			
Intermediate speed	variable,	D	= 0.561		
Space mean speed in	n ramp influence	area, S		mph	
Space mean speed in	n outer lanes,	S	. ,	mph	
Space mean speed fo	or all vehicles,	S		mph	

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: SC 202 EB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1440 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 68 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 34 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1050 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1440 34 68 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 400 19 9 v 2 0 Trucks and buses 4 2 8 Recreational vehicles 0 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjust Driver population fa Flow rate, vp		0.943 1.00 1696	0.971 1.00 78		pcph	
	Estimation	of V12 Diver	ge Areas			
	= (Equation 13-12	2 or 13-13)		
P		sing Equation	0			
	= v + (v - v 2 R F R		pc/h			
	Сара	city Checks				
v = v Fi F	Actual 1696	Maximum 4800	L. N	OS F? O		
v = v - v FO F R	1618	4800	Ν	0		
v R	78	2100	Ν	0		
v or v 3 av34	0 pc/	h (Equatio	on 13-14 o	r 13-17)		
Is v or v > 3 av34	2700 pc/h?	No				
	1.5 v /2	No				
If yes, v = 1696 12A	12	(Equation 3	13-15, 13-	16, 13-18,	or 13-19)	
	Flow Entering					
V	Actual 1696	Max Desirable 4400		Violation? No		
12 Lev	el of Service D	etermination	(if not F)			
Density, D = 4.252 + 0.0086 v - 0.009 L = 15.2 pc/mi/ln						
Level of service for	R ramp-freeway j	12 unction areas	D of influe	nce B		
	Speed	Estimation				
Intermediate speed v	ariable,		= 0.305			
Space mean speed in	ramp influence		= 64.9	mph		
Space mean speed in	outer lanes,		= N/A	mph		
Space mean speed for	all vehicles,	0 S :	= 64.9	mph		

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1406 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 103 vph Length of first accel/decel lane 975 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 501 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1725 ft _____Conversion to pc/h Under Base Conditions______ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 1406 103 501 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 391 29 139 v 2 2 0 Trucks and buses 4 8 Recreational vehicles 0 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment Driver population factor Flow rate, vp		0.943 1.00 1656	0.971 1.00 118	1.00	pcph		
	Estimation (of V12 Diverg	ge Areas				
L = EQ	(E0	quation 13-12	2 or 13-1	3)			
 Р = FD	1.000 Us	ing Equation	0				
	+ (v - v) R F R	P = 1656 FD	pc/h				
	Capac	ity Checks					
v = v Fi F	Actual 1656	Maximum 4800		LOS F? No			
v = v - v	1538	4800]	No			
FO F R V	118	2100]	No			
R v or v	0 pc/h	(Equatio	on 13-14	or 13-17)			
3 av34 Is v or v > 2700	pc/h?	No					
3 av34 Is v or v > 1.5		No					
3 av34 If yes, v = 1656 12A	12	(Equation 1	.3-15, 13	-16, 13-18,	or 13-19)		
		Diverge Influ					
		Max Desirable 4400	2	Violation? No			
12 Level o	f Service De	termination (if not F)			
	Density, D = 4.252 + 0.0086 v - 0.009 L = 9.7 pc/mi/ln						
R 12 D Level of service for ramp-freeway junction areas of influence A							
Speed Estimation							
Intermediate speed varia	ble,		= 0.309				
Space mean speed in ramp	influence a:		= 64.8	mph			
Space mean speed in oute	r lanes,		= N/A	mph			
Space mean speed for all	vehicles,	0 S =	= 64.8	mph			

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: US 176 EB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1804 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 214 vph Length of first accel/decel lane 1000 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 814 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 900 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1804 214 814 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 501 59 226 v 4 2 0 2 0 Trucks and buses 8 Recreational vehicles 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0
Heavy vehicle adju Driver population Flow rate, vp		0.943 1.00 2125	0.971 1.00 245		pcph
	Estimation	n of V12 Diver	ge Areas		
:	L = (EQ	Equation 13-1	2 or 13-13)	
:		Jsing Equation	0		
	v = v + (v - v 12 R F F		pc/h		
	Capa	city Checks			
v = v Fi F	Actual 2125	Maximum 4800	L N	OS F? O	
v = v - v	1880	4800	N	0	
FO F R V	245	2100	N	0	
R v or v	0 pc/	'h (Equati	on 13-14 o	r 13-17)	
3 av34 Is v or v	> 2700 pc/h?	No			
	> 1.5 v /2	No			
3 av34 If yes, v = 212 12A		(Equation	13-15, 13-	16, 13-18,	or 13-19)
		g Diverge Infl			
V	Actual 2125	Max Desirabl 4400		Violation? No	
12 L	evel of Service I	Determination	(if not F)		
Density,		0.0086 v - 0		= 13.5	pc/mi/ln
Level of service f	R or ramp-freeway j	12 junction areas	D of influe	nce B	
	Speed	Estimation			
Intermediate speed	variable,		= 0.320		
Space mean speed i	n ramp influence		= 64.4	mph	
Space mean speed i:	n outer lanes,		= N/A	mph	
Space mean speed f	or all vehicles,	0 S	= 64.4	mph	

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: US 176 WB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 3049 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 1312 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 133 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 775 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 3049 1312 133 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 847 364 37 v 2 0 Trucks and buses 4 2 8 0 Recreational vehicles 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustr Driver population fac Flow rate, vp		0.943 1.00 3591	0.971 1.00 1502	1.00	pcph
	Estimation	of V12 Diver	ge Areas		
L E(Equation 13-12	2 or 13-13)	
	= 1.000 U	sing Equation	0		
v 12	= v + (v - v 2 R F R		pc/h		
	Capa	city Checks			
v = v Fi F	Actual 3591	Maximum 4800	L(N(OS F? O	
v = v - v FO F R	2089	4800	N	0	
V	1502	2100	N	0	
R v or v	0 pc/2	h (Equatio	on 13-14 o:	r 13-17)	
3 av34 Is v or v > 2	2700 pc/h?	No			
	L.5 v /2	No			
3 av34 If yes, v = 3591 12A	12	(Equation 2	13-15, 13-	16, 13-18,	or 13-19)
	Flow Entering				
V	Actual 3591	Max Desirable 4400		Violation? No	
12 Leve	el of Service D	etermination	(if not F)		
Density,	D = 4.252 +	0.0086 v - 0 12	.009 L	= 24.1	pc/mi/ln
Level of service for			2	nce C	
	Speed	Estimation			
Intermediate speed va	ariable,		= 0.433		
Space mean speed in 1	amp influence		= 60.7 1	mph	
Space mean speed in d	outer lanes,		= N/A ı	mph	
Space mean speed for	all vehicles,	0 S =	= 60.7 1	mph	

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1870 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 717 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 118 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1475 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1870 717 118 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 519 199 33 v 2 0 Trucks and buses 4 2 8 0 Recreational vehicles 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adju Driver population Flow rate, vp		0.943 1.00 2202	0.971 1.00 821	1.00	pcph
	Estimation	of V12 Diver	ge Areas_		
	L = (EQ	Equation 13-1	2 or 13-1	3)	
		sing Equation	0		
	v = v + (v - v) $12 R F R$		pc/h		
	Capa	city Checks			
v = v Fi F	Actual 2202	Maximum 4800		LOS F? No	
V = V - V FO F R	1381	4800	:	No	
v R	821	2100	:	No	
v or v 3 av34	-	h (Equati	on 13-14	or 13-17)	
	> 2700 pc/h?	No			
	> 1.5 v /2	No			
If yes, $v = 220$ 12A		(Equation	13-15, 13	-16, 13-18,	or 13-19)
	Flow Entering				
v	Actual 2202	Max Desirabl 4400	е	Violation? No	
12 I	Level of Service D	etermination	(if not F)	
Density,	D = 4.252 +	0.0086 v - 0	.009 L	= 12.2	pc/mi/ln
Level of service b	R for ramp-freeway j	12 unction areas	D of influ	ence B	
	Speed	Estimation			
Intermediate speed	d variable,	D	= 0.372		
Space mean speed :	in ramp influence		= 62.7	mph	
Space mean speed :	in outer lanes,	RS	= N/A	mph	
Space mean speed i	for all vehicles,	0 S	= 62.7	mph	

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: SC 202 WB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1271 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 25.0 mph Volume on ramp 106 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 50 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1000 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1271 106 50 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 353 29 14 v 2 2 0 Trucks and buses 4 8 Recreational vehicles 0 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adju Driver population Flow rate, vp		0.943 1.00 1497	0.971 1.00 121	1.00	pcph
	Estimation	of V12 Diver	ge Areas_		
	L = (EQ	Equation 13-1	2 or 13-1	3)	
		sing Equation	0		
	v = v + (v - v) $12 R F R$		pc/h		
	Capa	city Checks			
v = v Fi F	Actual 1497	Maximum 4800		LOS F? No	
v = v - v FO F R	1376	4800		No	
v R	121	1900		No	
v or v 3 av34	0 pc/	h (Equati	on 13-14	or 13-17)	
	> 2700 pc/h?	No			
	> 1.5 v /2	No			
If yes, v = 149 12A		(Equation	13-15, 13	-16, 13-18,	or 13-19)
	Flow Entering			a	
v	Actual 1497	Max Desirabl 4400	е	Violation? No	
12 I	Level of Service D	etermination	(if not F)	
Density,	D = 4.252 +	0.0086 v - 0	.009 L	= 13.5	pc/mi/ln
Level of service f	R For ramp-freeway j	12 unction areas	D of influ	ence B	
	Speed	Estimation			
Intermediate speed	l variable,		= 0.569		
Space mean speed i	in ramp influence		= 56.2	mph	
Space mean speed i	in outer lanes,		= N/A	mph	
Space mean speed f	for all vehicles,	0 S	= 56.2	mph	

APPENDIX F

NO-BUILD 2020 SYNCHRO AND SIM TRAFFIC REPORTS

0.9

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			el 👘			÷	
Traffic Vol, veh/h	27	8	129	10	0	14	0	434	900	143	1077	0
Future Vol, veh/h	27	8	129	10	0	14	0	434	900	143	1077	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	30	9	143	11	0	16	0	482	1000	159	1197	0

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	2504	2996	1197	2573	2496	982	-	0	0	1482	0	0
Stage 1	1514	1514	-	982	982	-	-	-	-	-	-	-
Stage 2	990	1482	-	1591	1514	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	-	-	-	2.218	-	-
Pot Cap-1 Maneuver	~ 19	14	226	17	29	302	0	-	-	454	-	0
Stage 1	149	182	-	300	327	-	0	-	-	-	-	0
Stage 2	297	189	-	135	182	-	0	-	-	-	-	0
Platoon blocked, %								-	-		-	
Mov Cap-1 Maneuver	-	0	226	-	0	302	-	-	-	454	-	-
Mov Cap-2 Maneuver	-	0	-	-	0	-	-	-	-	-	-	-
Stage 1	149	0	-	300	327	-	-	-	-	-	-	-
Stage 2	282	189	-	-	0	-	-	-	-	-	-	-
-												

Approach	EB	WB	NB	SB
HCM Control Delay, s			0	2
LICMLOS				

HCM LOS

Minor Lane/Major Mvmt	NBT	NBR EE	BLn1WB	Ln1	SBL	SBT
Capacity (veh/h)	-	-	-	-	454	-
HCM Lane V/C Ratio	-	-	-	-	0.35	-
HCM Control Delay (s)	-	-	-	-	17.1	0
HCM Lane LOS	-	-	-	-	С	А
HCM 95th %tile Q(veh)	-	-	-	-	1.6	-
Notes						

-: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

Lanes, Volumes, Timings 2: Columbia Ave & I-26 WB Ramps

		JINUI	μU							-		
	≯	-	\rightarrow	•	-	•	1	Ť	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			स			_î∌	
Traffic Volume (vph)	0	0	0	691	2	157	90	385	0	0	529	49
Future Volume (vph)	0	0	0	691	2	157	90	385	0	0	529	49
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	0	0	0	1745	0	0	1846	0	0	1842	0
Flt Permitted					0.961			0.458				
Satd. Flow (perm)	0	0	0	0	1745	0	0	853	0	0	1842	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					11						5	
Link Speed (mph)		45			45			35			35	
Link Distance (ft)		883			668			593			885	
Travel Time (s)		13.4			10.1			11.6			17.2	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Lane Group Flow (vph)	0	0	0	0	944	0	0	528	0	0	642	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left		Left	Left		Left	Left		Left	Left	
	Leit	Len 0	Right	Leit	Len 0	Right	Leit	Len 0	Right	Leit	Len 0	Right
Median Width(ft)												
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	1.00	1 00	1.00	1 00	1 00	1 00	1.00	1 00	1.00	1.00	1 00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type				Perm	NA		Perm	NA			NA	
Protected Phases					4			6			2	_
Permitted Phases				4			6					
Detector Phase				4	4		6	6			2	
Switch Phase												
Minimum Initial (s)				10.0	10.0		10.0	10.0			10.0	
Minimum Split (s)				22.0	22.0		22.0	22.0			22.0	
Total Split (s)				59.0	59.0		71.0	71.0			71.0	
Total Split (%)				45.4%	45.4%		54.6%	54.6%			54.6%	
Maximum Green (s)				53.0	53.0		64.7	64.7			64.7	
Yellow Time (s)				4.0	4.0		4.3	4.3			4.3	
All-Red Time (s)				2.0	2.0		2.0	2.0			2.0	
Lost Time Adjust (s)					0.0			0.0			0.0	
Total Lost Time (s)					6.0			6.3			6.3	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)				4.0	4.0		3.0	3.0			3.0	
Recall Mode				None	None		Min	Min			Min	
Act Effct Green (s)					53.0			64.7			64.7	
Actuated g/C Ratio					0.41			0.50			0.50	
v/c Ratio					1.32			1.25			0.70	
Control Delay					185.0			159.4			30.0	
Queue Delay					0.0			0.0			0.0	
Total Delay					185.0			159.4			30.0	
LOS					F			F			C	
Approach Delay					185.0			159.4			30.0	
					100.0			107.7			00.0	

Synchro 9 Report

Lanes, Volumes, Timings 2: Columbia Ave & I-26 WB Ramps

	۶	→	\mathbf{r}	∢	-	*	•	†	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					F			F			С	
Queue Length 50th (ft)					~1025			~555			402	
Queue Length 95th (ft)					#1282			#780			548	
Internal Link Dist (ft)		803			588			513			805	
Turn Bay Length (ft)												
Base Capacity (vph)					717			424			919	
Starvation Cap Reductn					0			0			0	
Spillback Cap Reductn					0			0			0	
Storage Cap Reductn					0			0			0	
Reduced v/c Ratio					1.32			1.25			0.70	
Intersection Summary												
J	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Natural Cycle: 130												
Control Type: Actuated-Unc	oordinated											
Maximum v/c Ratio: 1.32												
Intersection Signal Delay: 131.5 Intersection LOS: F												
Intersection Capacity Utilization 119.5% ICU Level of Service H												
Analysis Period (min) 15												
 Volume exceeds capacity, queue is theoretically infinite. 												
Queue shown is maximum after two cycles.												
# 95th percentile volume			ieue may	be long	er.							
Queue shown is maximu	im after two	o cycles.										

Splits and Phases: 2: Columbia Ave & I-26 WB Ramps

Ø2	₩ø4
71 s	59 s
Ø6	
71 s	

Lane Configurations \bullet		≯	-	\mathbf{F}	4	+	•	1	1	1	1	ţ	~
Traffic Volume (weh/h) 0 0 0 691 2 157 90 385 0 0 529 49 Fulure Volume (weh/h) 0	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (velvh) 0 0 6 6 7 4 1 1 6 16 5 2 19 Number 7 4 1 1 6 16 5 2 19 Pach Bike Adj(A_pbT) 1.00 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td><u>स</u>्</td> <td></td> <td></td> <td>ef 👘</td> <td></td>						4			<u>स</u> ्			ef 👘	
Number 7 4 14 1 6 16 5 2 12 Initial O (2b), veh 0<	Traffic Volume (veh/h)	0	0	0	691		157	90	385	0	0	529	49
Initial Q(b), veh 0	Future Volume (veh/h)	0	0	0	691	2	157	90	385	0	0	529	49
Ped-Bike Adj(A_pbT) 1.00	Number				7	4	14	1	6	16	5	2	12
Parking Bus, Adj 1.00 1.0	Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Adj Sař Flow, veňth/ln 1900 1863 1900 1863 0 0 1863 1900 Adj No. of Lanes 0 1 0 0 1 0 0 1863 1900 Peak Hour Factor 0.90 0.	Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Adj Flow Rate, veh/h 768 2 174 100 428 0 0 588 54 Adj No. of Lanes 0 1 0 0 1 0 0 1 0 Peak Hour Factor 0.90 0.837 777 Arrive On Green 0.41 0.41 0.41 0.41 0.41 0.41 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Flow Rate, veh/h 768 2 174 100 428 0 0 588 54 Adj No. of Lanes 0 1 0 0 1 0 0 1 0 Peak Hour Factor 0.90 0.837 777 Arrive On Green 0.41 0.41 0.41 0.41 0.41 0.41 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00					1900	1863	1900	1900	1863	0	0	1863	1900
Adj No. of Lanes 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0					768	2	174	100	428	0	0	588	54
Peak Hour Factor 0.90 0.9					0		0			0	0	1	0
Percent Heavy Veh, % 0 2 0 2 2 0 0 2 2 Cap, veh/h 576 1 130 97 379 0 0 833 77 Arrive On Green 0.41 0.41 0.41 0.50 0.50 0.00 0.50 0.50 Sat Flow, veh/h 1412 4 320 128 761 0 0 1681 154 Grp Volume(v), veh/h 944 0 0 528 0 0 0 642 Grp Sat Flow(s), veh/h/nin 1736 0 0 889 0 0 0 1836 Q Serve(g., s), s 53.0 0.0 0.0 64.7 0.0 0.0 0.0 351 Cycle O Clear(g., c), veh/h 708 0 0 475 0 0 0 91 V/C Ratio(X) 1.33 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00					0.90	0.90		0.90	0.90	0.90	0.90	0.90	
Cap, veh/h 576 1 130 97 379 0 0 837 77 Arrive On Green 0.41 0.41 0.41 0.41 0.50 0.00 0.00 0.50													2
Arive On Green 0.41 0.41 0.41 0.50 0.50 0.00 0.00 0.50 0.50 Sat Flow, veh/h 1412 4 320 128 761 0 0 1681 154 Grp Volume(v), veh/h 944 0 0 528 0 0 0 642 Grp Sat Flow(s), veh/h/In 1736 0 0 889 0 0 0 1836 Q Serve(g, s), s 53.0 0.0 0.0 29.6 0.0 0.0 0.0 35.1 Prop In Lane 0.81 0.18 0.19 0.00 0.00 0.0 0.0 35.1 Lane Grp Cap(C), veh/h 708 0 0 475 0 0 0 914 V/C Ratio(X) 1.33 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0					576				379		0	837	77
Sat Flow, veh/h 1412 4 320 128 761 0 0 1681 154 Grp Volume(v), veh/h 944 0 0 288 0 0 0 642 Grp Sat Flow(s), veh/h/ln 1736 0 0 889 0 0 0 0 1836 O Serve(g., s), s 53.0 0.0 0.0 29.6 0.0 0.0 0.0 35.1 Cycle O Clear(g.c), s 53.0 0.0 0.0 64.7 0.0 0.0 0.0 35.1 Prop In Lane 0.81 0.18 0.18 0.19 0.00 0.0 0.0 35.1 Prop In Lane 0.81 0.18 0.19 0.00 0.0													
Grp Volume(v), veh/h 944 0 0 528 0 0 0 642 Grp Sat Flow(s), veh/h/ln 1736 0 0 889 0 0 0 0 1836 Q Serve(g_s), s 53.0 0.0 0.0 29.6 0.0 0.0 0.0 35.1 Cycle Q Clear(g_c), s 53.0 0.0 0.64.7 0 0.0 0.0 35.1 Cycle Q Clear(g_c), s 53.0 0.0 0.64.7 0 0.0 0.0 35.1 Prop In Lane 0.81 0.18 0.19 0.00 0.00 914 V/C Ratio(X) 1.33 0.00 0.00 1.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0													
Grp Sat Flow(5),veh/h/ln 1736 0 0 889 0 0 0 0 1836 Q Serve(g_s), s 53.0 0.0 0.0 29.6 0.0 0.0 0.0 35.1 Cycle Q Clear(g_c), s 53.0 0.0 0.0 64.7 0.0 0.0 0.0 35.1 Prop In Lane 0.81 0.18 0.19 0.00 0.0 0.0 914 V/C Ratio(X) 1.33 0.00 0.00 1.11 0.00 0.00 0.00 914 HCM Platon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.0													
Q Serve(g_s), s 53.0 0.0 0.0 29.6 0.0 0.0 0.0 35.1 Cycle Q Clear(g_c), s 53.0 0.0 0.0 64.7 0.0 0.0 0.0 35.1 Prop In Lane 0.81 0.18 0.19 0.00 0.00 0.00 35.1 Lane Grp Cap(c), veh/h 708 0 0.475 0 0 0 974 V/C Ratio(X) 1.33 0.00 0.00 1.11 0.00 0.00 0.00 974 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 </td <td></td>													
Cycle Q Člear(g_c), s 53.0 0.0 0.0 64.7 0.0 0.0 0.0 35.1 Prop In Lane 0.81 0.18 0.19 0.00 0.00 0.08 Lane Grp Cap(c), veh/h 708 0 0 475 0 0 0 0 914 V/C Ratio(X) 1.33 0.00 0.00 1.11 0.00 0.00 0.00 0.00 Avail Cap(c_a), veh/h 708 0 0 475 0 0 0 914 HCM Platoon Ratio 1.00 1.0													
Prop In Lane 0.81 0.18 0.19 0.00 0.00 0.08 Lane Grp Cap(c), veh/h 708 0 0 475 0 0 0 914 V/C Ratio(X) 1.33 0.00 0.00 1.11 0.00 0.00 0.00 0.00 Avail Cap(c_a), veh/h 708 0 0 475 0 0 0 0 914 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00													
Lane Grp Cap(c), veh/h 708 0 0 475 0 0 0 914 V/C Ratio(X) 1.33 0.00 0.00 1.11 0.00 0.00 0.00 914 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 <						0.0			0.0			0.0	
V/C Ratio(X) 1.33 0.00 0.00 1.11 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>0</td> <td></td>						0			0			0	
Avail Cap(c_a), veh/h 708 0 0 475 0 0 0 914 HCM Platoon Ratio 1.00													
HCM Platon Ratio 1.00 1.0													
Upstream Filter(I) 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 Uniform Delay (d), s/veh 38.5 0.0 0.0 40.9 0.0 0.0 0.0 25.2 Incr Delay (d2), s/veh 159.9 0.0 0.0 75.2 0.0 0.0 0.0 0.0 24.4 Initial Q Delay(d3), s/veh 0.0 0.													
Uniform Delay (d), s/veh 38.5 0.00.0 40.9 0.00.00.00.025.2Incr Delay (d2), s/veh159.90.00.075.20.00.00.02.4Initial Q Delay(d3), s/veh0.00.00.00.00.00.00.00.00.0%ile BackOfQ(50%), veh/ln56.80.00.027.00.00.00.00.00.0%ile BackOfQ(50%), veh/ln56.80.00.027.00.00.00.00.018.3LnGrp Delay(d), s/veh198.40.00.0116.10.00.00.027.7LnGrp LOSFFCCApproach Vol, veh/h944528642Approach LOSFFCCTimer1234567Assigned Phs246Phs Duration (G+Y+Rc), s71.059.071.0Change Period (Y+Rc), s6.36.06.3Max G Clear Time (g_c+11), s37.155.066.7Green Ext Time (p_c), s9.50.00.00.0Intersection Summary126.0126.0													
Incr Delay (d2), s/veh 159.9 0.0 0.0 75.2 0.0 0.0 0.0 2.4 Initial Q Delay(d3), s/veh 0.0													
Initial Q Delay(d3),s/veh 0.0 18.3 LnGrp Delay(d),s/veh 198.4 0.0 0.0 116.1 0.0 0.0 0.0 0.0 27.7 C Approach Vol, veh/h 944 528 642 642 642 642 642 642 642 642 642 644 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
%ile BackOfQ(50%),veh/ln 56.8 0.0 0.0 27.0 0.0 0.0 0.0 0.0 18.3 LnGrp Delay(d),s/veh 198.4 0.0 0.0 116.1 0.0 0.0 0.0 0.0 27.7 LnGrp LOS F F C C Approach Vol, veh/h 944 528 642 Approach Delay, s/veh 198.4 116.1 27.7 Approach LOS F F C Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 71.0 59.0 71.0 59.0 71.0 59.0 71.0 59.0 71.0 59.0 71.0 59.0 71.0 59.0 71.0 59.0 71.0 59.0 71.0 59.0 71.0 50.0 66.7 66.7 67.7 66.7 66.7 66.7 66.7 66.7 66.7 66.7 66.7 66.7 66.7 66.7 66.7 66.7 66.7 66.7 66.7 66.7 66.7 <													
LnGrp Delay(d),s/veh 198.4 0.0 0.0 116.1 0.0 0.0 0.0 0.0 27.7 LnGrp LOS F F F C C Approach Vol, veh/h 944 528 642 Approach Delay, s/veh 198.4 116.1 27.7 Approach LOS F F C Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 71.0 59.0 71.0													
LnGrp LOS F F C Approach Vol, veh/h 944 528 642 Approach Delay, s/veh 198.4 116.1 27.7 Approach LOS F F C Timer 1 2 3 4 5 6 7 8 Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 6 7 8 7	. ,												
Approach Vol, veh/h 944 528 642 Approach Delay, s/veh 198.4 116.1 27.7 Approach LOS F F C Timer 1 2 3 4 5 6 7 8 Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 7 8 10 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>0.0</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td></td></td<>						0.0	0.0		0.0	0.0	0.0	0.0	
Approach Delay, s/veh 198.4 116.1 27.7 Approach LOS F C Timer 1 2 3 4 5 6 7 8 Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 7 8 7 10 59.0 71.0 7 8 Assigned Phs 2 4 6 7 8 7 <td></td> <td></td> <td></td> <td></td> <td>F</td> <td>0.1.1</td> <td></td> <td>F</td> <td>500</td> <td></td> <td></td> <td>(10</td> <td></td>					F	0.1.1		F	500			(10	
Approach LOS F F C Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 6 6 7 8 Assigned Phs 2 4 6 6 7 8 6 Phs Duration (G+Y+Rc), s 71.0 59.0 71.0 7 7 7 Change Period (Y+Rc), s 6.3 6.0 6.3 6 7 8 Max Green Setting (Gmax), s 64.7 53.0 64.7 6 7 8 Max Q Clear Time (g_c+I1), s 37.1 55.0 66.7 6 6 7 8 Intersection Summary 9.5 0.0 0.0 0.0 0.0 126.0													
Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 6 6 6 7 8 Phs Duration (G+Y+Rc), s 71.0 59.0 71.0 6.3 6 6 7 8 Change Period (Y+Rc), s 6.3 6.0 6.3 6 7 8 6 7 8 7													
Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 71.0 59.0 71.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 64.7 53.0 64.7 Max Q Clear Time (g_c+I1), s 37.1 55.0 66.7 Green Ext Time (p_c), s 9.5 0.0 0.0 Intersection Summary 126.0 126.0	Approach LOS					F			F			С	
Phs Duration (G+Y+Rc), s 71.0 59.0 71.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 64.7 53.0 64.7 Max Q Clear Time (g_c+I1), s 37.1 55.0 66.7 Green Ext Time (p_c), s 9.5 0.0 0.0 Intersection Summary 126.0 126.0		1	2	3	4	5	6	7	8				
Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 64.7 53.0 64.7 Max Q Clear Time (g_c+l1), s 37.1 55.0 66.7 Green Ext Time (p_c), s 9.5 0.0 0.0 Intersection Summary 126.0 126.0	Assigned Phs		2		4		6						
Max Green Setting (Gmax), s 64.7 53.0 64.7 Max Q Clear Time (g_c+I1), s 37.1 55.0 66.7 Green Ext Time (p_c), s 9.5 0.0 0.0 Intersection Summary 126.0 126.0	Phs Duration (G+Y+Rc), s				59.0								
Max Q Clear Time (g_c+I1), s 37.1 55.0 66.7 Green Ext Time (p_c), s 9.5 0.0 0.0 Intersection Summary 126.0 126.0	Change Period (Y+Rc), s		6.3		6.0		6.3						
Green Ext Time (p_c), s 9.5 0.0 0.0 Intersection Summary Intersection Summary Intersection Summary HCM 2010 Ctrl Delay 126.0 Intersection Summary	Max Green Setting (Gmax), s		64.7		53.0		64.7						
Intersection Summary HCM 2010 Ctrl Delay 126.0	Max Q Clear Time (g_c+I1), s		37.1		55.0		66.7						
HCM 2010 Ctrl Delay 126.0			9.5		0.0		0.0						
	Intersection Summary												
	HCM 2010 Ctrl Delay			126.0									
	HCM 2010 LOS			F									

Summary of All Intervals

				_	
Run Number	1	2	3	Avg	
Start Time	7:20	7:20	7:20	7:20	
End Time	8:30	8:30	8:30	8:30	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	2991	2611	2674	2759	
Vehs Exited	2717	2371	2487	2526	
Starting Vehs	249	303	325	292	
Ending Vehs	523	543	512	525	
Travel Distance (mi)	3020	2530	2666	2738	
Travel Time (hr)	1418.0	1635.4	1594.7	1549.4	
Total Delay (hr)	1363.2	1587.9	1545.1	1498.7	
Total Stops	2362	2280	2178	2272	
Fuel Used (gal)	432.8	466.4	461.1	453.4	

Interval #0 Information Seeding

Start Time	7:20		
End Time	7:30		
Total Time (min)	10		
Volumes adjusted by Grov	vth Factors.		
No data recorded this inte	rval.		

Interval #1 Information Recording

Start Time	7:30	
End Time	8:30	
Total Time (min)	60	
Volumes adjusted by Gro	wth Factors.	

Run Number	1	2	3	Avg
Vehs Entered	2991	2611	2674	2759
Vehs Exited	2717	2371	2487	2526
Starting Vehs	249	303	325	292
Ending Vehs	523	543	512	525
Travel Distance (mi)	3020	2530	2666	2738
Travel Time (hr)	1418.0	1635.4	1594.7	1549.4
Total Delay (hr)	1363.2	1587.9	1545.1	1498.7
Total Stops	2362	2280	2178	2272
Fuel Used (gal)	432.8	466.4	461.1	453.4

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	TR	LT
Maximum Queue (ft)	870	48	65	526
Average Queue (ft)	798	35	31	510
95th Queue (ft)	1055	51	59	517
Link Distance (ft)	743	38	20	508
Upstream Blk Time (%)	82	69	3	96
Queuing Penalty (veh)	134	16	36	1172
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 2: Columbia Ave & I-26 WB Ramps

Movement	WB	NB	SB
Directions Served	LTR	LT	TR
Maximum Queue (ft)	680	320	873
Average Queue (ft)	666	179	861
95th Queue (ft)	679	281	870
Link Distance (ft)	537	508	858
Upstream Blk Time (%)	100		100
Queuing Penalty (veh)	848		0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

2.2

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 44			- 44			e î -			र्भ	
Traffic Vol, veh/h	45	8	121	1	0	10	0	621	791	246	1376	0
Future Vol, veh/h	45	8	121	1	0	10	0	621	791	246	1376	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	50	9	134	1	0	11	0	690	879	273	1529	0

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	3211	3645	1529	3276	3205	1129	-	0	0	1569	0	0
Stage 1	2076	2076	-	1129	1129	-	-	-	-	-	-	-
Stage 2	1135	1569	-	2147	2076	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	-	-	-	2.218	-	-
Pot Cap-1 Maneuver	~ 6	~ 5	144	5	10	248	0	-	-	420	-	0
Stage 1	70	95	-	248	279	-	0	-	-	-	-	0
Stage 2	246	171	-	64	95	-	0	-	-	-	-	0
Platoon blocked, %								-	-		-	
Mov Cap-1 Maneuver	-	0	144	-	0	248	-	-	-	420	-	-
Mov Cap-2 Maneuver	-	0	-	-	0	-	-	-	-	-	-	-
Stage 1	70	0	-	248	279	-	-	-	-	-	-	-
Stage 2	235	171	-	-	0	-	-	-	-	-	-	-
-												

Approach	EB	WB	NB	SB
HCM Control Delay, s			0	4.3
HCM LOS	-	-		

Minor Lane/Major Mvmt	NBT	NBR EE	BLn1WB	Ln1	SBL	SBT	
Capacity (veh/h)	-	-	-	-	420	-	
HCM Lane V/C Ratio	-	-	-	-	0.651	-	
HCM Control Delay (s)	-	-	-	-	28.2	0	
HCM Lane LOS	-	-	-	-	D	А	
HCM 95th %tile Q(veh)	-	-	-	-	4.5	-	
Notes							

-: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

Lanes, Volumes, Timings 2: Columbia Ave & I-26 WB Ramps

		Jitan	-		-					、		
	٦	-	•	1	-	~		T		>	Ŧ	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations								र्भ			ef 👘	
Traffic Volume (vph)	0	0	0	953	2	245	159	517	0	0	669	35
Future Volume (vph)	0	0	0	953	2	245	159	517	0	0	669	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	0	0	0	1742	0	0	1840	0	0	1850	0
Flt Permitted					0.962			0.272				
Satd. Flow (perm)	0	0	0	0	1742	0	0	507	0	0	1850	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					10						3	
Link Speed (mph)		45			45			35			35	
Link Distance (ft)		883			668			593			885	
Travel Time (s)		13.4			10.1			11.6			17.2	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Lane Group Flow (vph)	0	0	0	0	1333	0	0	751	0	0	782	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left		Left	Left		Left	Left		Left	Left	
Median Width(ft)	Leit	Len 0	Right	Leit	Len 0	Right	Leit	Len 0	Right	Leit	Len 0	Right
Link Offset(ft)												
.,		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	1.00	1 00	1.00	1 00	1.00	1 00	1.00	1 00	1.00	1.00	4 00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type				Perm	NA		Perm	NA			NA	
Protected Phases					4			6			2	
Permitted Phases				4			6				_	
Detector Phase				4	4		6	6			2	
Switch Phase												
Minimum Initial (s)				10.0	10.0		10.0	10.0			10.0	
Minimum Split (s)				22.0	22.0		22.0	22.0			22.0	
Total Split (s)				64.0	64.0		86.0	86.0			86.0	
Total Split (%)				42.7%	42.7%		57.3%	57.3%			57.3%	
Maximum Green (s)				58.0	58.0		79.7	79.7			79.7	
Yellow Time (s)				4.0	4.0		4.3	4.3			4.3	
All-Red Time (s)				2.0	2.0		2.0	2.0			2.0	
Lost Time Adjust (s)					0.0			0.0			0.0	
Total Lost Time (s)					6.0			6.3			6.3	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)				4.0	4.0		3.0	3.0			3.0	
Recall Mode				None	None		Min	Min			Min	
Act Effct Green (s)					58.0			79.7			79.7	
Actuated g/C Ratio					0.39			0.53			0.53	
v/c Ratio					1.96			2.79			0.79	
Control Delay					465.5			834.9			35.8	
Queue Delay					0.0			0.0			0.0	
Total Delay					465.5			834.9			35.8	
LOS					F			F			00.0 D	
Approach Delay					465.5			834.9			35.8	
					100.0			007.7			00.0	

Synchro 9 Report

Lanes, Volumes, Timings 2: Columbia Ave & I-26 WB Ramps

	۶	-	\mathbf{r}	4	-	•	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					F			F			D	
Queue Length 50th (ft)					~2026			~997			603	
Queue Length 95th (ft)					#2295			#1252			790	
Internal Link Dist (ft)		803			588			513			805	
Turn Bay Length (ft)												
Base Capacity (vph)					679			269			984	
Starvation Cap Reductn					0			0			0	
Spillback Cap Reductn					0			0			0	
Storage Cap Reductn					0			0			0	
Reduced v/c Ratio					1.96			2.79			0.79	
Intersection Summary												
Area Type:	Other											
Cycle Length: 150												
Actuated Cycle Length: 150												
Natural Cycle: 150												
Control Type: Actuated-Unc	oordinated											
Maximum v/c Ratio: 2.79												
Intersection Signal Delay: 44					ntersectior							
Intersection Capacity Utiliza												
Analysis Period (min) 15												
 Volume exceeds capacit 			cally infin	ite.								
Queue shown is maximu												
# 95th percentile volume e			ieue may	be longe	er.							
Queue shown is maximu	m after two	o cycles.										

Splits and Phases: 2: Columbia Ave & I-26 WB Ramps

Ø2	₩ Ø4	
86 s	64 s	
< <td>d</td> <td></td>	d	
86 s		

	≯	-	\mathbf{F}	4	+	×	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					- 4 >			- सी			e (
Traffic Volume (veh/h)	0	0	0	953	2	245	159	517	0	0	669	35
Future Volume (veh/h)	0	0	0	953	2	245	159	517	0	0	669	35
Number				7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				1900	1863	1900	1900	1863	0	0	1863	1900
Adj Flow Rate, veh/h				1059	2	272	177	574	0	0	743	39
Adj No. of Lanes				0	1	0	0	1	0	0	1	0
Peak Hour Factor				0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %				0	2	0	2	2	0	0	2	2
Cap, veh/h				532	1	137	88	213	0	0	932	49
Arrive On Green				0.39	0.39	0.39	0.53	0.53	0.00	0.00	0.53	0.53
Sat Flow, veh/h				1376	3	353	110	401	0	0	1754	92
Grp Volume(v), veh/h				1333	0	0	751	0	0	0	0	782
Grp Sat Flow(s), veh/h/ln				1732	0	0	512	0	0	0	0	1846
Q Serve(g_s), s				58.0	0.0	0.0	28.1	0.0	0.0	0.0	0.0	51.6
Cycle Q Clear(g_c), s				58.0	0.0	0.0	79.7	0.0	0.0	0.0	0.0	51.6
Prop In Lane				0.79		0.20	0.24		0.00	0.00		0.05
Lane Grp Cap(c), veh/h				670	0	0	302	0	0	0	0	981
V/C Ratio(X)				1.99	0.00	0.00	2.49	0.00	0.00	0.00	0.00	0.80
Avail Cap(c_a), veh/h				670	0	0	302	0	0	0	0	981
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh				46.0	0.0	0.0	57.3	0.0	0.0	0.0	0.0	28.6
Incr Delay (d2), s/veh				451.2	0.0	0.0	680.7	0.0	0.0	0.0	0.0	4.7
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				111.6	0.0	0.0	69.5	0.0	0.0	0.0	0.0	27.6
LnGrp Delay(d),s/veh				497.2	0.0	0.0	738.0	0.0	0.0	0.0	0.0	33.2
LnGrp LOS				F	0.0	0.0	F	0.0	0.0	0.0	0.0	C
Approach Vol, veh/h				<u> </u>	1333		<u> </u>	751			782	
Approach Delay, s/veh					497.2			738.0			33.2	
Approach LOS					477.2 F			730.0 F			55.2 C	
	4	0	0			,	7				Ŭ	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6						
Phs Duration (G+Y+Rc), s		86.0		64.0		86.0						
Change Period (Y+Rc), s		6.3		6.0		6.3						
Max Green Setting (Gmax), s		79.7		58.0		79.7						
Max Q Clear Time (g_c+l1), s		53.6		60.0		81.7						
Green Ext Time (p_c), s		14.0		0.0		0.0						
Intersection Summary												
HCM 2010 Ctrl Delay			433.7									
HCM 2010 LOS			F									

Summary of All Intervals

Dup Number	1	ſ	n	Δια	
Run Number		2	3	Avg	
Start Time	4:35	4:35	4:35	4:35	
End Time	5:45	5:45	5:45	5:45	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	2216	2731	2347	2431	
Vehs Exited	2050	2642	2252	2314	
Starting Vehs	393	402	412	403	
Ending Vehs	559	491	507	519	
Travel Distance (mi)	2049	2828	2315	2397	
Travel Time (hr)	2471.4	2238.0	2322.1	2343.8	
Total Delay (hr)	2430.7	2186.0	2277.5	2298.1	
Total Stops	1925	2105	2187	2071	
Fuel Used (gal)	637.5	614.3	615.2	622.3	

Interval #0 Information Seeding

Start Time	4:35		
End Time	4:45		
Total Time (min)	10		
Volumes adjusted by Gro	wth Factors.		
No data recorded this inte	erval.		

Interval #1 Information Recording

Start Time	4:45	
End Time	5:45	
Total Time (min)	60	
Volumes adjusted by	Growth Factors.	

Run Number 2 1 3 Avg Vehs Entered 2216 2731 2347 2431 Vehs Exited 2050 2642 2252 2314 Starting Vehs 393 402 412 403 Ending Vehs 559 491 507 519 Travel Distance (mi) 2049 2828 2315 2397 Travel Time (hr) 2471.4 2238.0 2322.1 2343.8 Total Delay (hr) 2430.7 2277.5 2186.0 2298.1 Total Stops 1925 2105 2187 2071 Fuel Used (gal) 637.5 614.3 615.2 622.3

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	EB	WB	NB	SB
	==			
Directions Served	LTR	LTR	TR	LT
Maximum Queue (ft)	876	33	61	524
Average Queue (ft)	852	8	19	509
95th Queue (ft)	942	27	50	516
Link Distance (ft)	743	38	20	508
Upstream Blk Time (%)	94	0	1	96
Queuing Penalty (veh)	164	0	20	1565
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 2: Columbia Ave & I-26 WB Ramps

Movement	WB	NB	SB
Directions Served	LTR	LT	TR
Maximum Queue (ft)	680	488	874
Average Queue (ft)	666	281	860
95th Queue (ft)	681	440	872
Link Distance (ft)	537	508	858
Upstream Blk Time (%)	100	0	100
Queuing Penalty (veh)	1198	0	0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

APPENDIX G

NO-BUILD 2020 HCS REPORTS

Fax:

	_Operational Anal	ysis	
Analyst:	AECOM		
1	AECOM		
	6/30/2016		
Analysis Time Period:			
-	I-26 EB		
	West of SC 202		
Jurisdiction:			
	2020 No-Build		
Description: S-48 IMR			
	_Flow Inputs and	Adjustments	
Volume, V		1385	veh/h
Peak-hour factor, PHF		0.90	,
Peak 15-min volume, v15		385	v
Trucks and buses		4	°
Recreational vehicles		0	00
Terrain type:		Rolling	-
Grade		_	00
Segment length		-	mi
Trucks and buses PCE, EI		2.5	
Recreational vehicle PCE		2.0	
Heavy vehicle adjustment		0.943	
Driver population factor		1.00	
Flow rate, vp	, <u> </u>	816	pc/h/ln
	Speed Inputs and	l Adjustments	
Lane width		12.0	ft
Right-side lateral clear	ance	6.0	ft
Total ramp density, TRD	ance	0.33	ramps/mi
Number of lanes, N		2	
Free-flow speed:		Base	
FFS or BFFS		75.4	mi/h
Lane width adjustment, f	Т. М	0.0	mi/h
Lateral clearance adjust		0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
file filw speed, filb		/ 1.1	
	_LOS and Performa	nce Measures	
Flow rate, vp		816	pc/h/ln
Free-flow speed, FFS	_	74.1	mi/h
Average passenger-car sp	eed, S	75.0	mi/h
Number of lanes, N		2	
Density, D Level of service, LOS		10.9	pc/mi/ln
		A	F = /= / =

Fax:

_____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 EB From/To: Between S-48 and SC 202 Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1546 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 429 v 4 Trucks and buses 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 910 pc/h/ln Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 910 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N 2 Density, D 12.1 pc/mi/ln Level of service, LOS B

Fax:

_____Operational Analysis_____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 EB From/To: Between S-48 and US 176 Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 2475 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 688 v 4 Trucks and buses 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 1458 pc/h/ln Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1458 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 72.7 mi/h Number of lanes, N 2 Density, D 20.1 pc/mi/ln Level of service, LOS С

Fax:

	Operational An	alysis	
Analyst:	AECOM		
Agency or Company:	AECOM		
	6/30/2016		
Analysis Time Period:			
Freeway/Direction:			
From/To:	East of US176		
Jurisdiction:			
Analysis Year:	2020 No-Build		
Description: S-48 IMR			
	Flow Inputs an	d Adjustments	
Volume, V		3909	veh/h
Peak-hour factor, PHF		0.90	
Peak 15-min volume, v1	5	1086	v
Trucks and buses	5	4	8
Recreational vehicles		0	8 8
Terrain type:		Rolling	0
Grade		-	00
Segment length		_	mi
Trucks and buses PCE,	RT	2.5	
Recreational vehicle P		2.0	
Heavy vehicle adjustme		0.943	
Driver population fact		1.00	
Flow rate, vp	01, 19	2302	pc/h/ln
	Speed Inputs a	nd Adjustments	
	1		
Lane width		12.0	ft
Right-side lateral cle		6.0	ft
Total ramp density, TR	D	0.33	ramps/mi
Number of lanes, N		2	
Free-flow speed:		Base	
FFS or BFFS		75.4	mi/h
Lane width adjustment,		0.0	mi/h
Lateral clearance adju	stment, fLC	0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Perfor	mance Measures	
Flow rate, vp		2302	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car	speed, S	56.2	mi/h
Number of lanes, N		2	
Density, D		40.9	pc/mi/ln
Level of service, LOS		E	_

Fax:

	_Operational Anal	ysis	
Analyst:	AECOM		
1	AECOM		
	6/30/2016		
Analysis Time Period:			
-	I-26 WB		
_	East of US 176		
Jurisdiction:			
	2020 No-Build		
Description: S-48 IMR			
	_Flow Inputs and	Adjustments	
Volume, V		2015	veh/h
Peak-hour factor, PHF		0.90	,
Peak 15-min volume, v15		560	v
Trucks and buses		4	₹ •
Recreational vehicles		0	00
Terrain type:		Rolling	Ŭ
Grade		-	₽0
Segment length		_	mi
Trucks and buses PCE, EI	,	2.5	
Recreational vehicle PCE		2.0	
Heavy vehicle adjustment		0.943	
Driver population factor		1.00	
Flow rate, vp	/ - P	1187	pc/h/ln
	Speed Inputs and	l Adjustments	
Lane width		12.0	ft
			ft
Right-side lateral clear	ance	6.0 0.33	
Total ramp density, TRD		2	ramps/mi
Number of lanes, N Free-flow speed:			
FFS or BFFS		Base 75.4	mi/h
	T 1.7		
Lane width adjustment, f		0.0	mi/h
Lateral clearance adjust	ment, ILC	0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	_LOS and Performa	nce Measures	
Flow rate, vp		1187	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car sp	eed, S	74.6	mi/h
Number of lanes, N		2	
Density, D Level of service, LOS		15.9	pc/mi/ln

Fax:

_____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 WB From/To: Between S-48 and US 176 Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1713 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 476 v Trucks and buses 4 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln 1009 Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base 75.4 FFS or BFFS mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1009 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N 2 Density, D 13.5 pc/mi/ln Level of service, LOS B

Fax:

_____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 WB From/To: Between S-48 and SC 202 Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ 1004 Volume, V veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 279 v Trucks and buses 4 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 591 pc/h/ln Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 591 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N 2 Density, D 7.9 pc/mi/ln Level of service, LOS А

Fax:

	Operational Anal	ysis	
Analyst:	AECOM		
Agency or Company:	AECOM		
	6/30/2016		
Analysis Time Period:			
-	I-26 WB		
From/To:	West of SC 202		
Jurisdiction:			
	2020 No-Build		
Description: S-48 IMR			
	Flow Inputs and	Adjustments	
Volume, V		1047	veh/h
Peak-hour factor, PHF		0.90	,
Peak 15-min volume, v15		291	v
Trucks and buses		4	00
Recreational vehicles		0	00 00
Terrain type:		Rolling	Ŭ
Grade		-	8
Segment length		-	mi
Trucks and buses PCE, E	Ψ	2.5	
Recreational vehicle PC		2.0	
Heavy vehicle adjustmen		0.943	
Driver population facto		1.00	
Flow rate, vp	1, 19	617	pc/h/ln
	Speed Inputs and	Adjustments	
		-	
Lane width		12.0	ft
Right-side lateral clea		6.0	ft
Total ramp density, TRD		0.33	ramps/mi
Number of lanes, N		2	
Free-flow speed:		Base	
FFS or BFFS	_	75.4	mi/h
Lane width adjustment,		0.0	mi/h
Lateral clearance adjus	tment, fLC	0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Performa	nce Measures	
Flow rate, vp		617	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
1100 1100 Speed, 115			
Average passenger-car s	peed, S	75.0	mi/h
—	peed, S	75.0 2	mi/h
Average passenger-car s	peed, S		mi/h pc/mi/ln
Fax:

	Operational Ana	alysis	
Analyst:	AECOM		
Agency or Company:			
	6/30/2016		
Analysis Time Period:			
-	I-26 EB		
From/To:	West of SC 202		
Jurisdiction:			
	2020 No-Build		
Description: S-48 IMR			
	Flow Inputs and	d Adjustments	
Volume, V		1714	veh/h
Peak-hour factor, PHF		0.90	· C11/ 11
Peak 15-min volume, v1	5	476	V
Trucks and buses		4	◆ ⊗
Recreational vehicles		0	0 00
Terrain type:		Rolling	0
Grade		-	8
Segment length		_	mi
Trucks and buses PCE, 1	RТ	2.5	
Recreational vehicle P		2.0	
Heavy vehicle adjustmen		0.943	
Driver population facto		1.00	
Flow rate, vp	51, IP	1009	pc/h/ln
	Speed Inputs ar	nd Adjustments	
Lane width		12.0	ft
Right-side lateral clea		6.0	ft
Total ramp density, TRI	D	0.33	ramps/mi
Number of lanes, N		2	
Free-flow speed:		Base	
FFS or BFFS		75.4	mi/h
Lane width adjustment,		0.0	mi/h
Lateral clearance adjus	stment, fLC	0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Perform	mance Measures	
Flow rate, vp		1009	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car	speed, S	75.0	mi/h
Number of lanes, N		2	
Density, D		13.5	pc/mi/ln
Level of service, LOS		В	

Fax:

_____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 EB From/To: Between S-48 and SC 202 Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1677 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 466 v Trucks and buses 4 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 988 pc/h/ln Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 988 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N 2 Density, D 13.2 pc/mi/ln Level of service, LOS B

Fax:

_____Operational Analysis_____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 EB From/To: Between S-48 and US 176 Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 2499 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 694 v 4 Trucks and buses 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % -Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln 1472 Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base 75.4 FFS or BFFS mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1472 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 72.5 mi/h Number of lanes, N 2 Density, D 20.3 pc/mi/ln Level of service, LOS С

Fax:

	Operational Ana	alysis	
Analyst:	AECOM		
Agency or Company:	AECOM		
	6/30/2016		
Analysis Time Period:			
—	I-26 EB		
From/To:	East of US176		
Jurisdiction:			
	2020 No-Build		
Description: S-48 IMR			
	Flow Inputs and	d Adjustments	
Volume, V		3144	veh/h
Peak-hour factor, PHF		0.90	· (11/ 11
Peak 15-min volume, v1	5	873	V
Trucks and buses	5	4	8
Recreational vehicles		0	8
Terrain type:		Rolling	0
Grade		-	8
Segment length		_	mi
Trucks and buses PCE, 1	RT	2.5	
Recreational vehicle PO		2.0	
Heavy vehicle adjustmen		0.943	
Driver population facto		1.00	
Flow rate, vp	51, 12	1851	pc/h/ln
	Chood Inputs of	ad Adjustmonts	- · · ·
	Speed inputs al	la Aujustments	
Lane width		12.0	ft
Right-side lateral clea	arance	6.0	ft
Total ramp density, TRI	D	0.33	ramps/mi
Number of lanes, N		2	
Free-flow speed:		Base	
FFS or BFFS		75.4	mi/h
Lane width adjustment,	fLW	0.0	mi/h
Lateral clearance adjus	stment, fLC	0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Perform	mance Measures	
Flow rate, vp		1851	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car s	speed, S	67.0	mi/h
Number of lanes, N		2	
Density, D		27.6	pc/mi/ln
Level of service, LOS		D	

Fax:

	Operational An	alysis	
Analyst:	AECOM		
Agency or Company:	AECOM		
	6/30/2016		
Analysis Time Period:			
Freeway/Direction:	I-26 WB		
From/To:	East of US 176		
Jurisdiction:			
Analysis Year:	2020 No-Build		
Description: S-48 IMR			
	Flow Inputs an	d Adjustments	
Volume, V		3790	veh/h
Peak-hour factor, PHF		0.90	
Peak 15-min volume, v1	5	1053	V
Trucks and buses		4	e
Recreational vehicles		0	8
Terrain type:		Rolling	
Grade		-	8
Segment length		-	mi
Trucks and buses PCE, 1	ET	2.5	
Recreational vehicle Po	CE, ER	2.0	
Heavy vehicle adjustmen	nt, fHV	0.943	
Driver population facto	or, fp	1.00	
Flow rate, vp		2232	pc/h/ln
	Speed Inputs a	nd Adjustments	
Lane width		12.0	ft
Right-side lateral clea	arance	6.0	ft
Total ramp density, TRI		0.33	ramps/mi
Number of lanes, N		2	_
Free-flow speed:		Base	
FFS or BFFS		75.4	mi/h
Lane width adjustment,	fLW	0.0	mi/h
Lateral clearance adjus	stment, fLC	0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Perfor	mance Measures	
Flow rate, vp		2232	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car a	speed, S	58.2	mi/h
Number of lanes, N		2	
Density, D		38.4	pc/mi/ln
Level of service, LOS		E	

Fax:

_____Operational Analysis_____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 WB From/To: Between S-48 and US 176 Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 2523 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 701 v Trucks and buses 4 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % -Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln 1486 Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base 75.4 FFS or BFFS mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1486 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 72.4 mi/h Number of lanes, N 2 Density, D 20.5 pc/mi/ln Level of service, LOS С

Fax:

_____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 WB From/To: Between S-48 and SC 202 Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1519 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 422 v 4 Trucks and buses 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 895 pc/h/ln Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 895 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N 2 Density, D 11.9 pc/mi/ln Level of service, LOS B

Fax:

	Operational An	alysis	
Analyst:	AECOM		
Agency or Company:			
	6/30/2016		
Analysis Time Period:			
-	I-26 WB		
From/To:	West of SC 202		
Jurisdiction:			
Analysis Year:	2020 No-Build		
Description: S-48 IMR			
	Flow Inputs an	d Adjustments	
Volume, V		1459	veh/h
Peak-hour factor, PHF		0.90	
Peak 15-min volume, v1	5	405	v
Trucks and buses	-	4	8
Recreational vehicles		0	₽ ₽
Terrain type:		Rolling	
Grade		-	00 00
Segment length		-	mi
Trucks and buses PCE, 1	ET	2.5	
Recreational vehicle Po	CE, ER	2.0	
Heavy vehicle adjustmen	nt, fHV	0.943	
Driver population facto	or, fp	1.00	
Flow rate, vp		859	pc/h/ln
	Speed Inputs a	nd Adjustments	
Lane width		12.0	ft
Right-side lateral clea	arance	6.0	ft
Total ramp density, TRI		0.33	ramps/mi
Number of lanes, N		2	
Free-flow speed:		Base	
FFS or BFFS		75.4	mi/h
Lane width adjustment,	fLW	0.0	mi/h
Lateral clearance adjus	stment, fLC	0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Perfor	mance Measures	
Flow rate, vp		859	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car a	speed, S	75.0	mi/h
Number of lanes, N		2	
Density, D		11.5	pc/mi/ln
Level of service, LOS		В	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: SC-202 EB On-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1347 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 25.0 mph Volume on ramp 199 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 38 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1050 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1347 199 38 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 374 55 11 v 2 0 2 0 Trucks and buses 4 8 0 Recreational vehicles 8 Rolling Rolling Rolling Terrain type: َ mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Driver population factor, fP	0.943 1.00 1586	0.971 1.00 228		pcph
Estimation of `	V12 Merge	Areas		
L = (Equa EQ	tion 13-6	or 13-7)		
P = 1.000 Using FM	Equation	0		
v = v (P) = 1586 12 F FM	pc/h			
Capacity	Checks			
Actual v 1814 FO	Maximum 4800		LOS F? No	
vorv 0 pc/h 3 av34	(Equatio	n 13-14	or 13-17)	
Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 1586 (1) 12A	Equation 1	3-15, 13	-16, 13-18,	or 13-19)
Flow Entering Max Actual Max v 1814 460 R12 Level of Service Determ	Desirable 0		Violation? No	
Density, D = $5.475 + 0.00734 v + 0.007$ R R Level of service for ramp-freeway junct.	12	A		pc/mi/ln
Speed Estin	mation			
Intermediate speed variable,	M = S	0.325		
Space mean speed in ramp influence area		64.3	mph	
Space mean speed in outer lanes,		N/A	mph	
Space mean speed for all vehicles,	0	64.3	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB On-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1382 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 45.0 mph Volume on ramp 1093 vph Length of first accel/decel lane 1500 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 164 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1725 ft _____Conversion to pc/h Under Base Conditions_____ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 1382 1093 164 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 384 304 46 v 2 0 Trucks and buses 4 2 8 0 0 Recreational vehicles 8 Rolling Rolling Terrain type: Rolling َ mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 1628		1.00	pcph
Estimation of	V12 Merge	Areas		
L = (Equa EQ	ation 13-6	or 13-7)		
P = 1.000 Using FM	g Equation	0		
v = v (P) = 1628 12 F FM	B pc/h			
Capacity	/ Checks			
Actual v 2879 FO	Maximum 4800		LOS F? No	
vorv 0 pc/h 3 av34	(Equatio	on 13-14	or 13-17)	
Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 1628 (12A	Equation 2	13-15, 13	3-16, 13-18,	or 13-19)
Flow Entering M Actual Max v 2879 460 R12 Level of Service Deter	Desirable	2	Violation? No	
Density, D = $5.475 + 0.00734 v + 0.007$ R R Level of service for ramp-freeway junct	12	A	7	pc/mi/ln
Speed Esti	mation			
Intermediate speed variable,	M = S	= 0.255		
Space mean speed in ramp influence area	a, S =	= 66.6	mph	
Space mean speed in outer lanes,	R S = 0	= N/A	mph	
Space mean speed for all vehicles,	Ũ	= 66.6	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: US176 EB On-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2354 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 25.0 mph Volume on ramp 1555 vph Length of first accel/decel lane 1500 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 121 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 900 ft _____Conversion to pc/h Under Base Conditions_____ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 2354 1555 121 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 654 432 34 v 4 2 0 Trucks and buses 2 8 0 0 Recreational vehicles 8 Rolling Rolling Terrain type: Level e mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 1.5 Recreational vehicle PCE, ER 2.0 2.0 1.2

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 2772	0.971 1.00 1780		pcph
Estimation	of V12 Merge	Areas		
EQ	Equation 13-6			
P = 1.000 Us FM	sing Equation	0		
v = v (P) = 2 12 F FM	2772 pc/h			
Capac	city Checks			
Actual v 4552 FO	Maximum 4800		LOS F? No	
v or v 0 pc/h	n (Equati	on 13-14 d	or 13-17)	
3 av34 Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 2772 12A	(Equation	13-15, 13-	-16, 13-18,	or 13-19)
	Max Desirabl 4600	е	Violation? No	
Density, D = $5.475 + 0.00734 v + 0.$ R R Level of service for ramp-freeway ju	12	A		pc/mi/ln
Speed H	Istimation			
Intermediate speed variable,	M	= 0.616		
Space mean speed in ramp influence a	area, S	= 54.7	mph	
Space mean speed in outer lanes,	R S	= N/A	mph	
Space mean speed for all vehicles,	0 S	= 54.7	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: US 176 WB On-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1533 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 25.0 mph Volume on ramp 180 vph Length of first accel/decel lane 1425 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 482 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 775 ft _____Conversion to pc/h Under Base Conditions_____ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 1533 180 482 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 426 50 134 v 4 2 0 2 % 0 % Trucks and buses 0 Recreational vehicles Rolling Rolling Terrain type: Rolling َ mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Driver population factor, fP	0.943 1.00 1806	0.971 1.00 206		pcph
Estimation of V	V12 Merge	Areas		
L = (Equat EQ	tion 13-6	or 13-7)		
P = 1.000 Using FM	Equation	0		
v = v (P) = 1806 12 F FM	pc/h			
Capacity	Checks			
	Maximum 4800		LOS F? No	
vorv 0 pc/h 3 av34	(Equatio	n 13-14	or 13-17)	
Is v or v > 2700 pc/h? 3 av34	No			
Is v or v > $1.5 v / 2$ 3 av 34 12	No			
	Equation 1	3-15, 13	-16, 13-18,	or 13-19)
Flow Entering Ma Actual Max v 2012 4600 R12 Level of Service Determ	Desirable 0		Violation? No	
Density, D = $5.475 + 0.00734 v + 0.0078$ R R Level of service for ramp-freeway junct:	12	A		pc/mi/ln
Speed Estin	mation			
Intermediate speed variable,	M = S	0.279		
Space mean speed in ramp influence area		65.8	mph	
Space mean speed in outer lanes,		N/A	mph	
Space mean speed for all vehicles,	0	65.8	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB On-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 Free-flow speed on freeway 75.0 mph Volume on freeway 863 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 45.0 mph Volume on ramp 141 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 850 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1475 ft _____Conversion to pc/h Under Base Conditions______ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 141 863 850 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 240 39 236 v 4 2 0 2 % 0 % Trucks and buses Recreational vehicles 0 Rolling Rolling Terrain type: Rolling e mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 1016	0.971 1.00 161	0.971 1.00 973	pcph
Estimatio	on of V12 Merg	e Areas		
L =	(Equation 13-	6 or 13-7)		
EQ P = 1.000 FM	Using Equatio	n 0		
v = v (P) = 12 F FM	1016 pc/h			
Caj	pacity Checks_			
Actual v 1177 FO	Maximu 4800	m Lo No	DS F? D	
-	c/h (Equat	ion 13-14 o:	r 13-17)	
Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 1016 12A	(Equation	13-15, 13-	16, 13-18,	or 13-19)
	ring Merge Inf Max Desirab 4600 Determination	le	Violation? No	
Density, D = $5.475 + 0.00734 v + R R$ Level of service for ramp-freeway	12	A		pc/mi/ln
Speed	d Estimation			
Intermediate speed variable,	M	= 0.223		
Space mean speed in ramp influence	e area, S	= 67.6	mph	
Space mean speed in outer lanes,	R S O		mph	
Space mean speed for all vehicles	0	= 67.6	mph 	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: SC-202 WB On-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 Free-flow speed on freeway 75.0 mph Volume on freeway 977 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 45.0 mph Volume on ramp 70 vph Length of first accel/decel lane 525 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 27 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1000 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 977 70 27 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 271 19 8 v 2 0 4 2 0 Trucks and buses 8 Recreational vehicles 0 8 Rolling Rolling Terrain type: Rolling 00 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 1151	0.971 1.00 80	0.971 1.00 31	pcph
Estimation of	of V12 Merge	Areas		
	quation 13-6	or 13-7)		
EQ P = 1.000 Usi FM	ing Equation	0		
v = v (P) = 11 12 F FM	151 pc/h			
Capaci	ity Checks			
Actual v 1231 FO	Maximum 4800	L N	OS F? o	
v or v 0 pc/h	(Equatio	on 13-14 o	r 13-17)	
3 av34 Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 1151 12A	(Equation 2	13-15, 13-	16, 13-18,	or 13-19)
	Max Desirable 1600	2	Violation? No	
Density, D = $5.475 + 0.00734 v + 0.0$ R R Level of service for ramp-freeway jur	12	A		pc/mi/ln
Speed Es	stimation			
Intermediate speed variable,	M = S	= 0.287		
Space mean speed in ramp influence as	rea, S	= 65.5	mph	
Space mean speed in outer lanes,		= N/A	mph	
Space mean speed for all vehicles,	0 S =	= 65.5	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: SC-202 EB On-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1640 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 25.0 mph Volume on ramp 37 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 74 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1050 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1640 37 74 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 456 10 21 v 4 2 0 2 0 Trucks and buses 8 0 Recreational vehicles 8 Rolling Rolling Terrain type: Rolling َ mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 1932	0.971 1.00 42	0.971 1.00 85	pcph
Estimation o	f V12 Merge	Areas		
-	uation 13-6	or 13-7)		
EQ P = 1.000 Usi FM	ng Equation	0		
v = v (P) = 19 12 F FM	32 pc/h			
Capaci	ty Checks			
Actual v 1974 FO	Maximum 4800		JOS F? Io	
v or v 0 pc/h	(Equatio	on 13-14 c	or 13-17)	
3 av34 Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 1932 12A	(Equation	13-15, 13-	-16, 13-18,	or 13-19)
	ax Desirable 600	e	Violation? No	
Density, D = $5.475 + 0.00734 v + 0.0$ R R Level of service for ramp-freeway jun	12	A		pc/mi/ln
Speed Es	timation			
Intermediate speed variable,	M ·	= 0.329		
Space mean speed in ramp influence ar	ea, S	= 64.1	mph	
Space mean speed in outer lanes,	_	= N/A	mph	
Space mean speed for all vehicles,	0 S :	= 64.1	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB On-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1503 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 45.0 mph Volume on ramp 996 vph Length of first accel/decel lane 1500 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 174 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1725 ft _____Conversion to pc/h Under Base Conditions_____ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 1503 996 174 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 418 277 48 v 4 2 0 Trucks and buses 2 8 0 Recreational vehicles 0 8 Rolling Rolling Rolling Terrain type: َ mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Driver population factor, fP	0.943 1.00 1770	0.971 1.00 1140		pcph
Estimation of V	V12 Merge	Areas		
L = (Equat EQ	tion 13-6	or 13-7))	
P = 1.000 Using FM	Equation	0		
v = v (P) = 1770 12 F FM	pc/h			
Capacity	Checks			
Actual v 2910 FO	Maximum 4800		LOS F? No	
v or v 0 pc/h	(Equatio	on 13-14	or 13-17)	
3 av34 Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 1770 (1 12A	Equation 1	13-15, 13	3-16, 13-18,	or 13-19)
Flow Entering Me Actual Max v 2910 4600 R12 Level of Service Determ	Desirable 0	2	Violation? No	
Density, D = $5.475 + 0.00734 v + 0.0078$ R R Level of service for ramp-freeway junct:	12	I	f	pc/mi/ln
Speed Estin	mation			
Intermediate speed variable,	M = S	= 0.258		
Space mean speed in ramp influence area		= 66.5	mph	
Space mean speed in outer lanes,		= N/A	mph	
Space mean speed for all vehicles,	•	= 66.5	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: US176 EB On-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2269 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 25.0 mph Volume on ramp 875 vph Length of first accel/decel lane 1500 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 230 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 900 ft _____Conversion to pc/h Under Base Conditions_____ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 2269 875 230 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 630 243 64 v 2 0 2 0 Trucks and buses 4 8 0 Recreational vehicles 8 Rolling Rolling Terrain type: Level e mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 1.5 Recreational vehicle PCE, ER 2.0 2.0 1.2

Driver population factor, fP	0.943 1.00 2672	0.971 1.00 1001		pcph
Estimation of	V12 Merge	Areas		
_	tion 13-6	or 13-7)		
EQ P = 1.000 Using	Equation	0		
FM v = v (P) = 2672 12 F FM	pc/h			
Capacity Checks				
Actual v 3673 FO	Maximum 4800		LOS F? No	
v or v 0 pc/h 3 av34	(Equatio	on 13-14	or 13-17)	
Is v or v > 2700 pc/h? 3 av34	No			
Is v or v > $1.5 v / 2$ 3 av 34 12	No			
	Equation 1	L3-15, 13	8-16, 13-18,	or 13-19)
Flow Entering M Actual Max v 3673 460 R12 Level of Service Deter	Desirable 0	2	Violation? No	
Density, D = 5.475 + 0.00734 v + 0.007 R R Level of service for ramp-freeway junct	12	P	7	pc/mi/ln
Speed Estimation				
Intermediate speed variable,		= 0.400		
Space mean speed in ramp influence area		= 61.8	mph	
Space mean speed in outer lanes,	R S = 0	= N/A	mph	
Space mean speed for all vehicles,	0	= 61.8	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: US 176 WB On-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2380 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 25.0 mph Volume on ramp 143 vph Length of first accel/decel lane 1425 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 1410 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 775 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2380 143 1410 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 661 40 392 v 2 0 2 % 0 % Trucks and buses 4 Recreational vehicles 0 Rolling Rolling Rolling Terrain type: 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0
Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 2803			pcph
Estimation of	V12 Merge	Areas		
L = (Equa EQ	ation 13-6	or 13-7)		
P = 1.000 Using FM	g Equation	0		
v = v (P) = 2803 12 F FM	B pc/h			
Capacity	/ Checks			
Actual v 2967 FO	Maximum 4800		LOS F? No	
vorv 0 pc/h 3 av34	(Equatio	on 13-14	or 13-17)	
Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 2803 (12A	(Equation 1	L3-15, 13	-16, 13-18,	or 13-19)
Flow Entering M Actual Max v 2967 460 R12 Level of Service Deter	c Desirable)0	2	Violation? No	
Density, D = $5.475 + 0.00734 v + 0.007$ R R Level of service for ramp-freeway junct	12	A		pc/mi/ln
Speed Esti	imation			
Intermediate speed variable,	M = S	= 0.326		
Space mean speed in ramp influence area	a, S =	= 64.3	mph	
Space mean speed in outer lanes,	R S = 0	= N/A	mph	
Space mean speed for all vehicles,	0	= 64.3	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB On-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1323 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 45.0 mph Volume on ramp 196 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 1200 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1475 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1323 196 1200 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 368 54 333 v 2 0 2 % 0 % Trucks and buses 4 0 Recreational vehicles Rolling Rolling Terrain type: Rolling e mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Driver population factor, fP	0.943 1.00 1558	0.971 1.00 224		pcph
Estimation of	V12 Merge	Areas		
L = (Equa EQ	tion 13-6	or 13-7)		
P = 1.000 Using FM	Equation	0		
v = v (P) = 1558 12 F FM	pc/h			
Capacity	Checks			
Actual v 1782 FO	Maximum 4800		LOS F? No	
vorv 0 pc/h 3 av34	(Equatio	on 13-14	or 13-17)	
Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 1558 (12A	Equation 1	.3-15, 13	-16, 13-18,	or 13-19)
Flow Entering M Actual Max v 1782 460 R12 Level of Service Deter	Desirable 0	2	Violation? No	
Density, D = $5.475 + 0.00734 v + 0.007$ R R Level of service for ramp-freeway junct	12	A		pc/mi/ln
Speed Esti	mation			
Intermediate speed variable,	M = S	0.234		
Space mean speed in ramp influence area		67.3	mph	
Space mean speed in outer lanes,		N/A	mph	
Space mean speed for all vehicles,	0	67.3	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: SC-202 WB On-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1405 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 45.0 mph Volume on ramp 54 vph Length of first accel/decel lane 525 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 114 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1000 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1405 54 114 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 390 15 32 v 2 0 2 0 Trucks and buses 4 8 0 Recreational vehicles 8 Rolling Rolling Terrain type: Rolling َ mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Driver population factor, fP	0.943 1.00 1655			pcph
Estimation of	V12 Merge	Areas		
L = (Equa EQ	tion 13-6	or 13-7)		
P = 1.000 Using FM	Equation	0		
v = v (P) = 1655 12 F FM	pc/h			
Capacity	Checks			
Actual v 1717 FO	Maximum 4800		LOS F? No	
vorv 0 pc/h 3 av34	(Equatio	on 13-14	or 13-17)	
Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 1655 (12A	Equation 1	.3-15, 13	-16, 13-18,	or 13-19)
Flow Entering M Actual Max v 1717 460 R12 Level of Service Deter	Desirable 0	:	Violation? No	
Density, D = $5.475 + 0.00734 v + 0.007$ R R Level of service for ramp-freeway junct	12	A		pc/mi/ln
Speed Esti	mation			
Intermediate speed variable,	M = S	0.295		
Space mean speed in ramp influence area		65.2	mph	
Space mean speed in outer lanes,		N/A	mph	
Space mean speed for all vehicles,	0	65.2	mph	

Phone: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: SC 202 EB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1385 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 38 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 199 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1050 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1385 38 199 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 385 11 55 v 2 0 Trucks and buses 4 2 Ŷ Recreational vehicles 0 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustmen Driver population facto Flow rate, vp		0.943 1.00 1631	0.971 1.00 43		pcph
	Estimation	of V12 Diverg	e Areas		
L = EQ	(E	quation 13-12	or 13-13)	
P = FD	1.000 Us	ing Equation	0		
v = 12	v + (v - v) R F R	P = 1631 FD	pc/h		
	Capac	ity Checks			
v = v Fi F	Actual 1631	Maximum 4800		IOS F? Io	
v = v - v	1588	4800	N	ю	
FO F R V	43	2100	N	0	
R v or v	0 pc/h	(Equatio	on 13-14 o	or 13-17)	
3 av34 Is v or v > 270	0 pc/h?	No			
3 av34 Is v or v > 1.5		No			
3 av34 If yes, v = 1631 12A	12	(Equation 1	.3-15, 13-	16, 13-18,	or 13-19)
		Diverge Influ			
		Max Desirable 4400		Violation? No	
12 Level	of Service De	termination (if not F)		
Density,	D = 4.252 + 0	.0086 v - 0. 12	009 L D	= 14.7	pc/mi/ln
Level of service for ra				ence B	
	Speed E	stimation			
Intermediate speed vari	able,		0.302		
Space mean speed in ram	p influence a		65.0	mph	
Space mean speed in out	er lanes,		N/A	mph	
Space mean speed for al	l vehicles,	0 S =	: 65.0	mph	

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1546 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 164 vph Length of first accel/decel lane 975 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 1093 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1725 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1546 164 1093 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 429 46 304 v 4 2 0 2 0 Trucks and buses Ŷ Recreational vehicles 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adju Driver population Flow rate, vp		0.943 1.00 1821	0.971 1.00 188	1.00	pcph
	Estimatio	n of V12 Dive	rge Areas_		
	L = EQ	(Equation 13-	12 or 13-1	3)	
		Using Equatio	n 0		
	v = v + (v - v 12 R F		pc/h		
	Cap	acity Checks_			
v = v Fi F	Actual 1821	Maximu 4800		LOS F? No	
V = V - V FO F R	1633	4800	:	No	
v	188	2100	:	No	
R v or v	—	/h (Equat	ion 13-14	or 13-17)	
3 av34 Is v or v 3 av34	> 2700 pc/h?	No			
Is v or v	> 1.5 v /2	No			
3 av34 If yes, v = 183 12A		(Equation	13-15, 13	-16, 13-18,	or 13-19)
		g Diverge Inf			
v	Actual 1821	Max Desirab 4400	le	Violation? No	
12	Level of Service	Determination	(if not F)	
Density,		0.0086 v -		= 11.1	pc/mi/ln
Level of service :	R for ramp-freeway	12 junction area	D s of influ	ence B	
	Speed	Estimation			
Intermediate speed	d variable,	D			
Space mean speed :	in ramp influence		= 64.6	mph	
Space mean speed	in outer lanes,	R S	= N/A	mph	
Space mean speed :	for all vehicles,	0 S	= 64.6	mph	

Phone:

Recreational vehicle PCE, ER

E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: US 176 EB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2475 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 121 vph Length of first accel/decel lane 1000 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 1555 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 900 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2475 121 1555 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 688 34 432 v 2 0 2 0 Trucks and buses 4 Ŷ Recreational vehicles 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

Heavy vehicle adjustmen Driver population facto: Flow rate, vp		0.943 1.00 2915	0.971 1.00 138		pcph
	Estimation	of V12 Diverg	e Areas		
L = EQ	(E	quation 13-12	or 13-13)	
P = FD	1.000 Us	ing Equation	0		
	v + (v - v) R F R	P = 2915 FD	pc/h		
	Capac	ity Checks			
v = v Fi F	Actual 2915	Maximum 4800		OS F? Io	
v = v - v	2777	4800	N	ю	
FO F R V	138	2100	N	io	
R v or v	0 pc/h	(Equatio	on 13-14 o	er 13-17)	
3 av34 Is v or v > 270 3 av34	0 pc/h?	No			
Is v or v > 1.5		No			
3 av34 If yes, v = 2915 12A	12	(Equation 1	3-15, 13-	16, 13-18,	or 13-19)
F.	low Entering	Diverge Influ	lence Area		
v 21		Max Desirable 4400		Violation? No	
12 Level 0	of Service De	termination (if not F)		
Density,		.0086 v - 0.		= 20.3	pc/mi/ln
Level of service for rat	R mp-freeway ju	12 nction areas	D of influe	nce C	
	Speed E	stimation			
Intermediate speed varia	able,	D = S	0.310		
Space mean speed in ram	o influence a	rea, S =	64.8	mph	
Space mean speed in out	er lanes,		N/A	mph	
Space mean speed for al	l vehicles,	0 S =	64.8	mph	

Phone:

Recreational vehicle PCE, ER

Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: US 176 WB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2015 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 482 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 180 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 775 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2015 482 180 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 560 134 50 v 2 0 Trucks and buses 4 2 Ŷ 0 Recreational vehicles 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

Heavy vehicle adjust Driver population fa Flow rate, vp		0.943 1.00 2373	0.971 1.00 552		pcph
	Estimation	of V12 Diverg	ge Areas		
L E'		Equation 13-12	2 or 13-13)		
	= 1.000 U	sing Equation	0		
v 1	= v + (v - v 2 R F R		pc/h		
	Capa	city Checks			
v = v Fi F	Actual 2373	Maximum 4800	LC Nc)S F?	
v = v - v	1821	4800	Nc)	
FO F R V	552	2100	Nc)	
R v or v	0 pc/	h (Equatio	on 13-14 or	13-17)	
3 av34 Is v or v >	2700 pc/h?	No			
	1.5 v /2	No			
3 av34 If yes, v = 2373 12A	12	(Equation 1	.3-15, 13-1	6, 13-18,	or 13-19)
	Flow Entering	Diverge Influ			
v	Actual 2373	Max Desirable 4400		/iolation? No	
12 Lev	el of Service D	etermination (if not F)_		
Density,	D = 4.252 +	0.0086 v - 0.	009 L =	= 13.6	pc/mi/ln
Level of service for	R ramp-freeway j	12 unction areas	D of influer	nce B	
	Speed	Estimation			
Intermediate speed v	ariable,		= 0.348		
Space mean speed in	ramp influence		= 63.5 n	ıph	
Space mean speed in	outer lanes,		= N/A n	ıph	
Space mean speed for	all vehicles,	0 S =	= 63.5 n	1ph	

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1713 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 850 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 141 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1475 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1713 850 141 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 476 236 39 v 4 2 0 Trucks and buses 2 Ŷ 0 Recreational vehicles 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustmen Driver population facto Flow rate, vp		0.943 1.00 2018	0.971 1.00 973		pcph
	Estimation	of V12 Diverg	e Areas		
L = EQ	(E	quation 13-12	or 13-13)	
Б <u>9</u> = FD	1.000 Us	ing Equation	0		
	v + (v - v) R F R	P = 2018 FD	pc/h		
	Capac	ity Checks			
v = v Fi F	Actual 2018	Maximum 4800	L _i N	OS F? O	
v = v - v	1045	4800	N	0	
FO F R V	973	2100	N	0	
R v or v	0 pc/h	(Equatio	n 13-14 o	r 13-17)	
3 av34 Is v or v > 270	0 pc/h?	No			
3 av34 Is v or v > 1.5		No			
3 av34 If yes, v = 2018 12A	12	(Equation 1	3-15, 13-	16, 13-18,	or 13-19)
		Diverge Influ			
		Max Desirable 4400		Violation? No	
12 Level	of Service De	termination (if not F)		
Density,		.0086 v - 0.		= 10.6	pc/mi/ln
Level of service for ra	R mp-freeway ju	12 Inction areas	D of influe	nce B	
	Speed E	stimation			
Intermediate speed vari	able,		0.386		
Space mean speed in ram	p influence a		62.3	mph	
Space mean speed in out	er lanes,		N/A	mph	
Space mean speed for al	l vehicles,	0 S =	62.3	mph	

Phone: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: SC 202 WB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1004 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 25.0 mph Volume on ramp 27 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 70 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1000 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1004 27 70 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 279 8 19 v 2 0 Trucks and buses 2 4 Ŷ 0 Recreational vehicles 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjus Driver population f Flow rate, vp		0.943 1.00 1182	0.971 1.00 31		pcph
	Estimatior	n of V12 Diver	rge Areas		
I	- = (EQ	Equation 13-2	l2 or 13-13)	
I		Jsing Equation	ı 0		
7	v = v + (v - v 12 R F F		pc/h		
	Capa	acity Checks			
v = v Fi F	Actual 1182	Maximur 4800		IOS F? Io	
v = v - v	1151	4800	Ν	ю	
FO F R V	31	1900	N	0	
R v or v	0 pc/	'h (Equati	ion 13-14 c	or 13-17)	
3 av34 Is v or v >	> 2700 pc/h?	No			
	> 1.5 v /2	No			
3 av34 If yes, v = 1182 12A		(Equation	13-15, 13-	16, 13-18,	or 13-19)
	Flow Entering				
v	Actual 1182	Max Desirab 4400		Violation? No	
12 Le	evel of Service I	Determination	(if not F)		
Density,		0.0086 v - (= 10.8	pc/mi/ln
Level of service fo	R or ramp-freeway <u>j</u>	12 junction areas	D s of influe	ence B	
	Speed	Estimation			
Intermediate speed	variable,		= 0.561		
Space mean speed in	n ramp influence		= 56.5	mph	
Space mean speed in	n outer lanes,	RS	= N/A	mph	
Space mean speed fo	or all vehicles,	0 S	= 56.5	mph	

Phone: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: SC 202 EB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1714 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 74 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 37 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1050 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1714 74 37 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 476 21 10 v 4 2 0 Trucks and buses 2 8 Recreational vehicles 0 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjust Driver population fa Flow rate, vp		0.943 1.00 2019		0.971 1.00 42	pcph
	Estimatior	n of V12 Diver	ge Areas		
	= (Equation 13-1	2 or 13-13)		
P	= 1.000 t 7D	Jsing Equation	0		
	= v + (v - v L2 R F F		pc/h		
	Capa	city Checks			
v = v Fi F	Actual 2019	Maximum 4800	LC)S F?	
V = V - V FO F R	1934	4800	Nc)	
v R	85	2100	Nc)	
v or v	0 pc/	h (Equati	on 13-14 or	13-17)	
3 av34 Is v or v >	2700 pc/h?	No			
3 av34 Is v or v >		No			
3 av34 If yes, v = 2019 12A	12	(Equation	13-15, 13-1	.6, 13-18,	or 13-19)
	Flow Entering				
V	Actual 2019	Max Desirabl 4400		/iolation? Io	
12 Lev	vel of Service I	etermination	(if not F)_		
Density,	D = 4.252 +	0.0086 v - 0	.009 L =	18.0	pc/mi/ln
Level of service for	R r ramp-freeway <u>j</u>	12 junction areas	D of influer	nce B	
	Speed	Estimation			
Intermediate speed v	variable,		= 0.306		
Space mean speed in	ramp influence		= 64.9 m	ıph	
Space mean speed in	outer lanes,		= N/A n	ıph	
Space mean speed for	all vehicles,	0 S	= 64.9 m	ıph	

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1677 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 174 vph Length of first accel/decel lane 975 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 996 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1725 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1677 174 996 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 466 48 277 v 2 2 0 Trucks and buses 4 8 Recreational vehicles 0 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjust Driver population fa Flow rate, vp		0.943 1.00 1975	0.971 1.00 199	1.00	pcph
	Estimation	of V12 Diver	ge Areas		
	= (EQ	Equation 13-1	2 or 13-13	3)	
Р		sing Equation	0		
	= v + (v - v L2 R F R		pc/h		
	Capa	city Checks			
v = v Fi F	Actual 1975	Maximum 4800		LOS F? No	
v = v - v FO F R	1776	4800	1	ло	
v R	199	2100	1	10	
v or v 3 av34	0 pc/	h (Equati	on 13-14 c	or 13-17)	
Is v or v > 3 av34	2700 pc/h?	No			
Is v or v > 3 av34	1.5 v /2 12	No			
If yes, v = 1975 12A		(Equation	13-15, 13-	-16, 13-18,	or 13-19)
	Flow Entering			a	
V	Actual 1975	Max Desirabl 4400	е	Violation? No	
12 Lev	vel of Service D	etermination	(if not F))	
Density,	D = 4.252 +			= 12.5	pc/mi/ln
Level of service for	R r ramp-freeway j	12 unction areas	D of influe	ence B	
	Speed	Estimation			
Intermediate speed v	variable,	D S	= 0.316		
Space mean speed in	ramp influence		= 64.6	mph	
Space mean speed in	outer lanes,		= N/A	mph	
Space mean speed for	c all vehicles,	S	= 64.6	mph	

Fax:

Phone:

Recreational vehicle PCE, ER

E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: US 176 EB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2499 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 230 vph Length of first accel/decel lane 1000 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 875 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 900 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2499 230 875 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 694 64 243 v 4 2 0 2 0 Trucks and buses 8 Recreational vehicles 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

Heavy vehicle adjust Driver population fac Flow rate, vp		0.943 1.00 2943	0.971 1.00 263		pcph
	Estimation	of V12 Diver	ge Areas		
L EQ		Equation 13-12	2 or 13-13)	
	= 1.000 U	sing Equation	0		
v 12	= v + (v - v 2 R F R		pc/h		
	Capa	city Checks			
v = v Fi F	Actual 2943	Maximum 4800		OS F? O	
v = v - v	2680	4800	N	o	
FO F R V	263	2100	N	0	
R v or v	0 pc/1	h (Equatio	on 13-14 o	r 13-17)	
3 av34 Is v or v > 2	2700 pc/h?	No			
	L.5 v /2	No			
3 av34 If yes, v = 2943 12A	12	(Equation 3	13-15, 13-	16, 13-18,	or 13-19)
	Flow Entering	Diverge Influ	lence Area		
v	Actual 2943	Max Desirable 4400		Violation? No	
12 Leve	el of Service D	etermination	(if not F)		
Density,	D = 4.252 +			= 20.6	pc/mi/ln
Level of service for	R ramp-freeway j	12 unction areas	D of influe	nce C	
	Speed	Estimation			
Intermediate speed va	ariable,		= 0.322		
Space mean speed in 1	camp influence a		= 64.4	mph	
Space mean speed in o	outer lanes,		= N/A	mph	
Space mean speed for	all vehicles,	0 S :	= 64.4	mph	

Fax:

Phone:

Recreational vehicle PCE, ER

E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: US 176 WB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 3790 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 1410 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 143 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 775 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 3790 1410 143 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 1053 392 40 v 2 0 Trucks and buses 4 2 8 0 Recreational vehicles 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

Heavy vehicle adjust Driver population fa Flow rate, vp		0.943 1.00 4464	0.971 1.00 1614	1.00	pcph
	Estimation	of V12 Diver	ge Areas		
	= (1	Equation 13-12	2 or 13-13	;)	
P		sing Equation	0		
	= v + (v - v 2 R F R		pc/h		
	Capac	city Checks			
v = v Fi F	Actual 4464	Maximum 4800		IOS F? Io	
v = v - v FO F R	2850	4800	N	ю	
V	1614	2100	N	ю	
R V Or V	0 pc/h	n (Equatio	on 13-14 c	or 13-17)	
3 av34 Is v or v >	2700 pc/h?	No			
3 av34 Is v or v >		No			
3 av34 If yes, v = 4464 12A	12	(Equation 1	13-15, 13-	16, 13-18,	or 13-19)
	Flow Entering	Diverge Influ	lence Area	L	
V	Actual 4464	Max Desirable 4400		Violation? Yes	
12 Lev	el of Service De	etermination	(if not F)		
Density,	D = 4.252 + ().0086 v - 0 12	.009 L D	= 31.6	pc/mi/ln
Level of service for			2	ence D	
	Speed 1	Estimation			
Intermediate speed v	ariable,		= 0.443		
Space mean speed in	ramp influence a		= 60.4	mph	
Space mean speed in	outer lanes,		= N/A	mph	
Space mean speed for	all vehicles,	0 S :	= 60.4	mph	

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2523 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 1200 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 196 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1475 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2523 1200 196 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 701 333 54 v 2 0 Trucks and buses 4 2 8 0 Recreational vehicles 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, : Driver population factor, : Flow rate, vp		0.943 1.00 2972	0.971 1.00 1373	1.00	pcph
E:	stimation of	V12 Diverg	e Areas_		
L = EQ	(Equ	ation 13-12	or 13-1	.3)	
	L.000 Usin	g Equation	0		
	+ (v - v) P F R		pc/h		
	Capacit	y Checks			
v = v Fi F	Actual 2972	Maximum 4800		LOS F? No	
v = v - v	1599	4800		No	
FO F R V	1373	2100		No	
R V Or V	0 pc/h	(Equation	n 13-14	or 13-17)	
3 av34 Is v or v > 2700 po 3 av34	c/h?	No			
Is v or v > 1.5 v		No			
3 av34 12 If yes, v = 2972 12A	2	(Equation 1	3-15, 13	3-16, 13-18,	or 13-19)
Flow	Entering Di	verge Influ	ence Are	ea	
v 2972		x Desirable 00		Violation? No	
12 Level of S	Service Dete	rmination (if not F	`)	
Density, D = R	4.252 + 0.0	086 v - 0. 12	009 L D	= 18.8	pc/mi/ln
Level of service for ramp-:	freeway junc			lence B	
	Speed Est	imation			
Intermediate speed variable	2,		0.422		
Space mean speed in ramp in	nfluence are	s a, S = R	61.1	mph	
Space mean speed in outer 3	lanes,		N/A	mph	
Space mean speed for all ve	ehicles,	•	61.1	mph	

Phone: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: SC 202 WB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1519 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 25.0 mph Volume on ramp 114 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 54 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1000 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1519 114 54 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 422 32 15 v 2 0 Trucks and buses 4 2 8 Recreational vehicles 0 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustmen Driver population facto Flow rate, vp		0.943 1.00 1789	0.971 1.00 130		pcph
	Estimation of	of V12 Diverg	e Areas		
L = EQ	(EC	quation 13-12	or 13-13	3)	
P = FD	1.000 Us:	ing Equation	0		
	v + (v - v) R F R		pc/h		
	Capac:	ity Checks			
v = v Fi F	Actual 1789	Maximum 4800		LOS F? No	
v = v - v FO F R	1659	4800	1	No	
v	130	1900	1	Ло	
R v or v	0 pc/h	(Equatio	on 13-14 d	or 13-17)	
3 av34 Is v or v > 270	0 pc/h?	No			
3 av34 Is v or v > 1.5		No			
3 av34 If yes, v = 1789 12A	12	(Equation 1	3-15, 13-	-16, 13-18,	or 13-19)
	'low Entering I				
v 1		Max Desirable 4400	2	Violation? No	
12 Level	of Service Det	termination (if not F)	
Density,	D = 4.252 + 0			= 16.0	pc/mi/ln
Level of service for ra	R Imp-freeway jur	12 nction areas	D of influe	ence B	
	Speed Es	stimation			
Intermediate speed vari	able,		0.570		
Space mean speed in ram	np influence an		56.2	mph	
Space mean speed in out	er lanes,		N/A	mph	
Space mean speed for al	l vehicles,	0 S =	56.2	mph	

APPENDIX H

NO-BUILD 2040 SYNCHRO AND SIM TRAFFIC REPORTS

0.8

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷			eî 👘			ŧ	
Traffic Vol, veh/h	29	9	185	12	0	17	0	208	1209	147	1461	0
Future Vol, veh/h	29	9	185	12	0	17	0	208	1209	147	1461	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	32	10	206	13	0	19	0	231	1343	163	1623	0

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	2862	3524	1623	2961	2853	903	-	0	0	1574	0	0
Stage 1	1950	1950	-	903	903	-	-	-	-	-	-	-
Stage 2	912	1574	-	2058	1950	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	-	-	-	2.218	-	-
Pot Cap-1 Maneuver	~ 11	~ 6	~ 127	~ 9	17	336	0	-	-	419	-	0
Stage 1	83	111	-	332	356	-	0	-	-	-	-	0
Stage 2	328	170	-	72	111	-	0	-	-	-	-	0
Platoon blocked, %								-	-		-	
Mov Cap-1 Maneuver	-	0	~ 127	-	0	336	-	-	-	419	-	-
Mov Cap-2 Maneuver	-	0	-	-	0	-	-	-	-	-	-	-
Stage 1	83	0	-	332	356	-	-	-	-	-	-	-
Stage 2	310	170	-	-	0	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB
HCM Control Delay, s			0	1.7
HCM LOS	-	-		

Minor Lane/Major Mvmt	NBT	NBR EE	BLn1WBI	_n1	SBL	SBT
Capacity (veh/h)	-	-	-	-	419	-
HCM Lane V/C Ratio	-	-	-	-	0.39	-
HCM Control Delay (s)	-	-	-	-	19	0
HCM Lane LOS	-	-	-	-	С	Α
HCM 95th %tile Q(veh)	-	-	-	-	1.8	-
Notes						

~: Volume exceeds capacity \$: Delay exce

\$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

Lanes, Volumes, Timings 2: Columbia Ave & I-26 WB Ramps

		J Run	po									
	≯	-	\rightarrow	-	-	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			स			ef 👘	
Traffic Volume (vph)	0	0	0	1026	3	159	125	129	0	0	582	56
Future Volume (vph)	0	0	0	1026	3	159	125	129	0	0	582	56
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	0	0	0	1754	0	0	1818	0	0	1840	0
Flt Permitted					0.959			0.190				
Satd. Flow (perm)	0	0	0	0	1754	0	0	354	0	0	1840	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					7						4	
Link Speed (mph)		45			45			35			35	
Link Distance (ft)		883			668			593			885	
Travel Time (s)		13.4			10.1			11.6			17.2	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0170	0.70	0170	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0170	0.70
Lane Group Flow (vph)	0	0	0	0	1320	0	0	282	0	0	709	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lon	0	Right	Lon	0	Right	Lon	0	Right	Lon	0	rtigrit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	1.00	1.00	1.00	9	1.00	1.00	1.00	1.00	1.00	9
Turn Type	15		9	Perm	NA	7	Perm	NA	9	15	NA	9
Protected Phases				Felli	4		Feilii	10A 6			2	
Permitted Phases				4	4		6	0			Z	
Detector Phase				4	4		6	6			2	
Switch Phase				4	4		0	0			Z	
				10.0	10.0		10.0	10.0			10.0	
Minimum Initial (s)				22.0	22.0		22.0	22.0			22.0	
Minimum Split (s)				73.0								
Total Split (s)				48.7%	73.0		77.0	77.0			77.0	
Total Split (%)					48.7%		51.3%	51.3%			51.3%	
Maximum Green (s)				67.0	67.0		70.7	70.7			70.7	
Yellow Time (s)				4.0	4.0		4.3	4.3			4.3	
All-Red Time (s)				2.0	2.0		2.0	2.0			2.0	
Lost Time Adjust (s)					0.0			0.0			0.0	
Total Lost Time (s)					6.0			6.3			6.3	
Lead/Lag												
Lead-Lag Optimize?				4.0	1.0		2.0	2.0			2.0	
Vehicle Extension (s)				4.0	4.0		3.0	3.0			3.0	
Recall Mode				None	None		Min	Min			Min	
Act Effct Green (s)					67.0			70.7			70.7	
Actuated g/C Ratio					0.45			0.47			0.47	
v/c Ratio					1.68			1.70			0.82	
Control Delay					339.4			367.1			43.0	
Queue Delay					0.0			0.0			0.0	
Total Delay					339.4			367.1			43.0	
LOS					F			F			D	
Approach Delay					339.4			367.1			43.0	

Synchro 9 Report

Lanes, Volumes, Timings 2: Columbia Ave & I-26 WB Ramps

	≯	+	\mathbf{F}	4	+	•	•	1	*	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					F			F			D	
Queue Length 50th (ft)					~1890			~399			584	
Queue Length 95th (ft)					#2161			#421			769	
Internal Link Dist (ft)		803			588			513			805	
Turn Bay Length (ft)												
Base Capacity (vph)					787			166			869	
Starvation Cap Reductn					0			0			0	
Spillback Cap Reductn					0			0			0	
Storage Cap Reductn					0			0			0	
Reduced v/c Ratio					1.68			1.70			0.82	
Intersection Summary												
Area Type:	Other											
Cycle Length: 150												
Actuated Cycle Length: 150	0											
Natural Cycle: 150												
Control Type: Actuated-Une	coordinated											
Maximum v/c Ratio: 1.70												
Intersection Signal Delay: 2					ntersectior							
Intersection Capacity Utilization	ation 129.9%	6		[(CU Level	of Service	Н					
Analysis Period (min) 15												
 Volume exceeds capac 			cally infin	ite.								
Queue shown is maxim												
# 95th percentile volume			ieue may	be long	er.							
Queue shown is maxim	um after two	o cycles.										

Splits and Phases: 2: Columbia Ave & I-26 WB Ramps

₩ Ø2	₩ Ø4
77 s	73 s
▲ ¶ _{Ø6}	
77 s	

Movement EBL EBT EBR WBL WBT WBR NBL NBT Lane Configurations Image: Additional state of the state of th	NBR 0 0 16	SBL 0	SBT	SBR
	0	0	1.	
Traffic Volume (veh/h) $0 0 0 1024 2 100 100 100 100 100 100 100 100 100 1$	0	0		
Traffic Volume (veh/h) 0 0 0 1026 3 159 125 129			582	56
Future Volume (veh/h) 0 0 0 1026 3 159 125 129	16	0	582	56
Number 7 4 14 1 6	10	5	2	12
Initial Q (Qb), veh 0 0 0 0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00 1.00 1.00	1.00	1.00		1.00
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln 1900 1863 1900 1863	0	0	1863	1900
Adj Flow Rate, veh/h 1140 3 177 139 143	0	0	647	62
Adj No. of Lanes 0 1 0 0 1	0	0	1	0
Peak Hour Factor 0.90 0.90 0.90 0.90 0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, % 0 2 0 2 2	0	0	2	2
Cap, veh/h 674 2 105 108 100	0	0	789	76
Arrive On Green 0.45 0.45 0.45 0.47 0.47	0.00	0.00	0.47	0.47
Sat Flow, veh/h 1508 4 234 154 212	0	0	1674	160
Grp Volume(v), veh/h 1320 0 0 282 0		0	0	709
Grp Sat Flow(s),veh/h/ln 1746 0 0 366 0		0	0	1834
Q Serve(g_s), s 67.0 0.0 0.0 20.7 0.0	0.0	0.0	0.0	50.0
Cycle Q Clear(g_c), s 67.0 0.0 0.0 70.7 0.0	0.0	0.0	0.0	50.0
Prop In Lane 0.86 0.13 0.49	0.00	0.00	0.0	0.09
Lane Grp Cap(c), veh/h 780 0 0 208 0		0.00	0	865
V/C Ratio(X) 1.69 0.00 1.35 0.00	0.00	0.00	0.00	0.82
Avail Cap(c_a), veh/h 780 0 208 0		0.00	0.00	865
HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.00 0.00 1.00 1.00 0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh 41.5 0.0 0.0 59.1 0.0	0.0	0.0	0.0	34.2
Incr Delay (d2), s/veh 317.2 0.0 0.0 187.3 0.0	0.0	0.0	0.0	6.3
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln 101.0 0.0 0.0 19.5 0.0	0.0	0.0	0.0	26.7
LnGrp Delay(d),s/veh 358.7 0.0 0.0 246.4 0.0	0.0	0.0	0.0	40.5
LnGrp LOS F F	0.0	0.0	0.0	40.5 D
Approach Vol, veh/h 1320 282			709	
Approach Delay, s/veh 358.7 246.4			40.5	
			-	
Approach LOS F F			D	
Timer 1 2 3 4 5 6 7 8				
Assigned Phs 2 4 6				
Phs Duration (G+Y+Rc), s 77.0 73.0 77.0				
Change Period (Y+Rc), s 6.3 6.0 6.3				
Max Green Setting (Gmax), s 70.7 67.0 70.7				
Max Q Clear Time (g_c+I1), s 52.0 69.0 72.7				
Green Ext Time (p_c), s 7.1 0.0 0.0				
Intersection Summary				
HCM 2010 Ctrl Delay 247.4				
HCM 2010 LOS F				

Summary of All Intervals

Run Number123AvgStart Time7:207:207:207:20End Time8:308:308:308:30Total Time (min)70707070Time Recorded (min)60606060# of Intervals2222# of Recorded Intervals1111Vehs Entered2588271926742659Vehs Exited2569261225932591Starting Vehs459438425437Ending Vehs478545506510Travel Distance (mi)2438.52434.22281.72384.8Total Delay (hr)2386.12381.02227.92331.7Total Stops2344224721162236Eucl Used (nal)659.2659.7627.3648.7			0	0		
End Time8:308:308:308:30Total Time (min)70707070Time Recorded (min)60606060# of Intervals2222# of Recorded Intervals1111Vehs Entered2588271926742659Vehs Exited2569261225932591Starting Vehs459438425437Ending Vehs478545506510Travel Distance (mi)2864289029212891Travel Time (hr)2438.52434.22281.72384.8Total Delay (hr)2386.12381.02227.92331.7Total Stops2344224721162236	Run Number	1	2	3	Avg	
Total Time (min)70707070Time Recorded (min)60606060# of Intervals2222# of Recorded Intervals1111Vehs Entered2588271926742659Vehs Exited2569261225932591Starting Vehs459438425437Ending Vehs478545506510Travel Distance (mi)2864289029212891Total Delay (hr)2386.12381.02227.92331.7Total Stops2344224721162236	Start Time	7:20	7:20	7:20	7:20	
Time Recorded (min)60606060# of Intervals2222# of Recorded Intervals1111Vehs Entered2588271926742659Vehs Exited2569261225932591Starting Vehs459438425437Ending Vehs478545506510Travel Distance (mi)2864289029212891Travel Time (hr)2438.52434.22281.72384.8Total Delay (hr)236.12381.02227.92331.7Total Stops2344224721162236	End Time	8:30	8:30	8:30	8:30	
# of Intervals 2 2 2 2 # of Recorded Intervals 1 1 1 1 1 Vehs Entered 2588 2719 2674 2659 Vehs Exited 2569 2612 2593 2591 Starting Vehs 459 438 425 437 Ending Vehs 478 545 506 510 Travel Distance (mi) 2864 2890 2921 2891 Travel Time (hr) 2438.5 2434.2 2281.7 2384.8 Total Delay (hr) 2386.1 2381.0 2227.9 2331.7 Total Stops 2344 2247 2116 2236	Total Time (min)	70	70	70	70	
# of Recorded Intervals1111Vehs Entered2588271926742659Vehs Exited2569261225932591Starting Vehs459438425437Ending Vehs478545506510Travel Distance (mi)2864289029212891Travel Time (hr)2438.52434.22281.72384.8Total Delay (hr)2386.12381.02227.92331.7Total Stops2344224721162236	Time Recorded (min)	60	60	60	60	
Vehs Entered2588271926742659Vehs Exited2569261225932591Starting Vehs459438425437Ending Vehs478545506510Travel Distance (mi)2864289029212891Travel Time (hr)2438.52434.22281.72384.8Total Delay (hr)2386.12381.02227.92331.7Total Stops2344224721162236	# of Intervals	2	2	2	2	
Vehs Exited2569261225932591Starting Vehs459438425437Ending Vehs478545506510Travel Distance (mi)2864289029212891Travel Time (hr)2438.52434.22281.72384.8Total Delay (hr)2366.12381.02227.92331.7Total Stops2344224721162236	# of Recorded Intervals	1	1	1	1	
Starting Vehs459438425437Ending Vehs478545506510Travel Distance (mi)2864289029212891Travel Time (hr)2438.52434.22281.72384.8Total Delay (hr)236.12381.02227.92331.7Total Stops2344224721162236	Vehs Entered	2588	2719	2674	2659	
Ending Vehs478545506510Travel Distance (mi)2864289029212891Travel Time (hr)2438.52434.22281.72384.8Total Delay (hr)2386.12381.02227.92331.7Total Stops2344224721162236	Vehs Exited	2569	2612	2593	2591	
Travel Distance (mi)2864289029212891Travel Time (hr)2438.52434.22281.72384.8Total Delay (hr)2386.12381.02227.92331.7Total Stops2344224721162236	Starting Vehs	459	438	425	437	
Travel Time (hr)2438.52434.22281.72384.8Total Delay (hr)2386.12381.02227.92331.7Total Stops2344224721162236	Ending Vehs	478	545	506	510	
Total Delay (hr)2386.12381.02227.92331.7Total Stops2344224721162236	Travel Distance (mi)	2864	2890	2921	2891	
Total Stops 2344 2247 2116 2236	Travel Time (hr)	2438.5	2434.2	2281.7	2384.8	
	Total Delay (hr)	2386.1	2381.0	2227.9	2331.7	
Fuel Lised (gal) 659.2 659.7 627.3 648.7	Total Stops	2344	2247	2116	2236	
	Fuel Used (gal)	659.2	659.7	627.3	648.7	

Interval #0 Information Seeding

Start Time	7:20	
End Time	7:30	
Total Time (min)	10	
Volumes adjusted by G	rowth Factors.	
No data recorded this in	iterval.	

Interval #1 Information Recording

Start Time	7:30
End Time	8:30
Total Time (min)	60
Volumes adjusted by Grov	wth Factors.

Run Number	1	2	3	Avg	
Vehs Entered	2588	2719	2674	2659	
Vehs Exited	2569	2612	2593	2591	
Starting Vehs	459	438	425	437	
Ending Vehs	478	545	506	510	
Travel Distance (mi)	2864	2890	2921	2891	
Travel Time (hr)	2438.5	2434.2	2281.7	2384.8	
Total Delay (hr)	2386.1	2381.0	2227.9	2331.7	
Total Stops	2344	2247	2116	2236	
Fuel Used (gal)	659.2	659.7	627.3	648.7	

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	TR	LT
Maximum Queue (ft)	870	48	70	524
Average Queue (ft)	837	34	40	511
95th Queue (ft)	985	50	40 64	522
Link Distance (ft)	743	38	20	508
Upstream Blk Time (%)	91	62	5	87
Queuing Penalty (veh)	204	18	76	1406
Storage Bay Dist (ft)	201			1100
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 2: Columbia Ave & I-26 WB Ramps

Movement	WB	NB	SB
Directions Served	LTR	LT	TR
Maximum Queue (ft)	704	193	889
Average Queue (ft)	675	81	861
95th Queue (ft)	691	161	883
Link Distance (ft)	537	508	858
Upstream Blk Time (%)	98		87
Queuing Penalty (veh)	1166		0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			
6.2

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 🗘			- 42			4			्र	
Traffic Vol, veh/h	48	9	173	1	0	12	0	711	1168	245	1793	0
Future Vol, veh/h	48	9	173	1	0	12	0	711	1168	245	1793	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	53	10	192	1	0	13	0	790	1298	272	1992	0

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	3983	4625	1992	4077	3976	1439	-	0	0	2088	0	0
Stage 1	2537	2537	-	1439	1439	-	-	-	-	-	-	-
Stage 2	1446	2088	-	2638	2537	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	-	-	-	2.218	-	-
Pot Cap-1 Maneuver	~ 2	~ 1	~ 76	~ 1	3	163	0	-	-	~ 264	-	0
Stage 1	~ 37	55	-	165	198	-	0	-	-	-	-	0
Stage 2	164	94	-	32	55	-	0	-	-	-	-	0
Platoon blocked, %								-	-		-	
Mov Cap-1 Maneuver	-	0	~ 76	-	0	163	-	-	-	~ 264	-	-
Mov Cap-2 Maneuver	-	0	-	-	0	-	-	-	-	-	-	-
Stage 1	~ 37	0	-	165	198	-	-	-	-	-	-	-
Stage 2	151	94	-	-	0	-	-	-	-	-	-	-
-												

Approach	EB	WB	NB	SB
HCM Control Delay, s			0	12.7
HCM LOS	-	-		

Minor Lane/Major Mvmt	NBT	NBR EE	3Ln1WB	Ln1	SBL	SBT
Capacity (veh/h)	-	-	-	-	~ 264	-
HCM Lane V/C Ratio	-	-	-	-	1.031	-
HCM Control Delay (s)	-	-	-	-	105.5	0
HCM Lane LOS	-	-	-	-	F	Α
HCM 95th %tile Q(veh)	-	-	-	-	10.6	-
Notes						

-: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

Lanes, Volumes, Timings 2: Columbia Ave & I-26 WB Ramps

Lane Group FBI FBI FBR WBI WBI WBR NBI NBR SBI SBR Lane Configurations -				ip5									
Lane Configurations		≯	→	\rightarrow	1	-	•	1	Ť	1	>	Ŧ	-
Traffic Volume (vph) 0 0 0 1325 3 248 228 543 0 0 713 36 Future Volume (vph) 1900 1852 0 1852 0 1852 0 1852 0 1852 0 1852 0 1852 0 1852 0 1852 0 1852 0 172 P P 172 P 172 P 172 P	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic (vph) 0 0 0 1325 3 248 228 543 0 0 713 36 Future Volume (vph) 1900 1852 0 1852 0 1852 0 1852 0 1852 0 1852 0 1852 0 1852 0 100<	Lane Configurations					\$			र्स			ef 👘	
Future Volume (vph) 0 0 0 1325 3 248 228 543 0 0 713 36 Ideal Flow (vphp) 1900 100 <td></td> <td>0</td> <td>0</td> <td>0</td> <td>1325</td> <td></td> <td>248</td> <td>228</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>36</td>		0	0	0	1325		248	228		0	0		36
Ideal Flow (phpf) 1900 <td></td> <td>0</td> <td>0</td> <td>0</td> <td>1325</td> <td>3</td> <td>248</td> <td></td> <td>543</td> <td>0</td> <td>0</td> <td>713</td> <td>36</td>		0	0	0	1325	3	248		543	0	0	713	36
Sate flow (perm) 0 0 0 1751 0 0 1833 0 0 1852 0 File Permitted 0 0 0 0 1751 0 0 170 0 0 1852 0 Right Turn on Red Yes Yes Yes Yes 2 Link Speed (mph) 45 45 35 35 1 Tavel Time (S) 13.4 10.1 11.6 17.2 - Peak Hour Factor 0.90		1900	1900	1900						1900	1900		
Fit Permited 0 0 0 0 0 0 176 0 0 182 0 Satd. Flow (Prom) 0 0 0 0 0 170 0 0 182 0 Satd. Flow (RTOR) 8 7 2 1 1 1 2 1 Link Speed (mph) 45 45 35 35 35 1													
Satd. Flow (perm) 0 0 0 1751 0 0 170 0 0 1852 0 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Satd. Flow (FOR) #5 #5 35 35 35 35 Link Spaced (mph) #5 #5 35 385 783 885 Travel Time (S) 13.4 00.1 10.1 11.6 0.90	4 /												
Right Turn on Red Yes Yes Yes Yes Yes Yes Said. Flow (RTOR) 8 8 668 593 35 11 Link Speed (mph) 45 45 35 35 11 11.6 17.2 Peak Hour Factor 0.90		0	0	0	0		0	0		0	0	1852	0
Said, Flow (RTOR) +5 45 35 2 Link Speed (mph) 45 45 35 35 Link Distance (ft) 883 668 5793 885 Travel Time (s) 13.4 10.1 11.6 17.2 Peak Hour Factor 0.90 <													Yes
Link Speed (mph) 45 45 35 35 Link Distance (ft) 883 668 593 885 Travel Time (s) 13.4 10.1 11.6 17.2 Peak Hour Factor 0.90	5					8						2	
Link Distance (th) 883 668 593 885 Travel Time (s) 13.4 10.1 11.6 17.2 Peak Hour Factor 0.90	. ,		45						35				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
Peak Hour Factor 0.90													
Shared Lane Traffic (%) 0 0 0 1751 0 0 856 0 0 832 0 Enter Blocked Intersection No		0.90		0.90	0.90		0.90	0.90		0.90	0.90		0.90
Lane Group Flow (vph) 0 0 0 0 1751 0 0 856 0 0 832 0 Enter Blocked Intersection No No <td></td> <td>0170</td>		0170	0170	0170	0170	0170	0170	0170	0170	0170	0170	0170	0170
	. ,	0	0	0	0	1751	0	0	856	0	0	832	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													-
Median Width(ft) 0 0 0 0 0 0 0 Link Offset(ft) 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 <t< td=""><td></td><td>Lon</td><td></td><td>rugin</td><td>Lon</td><td></td><td>rtigitt</td><td>Lon</td><td></td><td>Right</td><td>Lon</td><td></td><td>rtight</td></t<>		Lon		rugin	Lon		rtigitt	Lon		Right	Lon		rtight
Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane													
Two way Left Turn Lane Headway Factor 1.00 <td></td>													
Headway Factor 1.00			10			10			10			10	
Turning Speed (mph) 15 9 15 15 9 15 9 15 9 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15		1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
Turn Type Perm NA Perm NA Perm NA Protected Phases 4 6 2 Permitted Phases 4 4 6 2 Switch Phase 4 4 6 2 Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 22.0 22.0 22.0 22.0 22.0 22.0 Total Split (s) 72.0 72.0 78.0 78.0 78.0 78.0 Total Split (%) 48.0% 65.0% 52.0% 52.0% 52.0% Maximum Green (s) 66.0 66.0 71.7 71.7 71.7 Yellow Time (s) 4.0 4.3 4.3 4.3 All-Red Time (s) 0.0 0.0 0.0 0.0 Lost Time (s) 6.0 6.0 6.3 6.3 1.63 Lead/Lag			1.00			1.00			1.00			1.00	
Protected Phases 4 6 2 Permitted Phases 4 4 6 2 Detector Phase 4 4 6 2 Switch Phase		10		,		NA	,		NA	,	10	NA	,
Permitted Phases 4 6 Detector Phase 4 4 6 6 2 Switch Phase					1 Onn			1 Onn					
Detector Phase 4 4 6 6 2 Switch Phase					4			6	Ŭ			-	
Switch Phase Minimum Initial (s) 10.0 10.0 10.0 10.0 Minimum Split (s) 22.0 22.0 22.0 22.0 22.0 Total Split (s) 72.0 72.0 78.0 78.0 78.0 Total Split (%) 48.0% 48.0% 52.0% 52.0% 52.0% Maximum Green (s) 66.0 66.0 71.7 71.7 71.7 Yellow Time (s) 4.0 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 4.0 3.0 3.0 3.0 Lead-Lag 0ptimize?						4			6			2	
Minimun Initial (s)10.010.010.010.010.0Minimun Split (s)22.022.022.022.022.0Total Split (s)72.072.078.078.078.0Total Split (%)48.0%48.0%52.0%52.0%52.0%Maximum Green (s)66.066.071.771.771.7Yellow Time (s)4.04.04.34.34.3All-Red Time (s)2.02.02.02.02.0Lost Time Adjust (s)0.00.00.00.0Total Lost Time (s)6.06.36.36.3Lead-Lag Optimize?								U	Ŭ			2	
Minimum Split (s) 22.0 22.0 22.0 22.0 22.0 Total Split (s) 72.0 72.0 78.0 78.0 78.0 Total Split (%) 48.0% 48.0% 52.0% 52.0% 52.0% Maximum Green (s) 66.0 66.0 71.7 71.7 71.7 Yellow Time (s) 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag 6.0 6.3 6.3 Lead-Lag Optimize? 4.0 4.0 3.0 3.0 Vehicle Extension (s) 4.0 4.0 3.0 3.0 Act Effct Green (s) 66.0 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 \sqrt{c} Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOSFFFE					10.0	10.0		10.0	10.0			10.0	
Total Split (s)72.072.078.078.078.0Total Split (%) 48.0% 48.0% 52.0% 52.0% 52.0% Maximum Green (s) 66.0 66.0 71.7 71.7 71.7 Yellow Time (s) 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag 6.0 6.3 3.0 3.0 Lead-Lag Optimize? 4.0 4.0 3.0 3.0 Vehicle Extension (s) 4.0 4.0 3.0 3.0 Act Effct Green (s) 66.0 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOSFFFE	. ,												
Total Split (%) 48.0% 48.0% 52.0% 52.0% Maximum Green (s) 66.0 66.0 71.7 71.7 Yellow Time (s) 4.0 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 6.3 6.3 Lead/Lag 6.0 4.0 3.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 66.0 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 56.0 LOS <td></td>													
Maximum Green (s) 66.0 66.0 71.7 71.7 71.7 Yellow Time (s) 4.0 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 6.3 6.3 Lead/Lag 6.0 6.3 3.0 3.0 3.0 3.0 Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 66.0 71.7 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 0.48 v/c Ratio 2.26 10.57 0.94 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0													
Yellow Time (s) 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag													
All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag	. ,												
Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag													
Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag Lead-Lag Optimize?					2.0			2.0					
Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 Recall Mode None None Min Min Act Effct Green (s) 66.0 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F E	, , , ,												
Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 66.0 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F E						010			010			010	
Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 66.0 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F E													
Recall Mode None None Min Min Act Effct Green (s) 66.0 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F E					4.0	4.0		3.0	3.0			3.0	
Act Effct Green (s) 66.0 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F E													
Actuated g/C Ratio 0.44 0.48 0.48 v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F E					10110								
v/c Ratio2.2610.570.94Control Delay595.14335.556.0Queue Delay0.00.00.0Total Delay595.14335.556.0LOSFFE													
Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F E	0												
Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F E													
Total Delay 595.1 4335.5 56.0 LOS F F E													
LOS F F E	-												
	Approach Delay					595.1			4335.5			56.0	

Synchro 9 Report

Lanes, Volumes, Timings 2: Columbia Ave & I-26 WB Ramps

	۶	-	\mathbf{r}	4	←	•	1	Ť	1	5	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					F			F			E	
Queue Length 50th (ft)					~2788			~1597			757	
Queue Length 95th (ft)					#3051			#1865			#1045	
Internal Link Dist (ft)		803			588			513			805	
Turn Bay Length (ft)												
Base Capacity (vph)					774			81			886	
Starvation Cap Reductn					0			0			0	
Spillback Cap Reductn					0			0			0	
Storage Cap Reductn					0			0			0	
Reduced v/c Ratio					2.26			10.57			0.94	
Intersection Summary												
51	Other											
Cycle Length: 150												
Actuated Cycle Length: 150												
Natural Cycle: 45												
Control Type: Actuated-Unc	oordinated											
Maximum v/c Ratio: 10.57												
Intersection Signal Delay: 13					ntersection							
Intersection Capacity Utiliza	ition 185.19	6		ŀ	CU Level	of Service	H					
Analysis Period (min) 15												
 Volume exceeds capaci 			cally infin	ite.								
Queue shown is maximu												
# 95th percentile volume			ieue may	be long	er.							
Queue shown is maximu	im after two	o cycles.										

Splits and Phases: 2: Columbia Ave & I-26 WB Ramps

▼ Ø2	↓ Ø4
78 s	72 s
d	
78 s	

	≯	-	\mathbf{F}	•	+	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					- 4 >			ب ا ا			ef 👘	
Traffic Volume (veh/h)	0	0	0	1325	3	248	228	543	0	0	713	36
Future Volume (veh/h)	0	0	0	1325	3	248	228	543	0	0	713	36
Number				7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				1900	1863	1900	1900	1863	0	0	1863	1900
Adj Flow Rate, veh/h				1472	3	276	253	603	0	0	792	40
Adj No. of Lanes				0	1	0	0	1	0	0	1	0
Peak Hour Factor				0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %				0	2	0	2	2	0	0	2	2
Cap, veh/h				644	1	121	49	43	0	0	840	42
Arrive On Green				0.44	0.44	0.44	0.48	0.48	0.00	0.00	0.48	0.48
Sat Flow, veh/h				1464	3	274	37	89	0	0	1758	89
Grp Volume(v), veh/h				1751	0	0	856	0	0	0	0	832
Grp Sat Flow(s), veh/h/ln				1741	0	0	127	0	0	0	0	1847
Q Serve(g_s), s				66.0	0.0	0.0	7.5	0.0	0.0	0.0	0.0	64.2
Cycle Q Clear(g_c), s				66.0	0.0	0.0	71.7	0.0	0.0	0.0	0.0	64.2
Prop In Lane				0.84	0.0	0.16	0.30	0.0	0.00	0.00	0.0	0.05
Lane Grp Cap(c), veh/h				766	0	0	92	0	0	0	0	883
V/C Ratio(X)				2.29	0.00	0.00	9.34	0.00	0.00	0.00	0.00	0.94
Avail Cap(c_a), veh/h				766	0	0.00	92	0.00	0	0	0	883
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh				42.0	0.0	0.0	72.5	0.0	0.0	0.0	0.0	37.2
Incr Delay (d2), s/veh				582.7	0.0	0.0	3774.8	0.0	0.0	0.0	0.0	17.9
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				155.7	0.0	0.0	99.9	0.0	0.0	0.0	0.0	37.0
LnGrp Delay(d),s/veh				624.7	0.0	0.0	3847.3	0.0	0.0	0.0	0.0	55.1
LnGrp LOS				524.7 F	0.0	0.0	5047.5 F	0.0	0.0	0.0	0.0	E
Approach Vol, veh/h					1751			856			832	
Approach Delay, s/veh					624.7			3847.3			55.1	
Approach LOS					024.7 F			5047.5 F			55.1 E	
											E	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6						
Phs Duration (G+Y+Rc), s		78.0		72.0		78.0						
Change Period (Y+Rc), s		6.3		6.0		6.3						
Max Green Setting (Gmax), s		71.7		66.0		71.7						
Max Q Clear Time (g_c+l1), s		66.2		68.0		73.7						
Green Ext Time (p_c), s		4.6		0.0		0.0						
Intersection Summary												
HCM 2010 Ctrl Delay			1289.0									-
HCM 2010 LOS			F									

Summary of All Intervals

	4	0	0	•	
Run Number		2	3	Avg	
Start Time	4:35	4:35	4:35	4:35	
End Time	5:45	5:45	5:45	5:45	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	2911	2325	2458	2563	
Vehs Exited	2864	2264	2432	2520	
Starting Vehs	445	470	463	460	
Ending Vehs	492	531	489	504	
Travel Distance (mi)	3117	2359	2559	2678	
Travel Time (hr)	3248.8	3755.9	3657.5	3554.1	
Total Delay (hr)	3192.0	3710.8	3609.3	3504.0	
Total Stops	2591	2078	2604	2426	
Fuel Used (gal)	857.4	946.0	931.4	911.6	

Interval #0 Information Seeding

Start Time	4:35	
End Time	4:45	
Total Time (min)	10	
Volumes adjusted by Gro	wth Factors.	
No data recorded this inte	erval.	

Interval #1 Information Recording

Start Time	4:45
End Time	5:45
Total Time (min)	60
Volumes adjusted by Grow	th Factors.

Run Number	1	2	3	Avg	
Vehs Entered	2911	2325	2458	2563	
Vehs Exited	2864	2264	2432	2520	
Starting Vehs	445	470	463	460	
Ending Vehs	492	531	489	504	
Travel Distance (mi)	3117	2359	2559	2678	
Travel Time (hr)	3248.8	3755.9	3657.5	3554.1	
Total Delay (hr)	3192.0	3710.8	3609.3	3504.0	
Total Stops	2591	2078	2604	2426	
Fuel Used (gal)	857.4	946.0	931.4	911.6	

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	EB	WB	NB	SB
	==			
Directions Served	LTR	LTR	TR	LT
Maximum Queue (ft)	882	47	55	525
Average Queue (ft)	863	10	28	510
95th Queue (ft)	942	32	56	516
Link Distance (ft)	743	38	20	508
Upstream Blk Time (%)	97	1	2	95
Queuing Penalty (veh)	224	0	41	1934
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 2: Columbia Ave & I-26 WB Ramps

Movement	WB	NB	SB
Directions Served	LTR	LT	TR
Maximum Queue (ft)	692	420	873
Average Queue (ft)	667	249	859
95th Queue (ft)	683	391	874
Link Distance (ft)	537	508	858
Upstream Blk Time (%)	100		100
Queuing Penalty (veh)	1573		0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

APPENDIX I

NO-BUILD 2040 HCS REPORTS

	Operational Ana	alysis	
Analyst:	AECOM		
Agency or Company:	AECOM		
	6/30/2016		
Analysis Time Period:			
	I-26 EB		
From/To:	West of SC 202		
Jurisdiction:	West of Se 202		
	2040 No-Build		
Description: S-48 IMR			
_			
	Flow Inputs and	d Adjustments	
Volume, V		2003	veh/h
Peak-hour factor, PHF		0.90	
Peak 15-min volume, v1	5	556	v
Trucks and buses		4	00
Recreational vehicles		0	₽ 0
Terrain type:		Rolling	
Grade		-	e
Segment length		-	mi
Trucks and buses PCE, I	ET	2.5	
Recreational vehicle Po		2.0	
Heavy vehicle adjustmen		0.943	
Driver population factor, fp		1.00	
Flow rate, vp		1180	pc/h/ln
	Speed Inputs ar	nd Adjustments	
		10.0	C .
Lane width		12.0	ft
Right-side lateral clea		6.0	ft , .
Total ramp density, TRI	J	0.33	ramps/mi
Number of lanes, N		2	
Free-flow speed:		Base	
FFS or BFFS	6	75.4	mi/h
Lane width adjustment,		0.0	mi/h
Lateral clearance adjus	stment, ILC	0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Perform	mance Measures	
Flow rate, vp		1180	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car s	speed, S	74.6	mi/h
Number of lanes, N		2	
Density, D		15.8	pc/mi/ln
Level of service, LOS		В	

Fax:

_____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 EB From/To: Between S-48 and SC 202 Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 2202 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 612 v 4 Trucks and buses 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln 1297 Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base 75.4 FFS or BFFS mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1297 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 74.0 mi/h Number of lanes, N 2 Density, D 17.5 pc/mi/ln Level of service, LOS B

Operational	Analysis	
Analyst. Andow		
Analyst: AECOM Agency or Company: AECOM		
Date Performed: 6/30/2016		
Analysis Time Period: AM Peak		
Freeway/Direction: I-26 EB		
From/To: Between S-48	and US 176	
Jurisdiction:		
Analysis Year: 2040 No-Build	4	
Description: S-48 IMR		
Flow Inputs	and Adjustments	
Volume, V	3396	veh/h
Peak-hour factor, PHF	0.90	
Peak 15-min volume, v15	943	v
Trucks and buses	4	0
Recreational vehicles	0	8
Terrain type:	Rolling	
Grade		8
Segment length	_	mi
Trucks and buses PCE, ET	2.5	
Recreational vehicle PCE, ER	2.0	
Heavy vehicle adjustment, fHV	0.943	
Driver population factor, fp	1.00	
Flow rate, vp	2000	pc/h/ln
Speed Input	s and Adjustments	
Lane width	12.0	ft
Right-side lateral clearance	6.0	ft
Total ramp density, TRD	0.33	ramps/mi
Number of lanes, N	2	
Free-flow speed:	Base	
FFS or BFFS	75.4	mi/h
Lane width adjustment, fLW	0.0	mi/h
Lateral clearance adjustment, fLC	0.0	mi/h
TRD adjustment	1.3	mi/h
Free-flow speed, FFS	74.1	mi/h
LOS and Per	formance Measures	
Flow rate, vp	2000	pc/h/ln
Free-flow speed, FFS	74.1	mi/h
Average passenger-car speed, S	63.9	mi/h
Number of lanes, N	2	
Density, D Level of service, LOS	31.3	pc/mi/ln

	Operational Ana	lysis	
Analyst:	AECOM		
Agency or Company:	AECOM		
	6/30/2016		
Analysis Time Period:			
-	I-26 EB		
From/To:	East of US176		
Jurisdiction:			
	2040 No-Build		
Description: S-48 IMR			
-	Flow Inputs and	Adiustments	
Volume, V		5164	veh/h
Peak-hour factor, PHF		0.90	
Peak 15-min volume, v1	5	1434	V
Trucks and buses		4	8
Recreational vehicles		0	8
Terrain type:		Rolling	
Grade		-	00
Segment length		-	mi
Trucks and buses PCE, I	ET	2.5	
Recreational vehicle PO	CE, ER	2.0	
Heavy vehicle adjustment, fHV		0.943	
Driver population factor, fp		1.00	
Flow rate, vp		3041	pc/h/ln
	Speed Inputs an	d Adjustments	
		10.0	
Lane width		12.0	ft
Right-side lateral clea		6.0	ft mampa (mi
Total ramp density, TRI		0.33	ramps/mi
Number of lanes, N		2	
Free-flow speed:		Base	mi (b
FFS or BFFS	£T 1.1	75.4	mi/h
Lane width adjustment,		0.0	mi/h
Lateral clearance adjus	stment, ILC	0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Perform	ance Measures	
Flow rate, vp		3041	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car s	speed, S	28.9	mi/h
Number of lanes, N		2	
Density, D		105.3	pc/mi/ln
Level of service, LOS		F	-

	Operational An	alysis	
Analyst:	AECOM		
Agency or Company:	AECOM		
	6/30/2016		
Analysis Time Period:			
	I-26 WB		
From/To:	East of US 176		
Jurisdiction:			
	2040 No-Build		
Description: S-48 IMR			
	Flow Inputs an	d Adjustments	
17. J		2700	arch (b
Volume, V		2790	veh/h
Peak-hour factor, PHF	F	0.90	
Peak 15-min volume, v1	5	775	V
Trucks and buses		4	<u>0</u>
Recreational vehicles		0	00
Terrain type:		Rolling	<u>.</u>
Grade		-	8
Segment length		-	mi
Trucks and buses PCE, 1		2.5	
Recreational vehicle Po		2.0	
Heavy vehicle adjustmen		0.943	
Driver population factor, fp		1.00	
Flow rate, vp		1643	pc/h/ln
	Speed Inputs a	nd Adjustments	
Lane width		12.0	ft
Right-side lateral clea	arance	6.0	ft
Total ramp density, TRI		0.33	ramps/mi
Number of lanes, N		2	± ·
Free-flow speed:		Base	
FFS or BFFS		75.4	mi/h
Lane width adjustment,	fLW	0.0	mi/h
Lateral clearance adjust		0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Perfor	mance Measures	
Flow rate, vp		1643	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car :	sneed S	70.4	mi/h
Number of lanes, N	speed, s	2	III I / II
Density, D		23.3	pc/mi/ln
Level of service, LOS		23.3 C	PC/ III / 111
LEVEL OF BELVICE, HUS		C	

Fax:

_____Operational Analysis_____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 WB From/To: Between S-48 and US 176 Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 2418 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 672 v Trucks and buses 4 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln 1424 Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base 75.4 FFS or BFFS mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1424 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 73.0 mi/h Number of lanes, N 2 Density, D 19.5 pc/mi/ln Level of service, LOS С

Fax:

_____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 WB From/To: Between S-48 and SC 202 Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1414 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 393 v Trucks and buses 4 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 833 pc/h/ln Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 833 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N 2 Density, D 11.1 pc/mi/ln Level of service, LOS B

	Operational An	alysis	
Analyst:	AECOM		
Agency or Company:			
	6/30/2016		
Analysis Time Period:			
-	I-26 WB		
From/To:	West of SC 202		
Jurisdiction:			
	2040 No-Build		
Description: S-48 IMR			
	Flow Inputs an	d Adjustments	
Volume, V		1467	veh/h
Peak-hour factor, PHF		0.90	
Peak 15-min volume, v1	5	408	v
Trucks and buses	-	4	₹ •
Recreational vehicles		0	₽ ₽
Terrain type:		Rolling	
Grade		-	00
Segment length		-	mi
Trucks and buses PCE, 1	ET	2.5	
Recreational vehicle Po		2.0	
Heavy vehicle adjustmen		0.943	
Driver population facto		1.00	
Flow rate, vp	· -	864	pc/h/ln
	Speed Inputs a	nd Adjustments	
Lane width		12.0	ft
Right-side lateral clea	arance	6.0	ft
Total ramp density, TRI		0.33	ramps/mi
Number of lanes, N	_	2	<u>F</u>
Free-flow speed:		Base	
FFS or BFFS		75.4	mi/h
Lane width adjustment,	ftw	0.0	mi/h
Lateral clearance adjust		0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Perfor	mance Measures	
Flow rate, vp		864	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car :	speed. S	75.0	mi/h
Number of lanes, N	<u> </u>	2	,
Density, D		11.5	pc/mi/ln
Level of service, LOS		B	L - / / -
· · · · , · · · ·			

	Operational Ana	alysis	
Analyst:	AECOM		
Agency or Company:			
	6/30/2016		
Analysis Time Period:			
-	I-26 EB		
From/To:	West of SC 202		
Jurisdiction:			
Analysis Year:	2040 No-Build		
Description: S-48 IMR			
	Flow Inputs and	d Adjustments	
Volume, V		2415	veh/h
Peak-hour factor, PHF		0.90	
Peak 15-min volume, v1	5	671	v
Trucks and buses		4	o'o
Recreational vehicles		0	₹ •
Terrain type:		Rolling	·
Grade		-	00
Segment length		-	mi
Trucks and buses PCE, I	ET	2.5	
Recreational vehicle Po		2.0	
Heavy vehicle adjustmen		0.943	
Driver population facto		1.00	
Flow rate, vp	- -	1422	pc/h/ln
	Speed Inputs a	nd Adjustments	
Lane width		12.0	ft
Right-side lateral clea	arance	6.0	ft
Total ramp density, TRI		0.33	ramps/mi
Number of lanes, N	_	2	- cimp 2 / m-
Free-flow speed:		Base	
FFS or BFFS		75.4	mi/h
Lane width adjustment,	fLW	0.0	mi/h
Lateral clearance adjus		0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Perform	mance Measures	
Flow rate, vp		1422	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car s	speed, S	73.0	mi/h
Number of lanes, N	<u> </u>	2	
Density, D		19.5	pc/mi/ln
Level of service, LOS		С	-
•			

Fax:

_____Operational Analysis_____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 EB From/To: Between S-48 and SC 202 Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 2370 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 658 v 4 Trucks and buses 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln 1396 Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1396 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 73.3 mi/h Number of lanes, N 2 Density, D 19.1 pc/mi/ln Level of service, LOS С

Fax:

_____Operational Analysis_____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 EB From/To: Between S-48 and US 176 Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 3502 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 973 v 4 Trucks and buses 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln 2062 Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base 75.4 FFS or BFFS mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 2062 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 62.5 mi/h Number of lanes, N 2 Density, D 33.0 pc/mi/ln Level of service, LOS D

	Operational Ana	lysis	
Analyst:	AECOM		
Agency or Company:	AECOM		
Date Performed:	6/30/2016		
Analysis Time Period:			
Freeway/Direction:			
From/To:	East of US176		
Jurisdiction:			
	2040 No-Build		
Description: S-48 IMR			
	Flow Inputs and	l Adjustments	
***]			- 1 - (1 -
Volume, V		4257	veh/h
Peak-hour factor, PHF	-	0.90	
Peak 15-min volume, v1	5	1183	V
Trucks and buses		4	8
Recreational vehicles		0	8
Terrain type:		Rolling	0
Grade		-	8
Segment length		- 0 F	mi
Trucks and buses PCE, I		2.5	
Recreational vehicle PCE, ER		2.0	
Heavy vehicle adjustment, fHV		0.943	
Driver population factor, fp		1.00	
Flow rate, vp		2507	pc/h/ln
	Speed Inputs an	nd Adjustments	
Lane width		12.0	ft
Right-side lateral clea	arance	6.0	ft
Total ramp density, TRI		0.33	ramps/mi
Number of lanes, N		2	L
Free-flow speed:		Base	
FFS or BFFS		75.4	mi/h
Lane width adjustment,	fLW	0.0	mi/h
Lateral clearance adjus		0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Perform	nance Measures	
Flow rate, vp		2507	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car s	speed S	49.9	mi/h
Number of lanes, N	Specu, D	2	III 1 / 11
Density, D		50.3	pc/mi/ln
Level of service, LOS		50.5 F	PC/ IIIT/ TII
LEVEL OF BELVICE, HUD		-	

	Operational An	alysis	
Analyst:	AECOM		
Agency or Company:			
	6/30/2016		
Analysis Time Period:			
-	I-26 WB		
From/To:	East of US 176		
Jurisdiction:			
	2040 No-Build		
Description: S-48 IMR			
	Flow Inputs an	d Adjustments	
Volume, V		5028	veh/h
Peak-hour factor, PHF		0.90	
Peak 15-min volume, v1	5	1397	v
Trucks and buses		4	ି ୧
Recreational vehicles		0	o o∕o
Terrain type:		Rolling	0
Grade		-	00
Segment length		_	mi
Trucks and buses PCE, 1	R T	2.5	
Recreational vehicle P		2.0	
Heavy vehicle adjustment		0.943	
Driver population facto		1.00	
Flow rate, vp	01, 19	2961	pc/h/ln
riow race, vp		2501	pc/ ii/ 1ii
	Speed Inputs a	nd Adjustments	
Lane width		12.0	ft
Right-side lateral clea	arance	6.0	ft
Total ramp density, TR		0.33	ramps/mi
Number of lanes, N		2	-
Free-flow speed:		Base	
FFS or BFFS		75.4	mi/h
Lane width adjustment,	fLW	0.0	mi/h
Lateral clearance adju		0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Perfor	mance Measures	
Flow rate, vp		2961	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car	speed, S	32.4	mi/h
Number of lanes, N	······································	2	
Density, D		91.3	pc/mi/ln
Level of service, LOS		F	F 0,,
		-	

Operationa	al Analysis	
Analyst: AECOM		
Agency or Company: AECOM		
Date Performed: 6/30/2016		
Analysis Time Period: PM Peak		
Freeway/Direction: I-26 WB		
From/To: Between S-4	18 and US 176	
Jurisdiction:		
Analysis Year: 2040 No-Bui	ld	
Description: S-48 IMR		
Flow Input	ts and Adjustments	
Volume, V	3467	veh/h
Peak-hour factor, PHF	0.90	
Peak 15-min volume, v15	963	v
Trucks and buses	4	8
Recreational vehicles	0	8
Terrain type:	Rolling	
Grade	_	8
Segment length	_	mi
Trucks and buses PCE, ET	2.5	
Recreational vehicle PCE, ER	2.0	
Heavy vehicle adjustment, fHV	0.943	
Driver population factor, fp	1.00	
Flow rate, vp	2042	pc/h/ln
Speed Inpu	its and Adjustments	
Lane width	12.0	ft
Right-side lateral clearance	6.0	ft
Total ramp density, TRD	0.33	ramps/mi
Number of lanes, N	2	
Free-flow speed:	Base	
FFS or BFFS	75.4	mi/h
Lane width adjustment, fLW	0.0	mi/h
Lateral clearance adjustment, fLC	0.0	mi/h
TRD adjustment	1.3	mi/h
Free-flow speed, FFS	74.1	mi/h
File filow speed, Fils	/ 4. 1	
LOS and Pe	erformance Measures	
Flow rate, vp	2042	pc/h/ln
Free-flow speed, FFS	74.1	mi/h
Average passenger-car speed, S	63.0	mi/h
Number of lanes, N	2	
Density, D	32.4	pc/mi/ln
Level of service, LOS		

Fax:

_____Operational Analysis______ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 WB From/To: Between S-48 and SC 202 Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 2158 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 599 v 4 Trucks and buses 8 Recreational vehicles 8 0 Terrain type: Rolling Grade % _ Segment length _ mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln 1271 Flow rate, vp _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base 75.4 FFS or BFFS mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1271 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 74.2 mi/h Number of lanes, N 2 Density, D 17.1 pc/mi/ln Level of service, LOS B
Overall results are not computed when free-flow speed is less than 55 mph.

Phone: E-mail: Fax:

ysis	
Adjustments	
2084	veh/h
	v
	• •
	0,0
-	·
_	90
_	mi
2.5	
1227	pc/h/ln
Adjustments	
12 0	ft
	ft
	ramps/mi
	ramps/mr
	mi/h
	pc/h/ln
74.1	mi/h
74.4	mi/h
2	
16.5	pc/mi/ln
В	
	- 2.5 2.0 0.943 1.00 1227 Adjustments 12.0 6.0 0.33 2 Base 75.4 0.0 0.0 1.3 74.1 ance Measures 1227 74.1 74.4 2 16.5

Overall results are not computed when free-flow speed is less than 55 mph.

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: SC-202 EB On-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1957 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 25.0 mph Volume on ramp 245 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 46 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1050 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1957 245 46 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 544 68 13 v 2 0 2 0 Trucks and buses 4 8 0 Recreational vehicles 8 Rolling Rolling Rolling Terrain type: َ mi 0/0 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Driver population factor, fP	0.943 1.00 2305	0.971 1.00 280		pcph
Estimation of V	V12 Merge	Areas		
L = (Equat EQ	tion 13-6 (or 13-7)		
P = 1.000 Using FM	Equation	0		
v = v (P) = 2305 12 F FM	pc/h			
Capacity	Checks			
Actual v 2585 FO	Maximum 4800		LOS F? No	
v or v 0 pc/h 3 av34	(Equation	n 13-14	or 13-17)	
Is v or v > 2700 pc/h? 3 av34	No			
Is v or v > $1.5 v / 2$ 3 av 34 12	No			
	Equation 1	3-15, 13	-16, 13-18,	or 13-19)
Flow Entering Ma Actual Max v 2585 460 R12 Level of Service Determ	Desirable 0		Violation? No	
Density, D = 5.475 + 0.00734 v + 0.007 R R Level of service for ramp-freeway junct:	12	A		pc/mi/ln
Speed Estin	mation			
Intermediate speed variable,		0.353		
Space mean speed in ramp influence area		63.4	mph	
Space mean speed in outer lanes,	R S = 0	N/A	mph	
Space mean speed for all vehicles,	U U	63.4	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB On-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1979 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 45.0 mph Volume on ramp 1417 vph Length of first accel/decel lane 1500 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 223 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1725 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1979 1417 223 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 550 394 62 v 2 0 Trucks and buses 4 2 8 0 0 Recreational vehicles 8 Rolling Rolling Terrain type: Rolling َ mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 2331	0.971 1.00 1622		pcph
Estimation	of V12 Merge	Areas		
EQ	Equation 13-6			
FM	sing Equation	0		
v = v (P) = 2 12 F FM	2331 pc/h			
Capac	city Checks			
Actual v 3953 FO	Maximum 4800	L(No	DS F? D	
	n (Equatio	on 13-14 or	r 13-17)	
Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 2331 12A	(Equation	13-15, 13-3	16, 13-18,	or 13-19)
	Max Desirable 4600	e 7	Violation? No	
Density, D = 5.475 + 0.00734 v + 0. R R R Level of service for ramp-freeway ju	12	A		pc/mi/ln
Speed H	Estimation			
Intermediate speed variable,	M ·	= 0.389		
Space mean speed in ramp influence a	area, S	= 62.2 r	mph	
Space mean speed in outer lanes,		= N/A t	nph	
Space mean speed for all vehicles,	0 S :	= 62.2 r	nph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: US176 EB On-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 3248 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 25.0 mph Volume on ramp 1916 vph Length of first accel/decel lane 1500 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 148 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 900 ft _____Conversion to pc/h Under Base Conditions_____ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 3248 1916 148 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 902 532 41 v 2 0 Trucks and buses 4 2 8 0 0 Recreational vehicles 8 Rolling Rolling Terrain type: Level e mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 1.5 Recreational vehicle PCE, ER 2.0 2.0 1.2

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 3825	0.971 1.00 2193	1.00	pcph
Estimation of	of V12 Merge	Areas		
	quation 13-6	or 13-7)		
EQ P = 1.000 Us: FM	ing Equation	0		
v = v (P) = 38 12 F FM	325 pc/h			
Capac:	ity Checks			
V Actual FO	Maximum 4800		LOS F? Zes	
-	(Equation	on 13-14 c	or 13-17)	
Is v or v > 2700 pc/h? 3 av34	No			
Is v or v > 1.5 v /2 3 av34 12	No			
If yes, v = 3825 12A	(Equation	13-15, 13-	-16, 13-18,	or 13-19)
	Max Desirabl 4600	e	Violation? Yes	
Density, D = $5.475 + 0.00734 v + 0.00734 v$ R R Level of service for ramp-freeway jur	12	A		pc/mi/ln
Speed Es	stimation			
Intermediate speed variable,	M	= 1.848		
Space mean speed in ramp influence as	-	= 14.0	mph	
Space mean speed in outer lanes,		= N/A	mph	
Space mean speed for all vehicles,	e e	= 14.0	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: US 176 WB On-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2196 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 25.0 mph Volume on ramp 222 vph Length of first accel/decel lane 1425 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 594 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 775 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2196 222 594 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 610 62 165 v 4 2 0 2 % 0 % Trucks and buses Recreational vehicles 0 Rolling Rolling Rolling Terrain type: َ mi 0/0 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 2586	0.971 1.00 254		pcph
Estimation of	V12 Merge	Areas		
—	ation 13-6	or 13-7)		
EQ P = 1.000 Usin FM	g Equation	0		
v = v (P) = 258 12 F FM	6 pc/h			
Capacit	y Checks			
V 2840 FO	Maximum 4800		LOS F? No	
v or v 0 pc/h 3 av34	(Equatio	on 13-14	or 13-17)	
Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 2586 12A	(Equation 2	13-15, 13	-16, 13-18,	or 13-19)
Flow Entering Actual Ma v 2840 46 R12 Level of Service Dete	x Desirable 00	9	Violation? No	
Density, D = $5.475 + 0.00734 v + 0.00$ R R Level of service for ramp-freeway junc	12	A		pc/mi/ln
Speed Est	imation			
Intermediate speed variable,	M = S	= 0.317		
Space mean speed in ramp influence are	a, S =	= 64.6	mph	
Space mean speed in outer lanes,		= N/A	mph	
Space mean speed for all vehicles,	0 S =	= 64.6	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB On-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1230 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 45.0 mph Volume on ramp 184 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 1188 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1475 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1230 184 1188 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 342 51 330 v 4 2 0 2 % 0 % Trucks and buses 0 Recreational vehicles Rolling Rolling Rolling Terrain type: 0/0 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 1449	0.971 1.00 211	0.971 1.00 1360	pcph
Estimation	of V12 Merge	e Areas		
	Equation 13-6	or 13-7)		
EQ P = 1.000 U FM	sing Equation	n 0		
v = v (P) = 12 F FM	1449 pc/h			
Capa	city Checks			
Actual v 1660 FO	Maximum 4800	n Lo No	OS F? O	
v or v 0 pc/	h (Equati	on 13-14 of	r 13-17)	
3 av34 Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 1449 12A	(Equation	13-15, 13-	16, 13-18,	or 13-19)
Flow Enteri: Actual v 1660 R12 Level of Service D	Max Desirabl 4600	.e	Violation? No	
Density, D = $5.475 + 0.00734 v + 0$ R R Level of service for ramp-freeway j	12	A		pc/mi/ln
Speed	Estimation			
Intermediate speed variable,	M	= 0.231		
Space mean speed in ramp influence	area, S	= 67.4	mph	
Space mean speed in outer lanes,	R S O	= N/A	mph	
Space mean speed for all vehicles,	0 S	= 67.4	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: SC-202 WB On-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1381 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 45.0 mph Volume on ramp 86 vph Length of first accel/decel lane 525 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 33 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1000 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1381 86 33 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 384 24 9 v 2 0 4 2 0 Trucks and buses 8 0 Recreational vehicles 8 Rolling Rolling Rolling Terrain type: e mi 0/0 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 1627	0.971 1.00 98	0.971 1.00 38	pcph
Estimati	on of V12 Merg	ge Areas		
L =	(Equation 13-	6 or 13-7)		
EQ P = 1.000 FM	Using Equatic	on O		
v = v (P) = 12 F FM	1627 pc/h			
Ca	pacity Checks_			
Actual v 1725 FO	Maximu 4800	im L	OS F? O	
v or v 0 p	c/h (Equat	ion 13-14 o	r 13-17)	
3 av34 Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 1627 12A	(Equation	n 13-15, 13-	16, 13-18,	or 13-19)
	ring Merge Inf Max Desirab 4600 Determination	ole :	Violation? No	
Density, D = 5.475 + 0.00734 v + R R Level of service for ramp-freeway	12	A		pc/mi/ln
Spee	d Estimation			
Intermediate speed variable,	M	= 0.296		
Space mean speed in ramp influenc	e area, S	= 65.2	mph	
Space mean speed in outer lanes,	R S	= N/A	mph	
Space mean speed for all vehicles	, S	·	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: SC-202 EB On-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2325 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 25.0 mph Volume on ramp 45 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 90 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1050 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2325 45 90 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 646 13 25 v 4 2 0 2 0 Trucks and buses 8 Recreational vehicles 0 8 Rolling Rolling Terrain type: Rolling e mi 0/0 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 2738		0.971 1.00 103	pcph
Estimation o	f V12 Merge	Areas		
L = (Eq EQ	uation 13-6	or 13-7)		
P = 1.000 Usi FM	ng Equation	0		
v = v (P) = 27 12 F FM	38 pc/h			
Capaci	ty Checks			
Actual v 2790 FO	Maximum 4800		LOS F? No	
	(Equation	on 13-14 d	or 13-17)	
Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 2738 12A	(Equation	13-15, 13-	-16, 13-18,	or 13-19)
	ax Desirabl 600	e	Violation? No	
Density, D = $5.475 + 0.00734 v + 0.0$ R R Level of service for ramp-freeway jun	12	A		pc/mi/ln
Speed Es	timation			
Intermediate speed variable,	M	= 0.364		
Space mean speed in ramp influence ar		= 63.0	mph	
Space mean speed in outer lanes,		= N/A	mph	
Space mean speed for all vehicles,	Ũ	= 63.0	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB On-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2140 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 45.0 mph Volume on ramp 1362 vph Length of first accel/decel lane 1500 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 230 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1725 ft _____Conversion to pc/h Under Base Conditions_____ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 2140 1362 230 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 594 378 64 v 2 0 Trucks and buses 4 2 8 0 0 Recreational vehicles 8 Rolling Rolling Terrain type: Rolling َ mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 2520	0.971 1.00 1559	1.00	pcph
Estimation of	V12 Merge	Areas		
L = (Equ EQ	ation 13-6	or 13-7))	
P = 1.000 Usir FM	ng Equation	0		
v = v (P) = 252 12 F FM	20 pc/h			
Capacit	y Checks			
Actual v 4079 FO	Maximum 4800		LOS F? No	
v or v 0 pc/h 3 av34	(Equatio	on 13-14	or 13-17)	
Is v or v > 2700 pc/h? 3 av34	No			
Is v or v > $1.5 v / 2$ 3 av 34 12	No			
If yes, $v = 2520$ 12A	(Equation 2	13-15, 13	8-16, 13-18,	or 13-19)
	ax Desirable 500	9	Violation? No	
Density, D = $5.475 + 0.00734 v + 0.00$ R R Level of service for ramp-freeway junc	12	I	ł	pc/mi/ln
Speed Est	imation			
Intermediate speed variable,	M = S	= 0.416		
Space mean speed in ramp influence are		= 61.3	mph	
Space mean speed in outer lanes,		= N/A	mph	
Space mean speed for all vehicles,	9	= 61.3	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: US176 EB On-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 3218 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 25.0 mph Volume on ramp 1079 vph Length of first accel/decel lane 1500 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 284 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 900 ft _____Conversion to pc/h Under Base Conditions_____ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 3218 1079 284 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 894 300 79 v 2 0 Trucks and buses 4 2 8 0 0 Recreational vehicles 8 Rolling Rolling Terrain type: Level e mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 1.5 Recreational vehicle PCE, ER 2.0 2.0 1.2

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 3790	0.971 1.00 1235		pcph
Estimation of	V12 Merge	Areas		
L = (Equa EQ	ation 13-6	or 13-7)		
P = 1.000 Using FM	g Equation	0		
v = v (P) = 3790 12 F FM) pc/h			
Capacity	/ Checks			
Actual v 5025 FO	Maximum 4800		LOS F? Yes	
vorv 0 pc/h 3 av34	(Equatio	on 13-14	or 13-17)	
Is v or v > 2700 pc/h? 3 av34	No			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No			
	Equation 1	13-15, 13	8-16, 13-18,	or 13-19)
Flow Entering M Actual Max v 5025 460 R12 Level of Service Deter	Desirable 00	2	Violation? Yes	
Density, D = $5.475 + 0.00734 v + 0.007$ R R Level of service for ramp-freeway junct	12	A	7	pc/mi/ln
Speed Esti	mation			
Intermediate speed variable,	M = S	= 0.839		
Space mean speed in ramp influence area	a, S =	= 47.3	mph	
Space mean speed in outer lanes,	R S = 0	= N/A	mph	
Space mean speed for all vehicles,	9	= 47.3	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: US 176 WB On-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 3290 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 25.0 mph Volume on ramp 177 vph Length of first accel/decel lane 1425 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 1738 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 775 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 3290 177 1738 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 914 49 483 v 4 2 0 2 % 0 % Trucks and buses Recreational vehicles 0 Rolling Rolling Terrain type: Rolling e mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 3875	0.971 1.00 203		pcph
Estimation of	V12 Merge	Areas		
L = (Equa EQ	ation 13-6	or 13-7)		
P = 1.000 Using FM	g Equation	0		
v = v (P) = 3875 12 F FM	5 pc/h			
Capacity	/ Checks			
Actual v 4078 FO	Maximum 4800		LOS F? No	
vorv 0 pc/h 3 av34	(Equatio	on 13-14	or 13-17)	
Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 3875 12A	(Equation 1	3-15, 13	-16, 13-18,	or 13-19)
Flow Entering M Actual Max v 4078 460 R12 Level of Service Deter	c Desirable)0	2	Violation? No	
Density, D = $5.475 + 0.00734 v + 0.007$ R R Level of service for ramp-freeway junct	12	A		pc/mi/ln
Speed Esti	imation			
Intermediate speed variable,	M = S	= 0.480		
Space mean speed in ramp influence area	a, S =	= 59.2	mph	
Space mean speed in outer lanes,	R S = 0	= N/A	mph	
Space mean speed for all vehicles,	•	= 59.2	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB On-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1891 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 45.0 mph Volume on ramp 267 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 1576 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1475 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1891 267 1576 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 525 74 438 v 2 0 2 % 0 % Trucks and buses 4 0 Recreational vehicles Rolling Rolling Terrain type: Rolling e mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 2227	0.971 1.00 306		pcph
Estimation of	V12 Merge	Areas		
	ation 13-6	or 13-7)		
EQ P = 1.000 Using	g Equation	0		
FM v = v (P) = 222' 12 F FM	7 pc/h			
Capacit	y Checks			
Actual v 2533 FO	Maximum 4800		LOS F? No	
v or v 0 pc/h 3 av34	(Equatio	on 13-14	or 13-17)	
Is v or v > 2700 pc/h? 3 av34	No			
Is v or v > $1.5 v / 2$ 3 av 34 12	No			
	(Equation 2	13-15, 13	-16, 13-18,	or 13-19)
Flow Entering M Actual Ma: v 2533 460 R12 Level of Service Dete:	x Desirable 00	2	Violation? No	
Density, D = $5.475 + 0.00734 v + 0.007$ R R Level of service for ramp-freeway junct	12	A		pc/mi/ln
Speed Est	imation			
Intermediate speed variable,		= 0.260		
Space mean speed in ramp influence area		= 66.4	mph	
Space mean speed in outer lanes,		= N/A	mph	
Space mean speed for all vehicles,	0 S =	= 66.4	mph	

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: SC-202 WB On-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2018 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 45.0 mph Volume on ramp 66 vph Length of first accel/decel lane 525 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 140 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1000 ft _____Conversion to pc/h Under Base Conditions_____ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 2018 66 140 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 561 18 39 v 4 2 0 2 0 Trucks and buses 8 Recreational vehicles 0 8 Rolling Rolling Terrain type: Rolling e mi 00 Grade % Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	0.943 1.00 2377			pcph
Estimation of	V12 Merge	Areas		
L = (Equ EQ	ation 13-6	or 13-7)		
P [~] = 1.000 Usin FM	g Equation	0		
v = v (P) = 237 12 F FM	7 pc/h			
Capacit	y Checks			
V Actual FO	Maximum 4800		LOS F? No	
vorv 0 pc/h 3 av34	(Equatio	on 13-14	or 13-17)	
Is v or v > 2700 pc/h?	No			
3 av34 Is v or v > 1.5 v /2	No			
3 av34 12 If yes, v = 2377 12A	(Equation 1	L3-15, 13	8-16, 13-18,	or 13-19)
Flow Entering				
v 2453 46	x Desirable 00	2	Violation? No	
R12 Level of Service Dete	rmination ((if not F	')	
Density, D = $5.475 + 0.00734 v + 0.00$ R R Level of service for ramp-freeway junc	12	A	7	pc/mi/ln
		OI IIIII	lence c	
Speed Est				
Intermediate speed variable,	M = S	= 0.319		
Space mean speed in ramp influence are	a, S = R	= 64.5	mph	
Space mean speed in outer lanes,	S = 0	= N/A	mph	
Space mean speed for all vehicles,	S =	= 64.5	mph	

Phone: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: SC 202 EB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2003 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 46 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 245 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1050 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2003 46 245 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 556 13 68 v 2 0 Trucks and buses 4 2 Ŷ Recreational vehicles 0 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Fax:

Heavy vehicle adjustm Driver population fac Flow rate, vp		0.943 1.00 2359	0.971 1.00 53		pcph
	Estimation	of V12 Diverg	e Areas		
L EQ		Equation 13-12	or 13-13)		
	= 1.000 U	sing Equation	0		
v 12	= v + (v - v R F R		pc/h		
	Capa	city Checks			
v = v Fi F	Actual 2359	Maximum 4800	LC Nc)S F?	
v = v - v FO F R	2306	4800	Nc)	
v	53	2100	Nc)	
R v or v	0 pc/2	h (Equatio	n 13-14 or	13-17)	
3 av34 Is v or v > 2	700 pc/h?	No			
	.5 v /2	No			
3 av34 If yes, v = 2359 12A	12	(Equation 1	3-15, 13-1	.6, 13-18,	or 13-19)
	_Flow Entering	Diverge Influ			
Actual v 2359		Max Desirable 4400		/iolation? No	
12 Leve	l of Service D	etermination (if not F)_		
Density,		0.0086 v - 0. 12			
Level of service for			2	nce C	
	Speed	Estimation			
Intermediate speed va	riable,		0.303		
Space mean speed in r	amp influence		65.0 m	ıph	
Space mean speed in o	uter lanes,		N/A n	ıph	
Space mean speed for	all vehicles,	0 S =	65.0 m	1ph	

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2202 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 223 vph Length of first accel/decel lane 975 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 1417 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1725 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2202 223 1417 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 612 62 394 v 2 0 Trucks and buses 4 2 Ŷ Recreational vehicles 0 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjustment, Driver population factor, Flow rate, vp		0.943 1.00 2593	0.971 1.00 255	1.00	pcph	
	Estimation of	V12 Diverg	e Areas_			
L = EQ	(Equ	ation 13-12	or 13-1	.3)		
P = FD	1.000 Usin	g Equation	0			
	+ (v - v) P F R		pc/h			
	Capacit	y Checks				
v = v Fi F	Actual 2593	Maximum 4800		LOS F? No		
v = v - v FO F R	2338	4800		No		
V	255	2100		No		
R v or v 0 pc/h (Equation 13-14 or 13-17)						
3 av34 Is v or v > 2700 3 av34	pc/h?	No				
Is v or v > 1.5 v 3 av34		No				
If yes, v = 2593 12A	12	(Equation 1	3-15, 13	8-16, 13-18,	or 13-19)	
	w Entering Di					
v 2593		x Desirable 00		Violation? No		
12 Level of Service Determination (if not F)						
Density, D = 4.252 + 0.0086 v - 0.009 L = 17.8 pc/mi/ln						
R 12 D Level of service for ramp-freeway junction areas of influence B						
Speed Estimation						
Intermediate speed variab	le,		0.321			
Space mean speed in ramp	influence are		64.4	mph		
Space mean speed in outer	lanes,		N/A	mph		
Space mean speed for all	vehicles,	0 S =	64.4	mph		

Fax:

Phone:

Recreational vehicle PCE, ER

E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: US 176 EB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 3396 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 148 vph Length of first accel/decel lane 1000 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 1916 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 900 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 3396 148 1916 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 943 41 532 v 2 4 2 0 Trucks and buses Ŷ Recreational vehicles 0 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

Heavy vehicle adj Driver population Flow rate, vp		0.943 1.00 4000	0.971 1.00 169		pcph
	Estimatior	n of V12 Diver	ge Areas		
	L = (EQ	Equation 13-1	2 or 13-13)	
	P = 1.000 U FD	Jsing Equation	. 0		
	v = v + (v - v) $12 R F F$		pc/h		
	Capa	city Checks			
v = v Fi F	Actual 4000	Maximum 4800	L N	OS F? O	
v = v - v FO F R	3831	4800	Ν	0	
v R	169	2100	Ν	0	
v or v 3 av34	_	'h (Equati	on 13-14 o	r 13-17)	
	> 2700 pc/h?	No			
	> 1.5 v /2	No			
If yes, v = 40 12A		(Equation	13-15, 13-	16, 13-18,	or 13-19)
	Flow Entering				
		Max Desirabl 4400		Violation? No	
12	Level of Service I	Determination	(if not F)		
Density,		0.0086 v - 0		= 29.7	pc/mi/ln
Level of service	R for ramp-freeway j	12 junction areas	D of influe	nce D	
	Speed	Estimation			
Intermediate spee	d variable,	D	= 0.313		
Space mean speed	in ramp influence		= 64.7	mph	
Space mean speed	in outer lanes,	R S	= N/A	mph	
Space mean speed	for all vehicles,	0 S	= 64.7	mph	

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: US 176 WB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2790 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 594 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 222 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 775 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2790 594 222 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 775 165 62 v 2 0 Trucks and buses 4 2 Ŷ 0 Recreational vehicles 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length

2.5

2.0

2.5

2.0

2.5

2.0

Trucks and buses PCE, ET

Recreational vehicle PCE, ER

Heavy vehicle adjust Driver population fa Flow rate, vp		0.943 1.00 3286	0.971 1.00 680		pcph	
	Estimation	of V12 Diver	ge Areas			
	= (Equation 13-12	2 or 13-13)		
Р		sing Equation	0			
	= v + (v - v .2 R F R		pc/h			
	Capa	city Checks				
v = v Fi F	Actual 3286	Maximum 4800		OS F? Io		
v = v - v FO F R	2606	4800	N	ĨO		
v	680	2100	N	io		
R v or v	0 pc/	h (Equatio	on 13-14 o	r 13-17)		
3 av34 Is v or v >	2700 pc/h?	No				
3 av34 Is v or v >	1.5 v /2	No				
3 av34 If yes, v = 3286 12A	12	(Equation 1	13-15, 13-	16, 13-18,	or 13-19)	
		Diverge Influ				
v Actual v 3286		Max Desirable 4400		Violation? No		
12 Lev	vel of Service D	etermination	(if not F)			
Density, $D = 4.252 + 0.0086 \text{ v} - 0.009 \text{ L} = 21.5 \text{ pc/mi/ln}$ R 12 D						
Level of service for			2	nce C		
	Speed	Estimation				
Intermediate speed v	variable,		= 0.359			
Space mean speed in	ramp influence		= 63.1	mph		
Space mean speed in	outer lanes,		= N/A	mph		
Space mean speed for	all vehicles,	0 S :	= 63.1	mph		

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2418 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 1188 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 184 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1475 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2418 1188 184 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 672 330 51 v 4 2 0 Trucks and buses 2 Ŷ 0 Recreational vehicles 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0
Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp	1.	943 00 348	0.971 1.00 1360	1	.971 .00 11	pcph		
Estir	mation of V1	2 Diverge	e Areas_					
L = EQ	(Equati	on 13-12.	or 13-1	3)				
	P = 1.000 Using Equation 0							
v = v + (v) 12 R	v – v) P = F R FD	2848	pc/h					
	Capacity C	hecks						
v = v 284 Fi F		Maximum 4800		LOS F? No				
v = v - v 148 FO F R	38	4800		No				
v 130	50	2100		No				
	pc/h	(Equation	n 13-14	or 13-1	7)			
3 av34 Is v or v > 2700 pc/h'	?	No						
3 av34 Is v or v > 1.5 v /2		No						
3 av34 12 If yes, v = 2848 12A	(Ec	quation 13	3-15, 13	-16, 13	-18, 01	c 13-19)		
Flow Ent	tering Diver	ge Influe	ence Are	a				
v Actual v 2848		esirable		Violat No	ion?			
12 Level of Serv	vice Determi	nation (i	if not F	')				
Density, $D = 4.2$	252 + 0.0086		009 L			pc/mi/ln		
R Level of service for ramp-free	eway junctio		D of influ	ence B				
	Speed Estima	ation						
Intermediate speed variable,		D = S	0.420					
Space mean speed in ramp influ	uence area,	S =	61.1	mph				
Space mean speed in outer land	es,		N/A	mph				
Space mean speed for all vehic	cles,	0 S =	61.1	mph				

Phone: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: SC 202 WB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 1414 Volume on freeway vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 25.0 mph Volume on ramp 33 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 86 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1000 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1414 33 86 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 393 9 24 v 2 0 Trucks and buses 2 4 Ŷ 0 Recreational vehicles 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Fax:

Heavy vehicle adjust Driver population fa Flow rate, vp		0.943 1.00 1665	0.971 1.00 38		pcph
	Estimatior	n of V12 Diver	ge Areas		
	= ((Equation 13-1)	2 or 13-13)	
Р		Jsing Equation	0		
	= v + (v - v 2 R F F		pc/h		
	Capa	acity Checks			
v = v Fi F	Actual 1665	Maximum 4800	L N	OS F? O	
v = v - v FO F R	1627	4800	Ν	0	
v R	38	1900	Ν	0	
v or v 3 av34	0 pc/	h (Equatio	on 13-14 o	r 13-17)	
Is v or v > 3 av34	2700 pc/h?	No			
	1.5 v /2	No			
If yes, v = 1665 12A		(Equation)	13-15, 13-	16, 13-18,	or 13-19)
		g Diverge Infl			
V	Actual 1665	Max Desirable 4400		Violation? No	
12 Lev	el of Service I	Determination	(if not F)		
Density,	D = 4.252 +	0.0086 v - 0	.009 L	= 15.0	pc/mi/ln
Level of service for	R ramp-freeway	12 junction areas	D of influe	nce B	
	Speed	Estimation			
Intermediate speed v	ariable,		= 0.561		
Space mean speed in	ramp influence		= 56.5	mph	
Space mean speed in	outer lanes,		= N/A	mph	
Space mean speed for	all vehicles,	0 S :	= 56.5	mph	

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: SC 202 EB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2415 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 90 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 45 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1050 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2415 90 45 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 671 25 13 v 2 0 Trucks and buses 4 2 Ŷ Recreational vehicles 0 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adj Driver population Flow rate, vp		0.943 1.00 2844	0.971 1.00 103	1.00	pcph
	Estimation	of V12 Diver	ge Areas_		
	L = (EQ	Equation 13-1	2 or 13-1	3)	
		sing Equation	0		
	v = v + (v - v) $12 R F R$		pc/h		
	Capa	city Checks			
v = v Fi F	Actual 2844	Maximum 4800		LOS F? No	
V = V - V FO F R	2741	4800		No	
v R	103	2100		No	
v or v 3 av34		h (Equati	on 13-14	or 13-17)	
	> 2700 pc/h?	No			
	> 1.5 v /2	No			
If yes, v = 28 12A		(Equation	13-15, 13	-16, 13-18,	or 13-19)
	Flow Entering				
v	Actual 2844	Max Desirabl 4400	е	Violation? No	
12	Level of Service D	etermination	(if not F)	
Density,	D = 4.252 +	0.0086 v - 0	.009 L	= 25.1	pc/mi/ln
Level of service	R for ramp-freeway j	12 unction areas	D of influ	ence C	
	Speed	Estimation			
Intermediate spee	d variable,		= 0.307		
Space mean speed	in ramp influence		= 64.9	mph	
Space mean speed	in outer lanes,		= N/A	mph	
Space mean speed	for all vehicles,	0 S	= 64.9	mph	

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2370 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 230 vph Length of first accel/decel lane 975 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 1362 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1725 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2370 230 1362 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 658 64 378 v 2 0 2 0 Trucks and buses 4 Ŷ Recreational vehicles 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adjust Driver population fa Flow rate, vp		0.943 1.00 2791	0.971 1.00 263		pcph
	Estimation	of V12 Divers	ge Areas		
L E		Equation 13-12	2 or 13-13))	
	= 1.000 U	sing Equation	0		
v 1	= v + (v - v 2 R F R		pc/h		
	Capa	city Checks			
v = v Fi F	Actual 2791	Maximum 4800	LC Nc	DS F?	
v = v - v	2528	4800	Nc	0	
FO F R V	263	2100	Nc)	
R V or V	0 pc/	h (Equatio	on 13-14 or	13-17)	
3 av34 Is v or v >	2700 pc/h?	No			
	1.5 v /2	No			
3 av34 If yes, v = 2791 12A	12	(Equation 1	13-15, 13-1	16, 13-18,	or 13-19)
	Flow Entering				
v	Actual 2791	Max Desirable 4400		/iolation? No	
12 Lev	el of Service D	etermination ((if not F)_		
Density,		0.0086 v - 0.		= 19.5	pc/mi/ln
Level of service for	R ramp-freeway j	12 unction areas	D of influer	nce B	
	Speed	Estimation			
Intermediate speed v	ariable,		= 0.322		
Space mean speed in	ramp influence		= 64.4 n	nph	
Space mean speed in	outer lanes,		= N/A n	nph	
Space mean speed for	all vehicles,	0 S =	= 64.4 n	nph	

Phone:

Recreational vehicle PCE, ER

E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: US 176 EB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 3502 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 284 vph Length of first accel/decel lane 1000 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 1079 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 900 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 3502 284 1079 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 973 79 300 v 4 2 0 2 0 Trucks and buses 8 Recreational vehicles 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

Fax:

Heavy vehicle adj Driver population Flow rate, vp		0.943 1.00 4125	0.971 1.00 325		pcph
	Estimation	n of V12 Diver	ge Areas		
	L = (EQ	Equation 13-1	2 or 13-13	3)	
	P = 1.000 U FD	Jsing Equation	0		
	v = v + (v - v) $12 R F F$		pc/h		
	Capa	city Checks			
v = v Fi F	Actual 4125	Maximum 4800		LOS F? No	
V = V - V FO F R	3800	4800	1	No	
v R	325	2100	1	No	
v or v 3 av34		'h (Equati	on 13-14 d	or 13-17)	
	> 2700 pc/h?	No			
	> 1.5 v /2	No			
If yes, v = 41 12A		(Equation	13-15, 13-	-16, 13-18,	or 13-19)
	Flow Entering				
v	Actual 4125	Max Desirabl 4400	е	Violation? No	
12	Level of Service I	Determination	(if not F)	
Density,	D = 4.252 +	0.0086 v - 0	.009 L	= 30.7	pc/mi/ln
Level of service	R for ramp-freeway j	12 junction areas	D of influe	ence D	
	Speed	Estimation			
Intermediate spee	d variable,		= 0.327		
Space mean speed	in ramp influence		= 64.2	mph	
Space mean speed	in outer lanes,		= N/A	mph	
Space mean speed	for all vehicles,	0 S	= 64.2	mph	

Phone:

Recreational vehicle PCE, ER

Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: US 176 WB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 5028 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 1738 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 177 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 775 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 5028 1738 177 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 1397 483 49 v 2 0 Trucks and buses 4 2 8 Recreational vehicles 0 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

Heavy vehicle adjust Driver population fa Flow rate, vp		0.943 1.00 5922	0.971 1.00 1989		pcph
	Estimation	n of V12 Diver	ge Areas		
L		(Equation 13-1	2 or 13-13)	1	
Р		Jsing Equation	0		
	= v + (v - v 2 R F F		pc/h		
	Capa	acity Checks			
v = v Fi F	Actual 5922	Maximum 4800	LC Ye)S F? 2s	
v = v - v	3933	4800	No)	
FO F R V	1989	2100	Nc)	
R V Or V	0 pc,	/h (Equati	on 13-14 or	13-17)	
3 av34 Is v or v >	2700 pc/h?	No			
	1.5 v /2	No			
3 av34 If yes, v = 5922 12A	12	(Equation	13-15, 13-1	16, 13-18,	or 13-19)
		g Diverge Infl			
v	Actual 5922	Max Desirabl 4400		/iolation? /es	
12 Lev	el of Service I	Determination	(if not F)_		
Density,		0.0086 v - 0		44.2	pc/mi/ln
Level of service for	R ramp-freeway	12 junction areas	D of influer	nce F	
	Speed	Estimation			
Intermediate speed v	ariable,		= 0.477		
Space mean speed in	ramp influence		= 59.3 n	nph	
Space mean speed in	outer lanes,		= N/A n	nph	
Space mean speed for	all vehicles,	0 S	= 59.3 m	nph	

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 3467 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 1576 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 267 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1475 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 3467 1576 267 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 963 438 74 v 4 2 0 Trucks and buses 2 8 0 Recreational vehicles 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Heavy vehicle adju Driver population Flow rate, vp		0.943 1.00 4083	0.971 1.00 1804	1.00	pcph
	Estimation	of V12 Diver	ge Areas		
	L = (EQ	Equation 13-1	2 or 13-13	3)	
		sing Equation	0		
	v = v + (v - v 12 R F R		pc/h		
	Capa	city Checks			
v = v Fi F	Actual 4083	Maximum 4800		LOS F? No	
v = v - v FO F R	2279	4800	1	No	
v	1804	2100	1	J O	
R V or V	0 pc/	h (Equati	on 13-14 c	or 13-17)	
3 av34 Is v or v	> 2700 pc/h?	No			
3 av34 Is v or v		No			
3 av34 If yes, v = 408 12A		(Equation	13-15, 13-	-16, 13-18,	or 13-19)
	Flow Entering				
v	Actual 4083	Max Desirabl 4400	е	Violation? No	
12 I	evel of Service D	etermination	(if not F))	
Density,	D = 4.252 +		.009 L	= 28.3	pc/mi/ln
Level of service f	R For ramp-freeway j	12 unction areas	D of influe	ence D	
	Speed	Estimation			
Intermediate speed	l variable,		= 0.460		
Space mean speed i	n ramp influence		= 59.8	mph	
Space mean speed i	n outer lanes,		= N/A	mph	
Space mean speed f	for all vehicles,	0 S	= 59.8	mph	

Phone:

E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: SC 202 WB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2158 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 25.0 mph Volume on ramp 140 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 66 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1000 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 140 2158 66 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 599 39 18 v 2 4 2 0 Trucks and buses 8 Recreational vehicles 0 0 8
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

Fax:

Heavy vehicle adjustmen Driver population facto Flow rate, vp		0.943 1.00 2542	0.971 1.00 160		pcph
	Estimation	of V12 Diver	ge Areas		
L = EQ	(E	quation 13-12	2 or 13-13)	
P = FD	1.000 Us	ing Equation	0		
	v + (v - v) R F R		pc/h		
	Capac	ity Checks			
v = v Fi F	Actual 2542	Maximum 4800		OS F? O	
v = v - v FO F R	2382	4800	N	o	
v	160	1900	N	0	
R v or v	0 pc/h	(Equatio	on 13-14 o	r 13-17)	
3 av34 Is v or v > 270	0 pc/h?	No			
3 av34 Is v or v > 1.5		No			
3 av34 If yes, v = 2542 12A	12	(Equation 1	L3-15, 13-	16, 13-18,	or 13-19)
F	low Entering				
		Max Desirable 4400		Violation? No	
12 Level	of Service De	termination ((if not F)		
Density,	D = 4.252 + 0	.0086 v - 0. 12	.009 L D	= 22.5	pc/mi/ln
Level of service for ra		= =	2	nce C	
	Speed E	stimation			
Intermediate speed vari	able,		= 0.572		
Space mean speed in ram	p influence a		= 56.1	mph	
Space mean speed in out	er lanes,		= N/A	mph	
Space mean speed for al	l vehicles,	0 S =	= 56.1	mph	

APPENDIX J

BUILD ALT 1 2020 SYNCHRO AND SIM TRAFFIC REPORTS

Lanes, Volumes, Timings 1: Columbia Ave & I-26 EB Ramps

	_	rtanı				•		•		、		
	≯	-	\rightarrow	1	-			T		>	Ŧ	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					- † †						***	
Traffic Volume (vph)	0	0	0	0	433	0	0	0	0	0	1077	0
Future Volume (vph)	0	0	0	0	433	0	0	0	0	0	1077	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	0	0	0	3539	0	0	0	0	0	5085	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	3539	0	0	0	0	0	5085	0
Right Turn on Red			Yes	Yes		Yes			Yes			Yes
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		153			109			130			161	
Travel Time (s)		3.0			2.1			2.5			3.1	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Lane Group Flow (vph)	0	0	0	0	481	0	0	0	0	0	1197	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Leit	Len 0	Right	Leit	Len 0	Right	Len	Len 0	Right	Len	Len 0	Right
Link Offset(ft)		0			0			0			0	
.,		16			16			16			16	
Crosswalk Width(ft)		10			10			10			10	
Two way Left Turn Lane	1 00	1 00	1.00	1.00	1 00	1.00	1 00	1 00	1.00	1 00	1 00	1 00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15	NLA	9
Turn Type					NA						NA	
Protected Phases					4						6	
Permitted Phases												
Detector Phase					4						6	_
Switch Phase												
Minimum Initial (s)					10.0						10.0	
Minimum Split (s)					22.0						22.0	
Total Split (s)					26.0						34.0	
Total Split (%)					43.3%						56.7%	
Maximum Green (s)					20.0						28.0	
Yellow Time (s)					4.0						4.0	
All-Red Time (s)					2.0						2.0	
Lost Time Adjust (s)					0.0						0.0	
Total Lost Time (s)					6.0						6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)					3.0						3.0	
Recall Mode					Min						C-Max	
Act Effct Green (s)					13.9						34.1	
Actuated g/C Ratio					0.23						0.57	
v/c Ratio					0.59						0.41	
Control Delay					18.1						6.1	
Queue Delay					0.0						0.0	
Total Delay					18.1						6.1	
LOS					В						A	
Approach Delay					18.1						6.1	
					10.1						0.1	

Lanes, Volumes, Timings 1: Columbia Ave & I-26 EB Ramps

	۶	-	\mathbf{F}	4	←	*	1	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					В						А	
Queue Length 50th (ft)					60						42	
Queue Length 95th (ft)					59						114	
Internal Link Dist (ft)		73			29			50			81	
Turn Bay Length (ft)												
Base Capacity (vph)					1179						2893	
Starvation Cap Reductn					0						0	
Spillback Cap Reductn					0						0	
Storage Cap Reductn					0						0	
Reduced v/c Ratio					0.41						0.41	
Intersection Summary												
Area Type: O	ther											
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 48 (80%), Referenced	l to phase	6:SBT, S	Start of G	reen								
Natural Cycle: 45												
Control Type: Actuated-Coord	dinated											
Maximum v/c Ratio: 0.59												
Intersection Signal Delay: 9.6					tersection							
Intersection Capacity Utilizati	on 46.0%			IC	CU Level	of Service	e A					_
Analysis Period (min) 15												

Splits and Phases: 1: Columbia Ave & I-26 EB Ramps

	← Ø4	
	26 s	
Ø6 (R)		
34 s		

	۶	-	\mathbf{F}	•	-	•	1	1	1	1	ţ	∢
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					- ††						***	
Traffic Volume (veh/h)	0	0	0	0	433	0	0	0	0	0	1077	0
Future Volume (veh/h)	0	0	0	0	433	0	0	0	0	0	1077	0
Number				7	4	14				1	6	16
Initial Q (Qb), veh				0	0	0				0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00				1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				0	1863	0				0	1863	0
Adj Flow Rate, veh/h				0	481	0				0	1197	0
Adj No. of Lanes				0	2	0				0	3	0
Peak Hour Factor				0.90	0.90	0.90				0.90	0.90	0.90
Percent Heavy Veh, %				0	2	0				0	2	0
Cap, veh/h				0	696	0				0	2373	0
Arrive On Green				0.00	0.20	0.00				0.00	0.15	0.00
Sat Flow, veh/h				0	3725	0				0	5421	0
Grp Volume(v), veh/h				0	481	0				0	1197	0
Grp Sat Flow(s),veh/h/ln				0	1770	0				0	1695	0
Q Serve(q_s), s				0.0	7.6	0.0				0.0	13.0	0.0
Cycle Q Clear(g_c), s				0.0	7.6	0.0				0.0	13.0	0.0
Prop In Lane				0.00		0.00				0.00		0.00
Lane Grp Cap(c), veh/h				0	696	0				0	2373	0
V/C Ratio(X)				0.00	0.69	0.00				0.00	0.50	0.00
Avail Cap(c_a), veh/h				0	1180	0				0	2373	0
HCM Platoon Ratio				1.00	1.00	1.00				1.00	0.33	1.00
Upstream Filter(I)				0.00	1.00	0.00				0.00	1.00	0.00
Uniform Delay (d), s/veh				0.0	22.4	0.0				0.0	19.0	0.0
Incr Delay (d2), s/veh				0.0	1.2	0.0				0.0	0.8	0.0
Initial Q Delay(d3),s/veh				0.0	0.0	0.0				0.0	0.0	0.0
%ile BackOfQ(50%),veh/In				0.0	3.8	0.0				0.0	6.2	0.0
LnGrp Delay(d), s/veh				0.0	23.7	0.0				0.0	19.8	0.0
LnGrp LOS					С						В	
Approach Vol, veh/h					481						1197	
Approach Delay, s/veh					23.7						19.8	
Approach LOS					C						В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	5	4	5	6	,	0				
Phs Duration (G+Y+Rc), s				17.8		34.0						
Change Period (Y+Rc), s				6.0		6.0						
Max Green Setting (Gmax), s				20.0		28.0						
Max Q Clear Time (g_c+11), s				9.6		15.0						
Green Ext Time (p_c), s				9.0		6.6						
4 = 7				2.2		0.0						
Intersection Summary			00.0									
HCM 2010 Ctrl Delay			20.9									
HCM 2010 LOS			С									

Lanes, Volumes, Timings 21: Columbia Ave & I-26 WB Ramps

			npo									
	≯	-	\mathbf{r}	4	-	•	1	1	1	1	Ŧ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		<u></u>									<u></u>	
Traffic Volume (vph)	0	370	0	0	0	0	0	0	0	0	529	0
Future Volume (vph)	0	370	0	0	0	0	0	0	0	0	529	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	3539	0	0	0	0	0	0	0	0	3539	0
Flt Permitted												
Satd. Flow (perm)	0	3539	0	0	0	0	0	0	0	0	3539	0
Right Turn on Red	-		Yes		-	Yes	-	-	Yes	Yes		Yes
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		147			115			170			129	
Travel Time (s)		2.9			2.2			3.3			2.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0170	0170	0170	0170	0170	0170	0170	0170	0170	0170	0170	0170
Lane Group Flow (vph)	0	411	0	0	0	0	0	0	0	0	588	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lon	0	Right	Lon	0	Right	Lon	0	rtigitt	Lon	0	rtigitt
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9
Turn Type	10	NA	,	15		,	15		,	15	NA	,
Protected Phases		4									6	
Permitted Phases											Ū	
Detector Phase		4									6	
Switch Phase											U	
Minimum Initial (s)		10.0									10.0	
Minimum Split (s)		22.0									22.0	
Total Split (s)		28.0									32.0	
Total Split (%)		46.7%									53.3%	
Maximum Green (s)		22.0									26.0	
Yellow Time (s)		4.0									4.0	
All-Red Time (s)		2.0									2.0	
Lost Time Adjust (s)		0.0									0.0	
Total Lost Time (s)		6.0									6.0	
Lead/Lag		0.0									0.0	
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0									3.0	
Recall Mode		None									C-Max	
Act Effct Green (s)		12.6									35.4	
Actuated g/C Ratio		0.21									0.59	
v/c Ratio		0.55									0.28	
Control Delay		5.2									6.9	
Queue Delay		0.0									0.9	
Total Delay		5.2									6.9	
LOS		J.2 A									0.9 A	
Approach Delay		5.2									6.9	
		J.Z									0.7	

Lanes, Volumes, Timings 21: Columbia Ave & I-26 WB Ramps

	≯	+	*	4	+	•	•	1	1	1	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		А									А	
Queue Length 50th (ft)		4									46	
Queue Length 95th (ft)		10									85	
Internal Link Dist (ft)		67			35			90			49	
Turn Bay Length (ft)												
Base Capacity (vph)		1297									2088	
Starvation Cap Reductn		0									0	
Spillback Cap Reductn		0									7	
Storage Cap Reductn		0									0	
Reduced v/c Ratio		0.32									0.28	
Intersection Summary												
71	Other											
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 3 (5%), Referenced to	o phase 6:	SBT, Sta	rt of Gree	en								
Natural Cycle: 45												
Control Type: Actuated-Coor	dinated											
Maximum v/c Ratio: 0.55												
Intersection Signal Delay: 6.2					tersection							
Intersection Capacity Utilizat	ion 34.9%			IC	CU Level	of Service	e A					
Analysis Period (min) 15												

Splits and Phases: 21: Columbia Ave & I-26 WB Ramps

	→ Ø4	
	28 s	
Ø6 (R)		
32 s		

	۶	-	$\mathbf{\hat{z}}$	∢	-	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- ††									- ††	
Traffic Volume (veh/h)	0	370	0	0	0	0	0	0	0	0	529	0
Future Volume (veh/h)	0	370	0	0	0	0	0	0	0	0	529	0
Number	7	4	14							1	6	16
Initial Q (Qb), veh	0	0	0							0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00							1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00							1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1863	0							0	1863	0
Adj Flow Rate, veh/h	0	411	0							0	588	0
Adj No. of Lanes	0	2	0							0	2	0
Peak Hour Factor	0.90	0.90	0.90							0.90	0.90	0.90
Percent Heavy Veh, %	0	2	0							0	2	0
Cap, veh/h	0	625	0							0	1534	0
Arrive On Green	0.00	0.18	0.00							0.00	0.43	0.00
Sat Flow, veh/h	0	3725	0							0	3725	0
Grp Volume(v), veh/h	0	411	0							0	588	0
Grp Sat Flow(s), veh/h/ln	0	1770	0							0	1770	0
Q Serve(g_s), s	0.0	6.5	0.0							0.0	6.8	0.0
Cycle Q Clear(g_c), s	0.0	6.5	0.0							0.0	6.8	0.0
Prop In Lane	0.00		0.00							0.00		0.00
Lane Grp Cap(c), veh/h	0	625	0							0	1534	0
V/C Ratio(X)	0.00	0.66	0.00							0.00	0.38	0.00
Avail Cap(c_a), veh/h	0	1298	0							0	1534	0
HCM Platoon Ratio	1.00	1.00	1.00							1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	0.00							0.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	23.0	0.0							0.0	11.6	0.0
Incr Delay (d2), s/veh	0.0	1.2	0.0							0.0	0.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0							0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	3.2	0.0							0.0	3.4	0.0
LnGrp Delay(d),s/veh	0.0	24.2	0.0							0.0	12.3	0.0
LnGrp LOS		С									В	
Approach Vol, veh/h		411									588	
Approach Delay, s/veh		24.2									12.3	
Approach LOS		С									В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs				4		6						
Phs Duration (G+Y+Rc), s				16.6		32.0						
Change Period (Y+Rc), s				6.0		6.0						
Max Green Setting (Gmax), s				22.0		26.0						
Max Q Clear Time (q_c+11) , s				8.5		8.8						
Green Ext Time (p_c), s				2.1		3.6						
Intersection Summary												
HCM 2010 Ctrl Delay			17.2									
HCM 2010 LOS			В									
			_									

Lanes, Volumes, Timings 22: Columbia Ave & I-26 WB Off Ramp

	4	×	t	1	1	ţ
	• WBL	WBR	NBT	NBR	SBL	SBT
Lane Group		VØK	NDI	NDK	SDL	
Lane Configurations	ካካ 401	0	0	0	0	††
Traffic Volume (vph)	691	0	0	0	0	529
Future Volume (vph)	691	0	0	0	0	529
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	3433	0	0	0	0	3539
Flt Permitted	0.950					
Satd. Flow (perm)	3433	0	0	0	0	3539
Right Turn on Red	Yes	Yes		Yes		
Satd. Flow (RTOR)	306					
Link Speed (mph)	30		35			35
Link Distance (ft)	161		300			170
Travel Time (s)	3.7		5.8			3.3
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0.70	5.70	5.70	5.70	5.70	0.70
Lane Group Flow (vph)	768	0	0	0	0	588
Enter Blocked Intersection	No	No	No	No	No	588 No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	24		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Turn Type	Prot					NA
Protected Phases	8					6
Permitted Phases						
Detector Phase	8					6
Switch Phase						
Minimum Initial (s)	7.0					10.0
Minimum Split (s)	15.0					22.0
Total Split (s)	30.0					30.0
Total Split (%)	50.0%					50.0%
Maximum Green (s)	24.0					24.0
Yellow Time (s)	4.0					4.0
All-Red Time (s)	2.0					2.0
Lost Time Adjust (s)	0.0					0.0
Total Lost Time (s)	6.0					6.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0					3.0
Recall Mode	Min					C-Max
Act Effct Green (s)	14.8					33.2
Actuated g/C Ratio	0.25					0.55
v/c Ratio	0.20					0.30
Control Delay	15.6					2.7
Queue Delay	0.0					0.2
Total Delay	15.6					2.9
LOS Annuarita Dalari	B					A
Approach Delay	15.6					2.9

2020 Build	AM DDI
------------	--------

	4	*	Ť	۲	1	Ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Approach LOS	В					А
Queue Length 50th (ft)	74					11
Queue Length 95th (ft)	108					15
Internal Link Dist (ft)	81		220			90
Turn Bay Length (ft)						
Base Capacity (vph)	1556					1960
Starvation Cap Reductn	0					621
Spillback Cap Reductn	0					0
Storage Cap Reductn	0					0
Reduced v/c Ratio	0.49					0.44
Intersection Summary						
Area Type:	Other					
Cycle Length: 60						
Actuated Cycle Length: 60						
Offset: 3 (5%), Referenced	I to phase 6:	SBT, Sta	rt of Gree	en		
Natural Cycle: 40						
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.71						
Intersection Signal Delay: 7					tersectior	
Intersection Capacity Utiliz	ation 44.3%			IC	U Level	of Service A
Analysis Period (min) 15						

Splits and Phases: 22: Columbia Ave & I-26 WB Off Ramp

1		
🛡 🕏 Ø6 (R)	🕈 Ø8	
30 s	30 s	

	•	×	Ť	1	1	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ኘኘ					††	
Traffic Volume (veh/h)	691	0	0	0	0	529	
Future Volume (veh/h)	691	0	0	0	0	529	
Number	3	18	Ŭ	Ŭ	1	6	
Initial Q (Qb), veh	0	0			0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00			1.00	Ŭ	
Parking Bus, Adj	1.00	1.00			1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	0			0	1863	
Adj Flow Rate, veh/h	768	0			0	588	
Adj No. of Lanes	2	0			0	2	
Peak Hour Factor	0.90	0.90			0.90	0.90	
Percent Heavy Veh, %	2	0.70			0.70	2	
Cap, veh/h	0	0			0	1416	
Arrive On Green	0.00	0.00			0.00	0.13	
Sat Flow, veh/h	0.00	0.00				3725	
					0		
Grp Volume(v), veh/h	0.0				0	588	
Grp Sat Flow(s),veh/h/ln					0	1770	
Q Serve(g_s), s					0.0	9.2	
Cycle Q Clear(g_c), s					0.0	9.2	
Prop In Lane					0.00		
Lane Grp Cap(c), veh/h					0	1416	
V/C Ratio(X)					0.00	0.42	
Avail Cap(c_a), veh/h					0	1416	
HCM Platoon Ratio					1.00	0.33	
Upstream Filter(I)					0.00	0.97	
Uniform Delay (d), s/veh					0.0	19.6	
Incr Delay (d2), s/veh					0.0	0.9	
Initial Q Delay(d3),s/veh					0.0	0.0	
%ile BackOfQ(50%),veh/In					0.0	4.7	
LnGrp Delay(d),s/veh					0.0	20.5	
LnGrp LOS						С	
Approach Vol, veh/h						588	
Approach Delay, s/veh						20.5	
Approach LOS						С	
Timer	1	2	3	4	5	6	7 8
Assigned Phs						6	
Phs Duration (G+Y+Rc), s						30.0	
Change Period (Y+Rc), s						6.0	
Max Green Setting (Gmax), s						24.0	
Max Q Clear Time (g_c+I1), s						11.2	
Green Ext Time (p_c), s						3.1	
· · · · · · · · · · · · · · · · · · ·						J. I	
Intersection Summary			20 5				
HCM 2010 Ctrl Delay			20.5				
HCM 2010 LOS			С				

Summary of All Intervals

o	
Start Time	7:20
End Time	8:30
Total Time (min)	70
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	5184
Vehs Exited	5189
Starting Vehs	139
Ending Vehs	134
Travel Distance (mi)	5590
Travel Time (hr)	141.0
Total Delay (hr)	37.8
Total Stops	2324
Fuel Used (gal)	222.9

Interval #0 Information Seeding

	<u> </u>	
Start Time	7:20	
End Time	7:30	
Total Time (min)	10	
Volumes adjusted by Grov	wth Factors.	
No data recorded this inte	erval.	

Interval #1 Information Recording

	ation recording
Start Time	7:30
End Time	8:30
Total Time (min)	60
Volumes adjusted by Gro	wth Factors.

Vehs Entered	5184	
Vehs Exited	5189	
Starting Vehs	139	
Ending Vehs	134	
Travel Distance (mi)	5590	
Travel Time (hr)	141.0	
Total Delay (hr)	37.8	
Total Stops	2324	
Fuel Used (gal)	222.9	

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	WB	WB	SB	SB	SB
Directions Served	Т	Т	Т	Т	Т
Maximum Queue (ft)	144	113	98	120	55
Average Queue (ft)	102	54	54	95	16
95th Queue (ft)	144	99	100	110	46
Link Distance (ft)	57	57	13	13	13
Upstream Blk Time (%)	32	7	16	33	5
Queuing Penalty (veh)	69	14	56	120	19
Storage Bay Dist (ft)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 21: Columbia Ave & I-26 WB Ramps

Movement	EB	EB	SB	SB
Directions Served	T	T	T	T
Maximum Queue (ft)	93	92	75	153
Average Queue (ft)	48	62	24	100
95th Queue (ft)	90	108	61	170
Link Distance (ft)	13	13	16	16
Upstream Blk Time (%)	39	43	6	31
Queuing Penalty (veh)	72	79	17	81
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 22: Columbia Ave & I-26 WB Off Ramp

			CD	00
Movement	WB	WB	SB	SB
Directions Served	L	L	Т	Т
Maximum Queue (ft)	165	160	51	73
Average Queue (ft)	113	111	12	37
95th Queue (ft)	156	153	40	60
Link Distance (ft)	103	103	30	30
Upstream Blk Time (%)	8	9	5	23
Queuing Penalty (veh)	26	30	14	60
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Lanes, Volumes, Timings <u>1: I-26 EB Ramps & Columbia Ave</u>

1. 1-20 ED Ramps &			/0									
	≯	-	\rightarrow	1	+	•	1	1	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					††						^	
Traffic Volume (vph)	0	0	0	0	624	0	0	0	0	0	1376	0
Future Volume (vph)	0	0	0	0	624	0	0	0	0	0	1376	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	0	0	0	3539	0	0	0	0	0	5085	0
Flt Permitted	U	U	U	U	5557	U	U	0	U	U	5005	Ŭ
Satd. Flow (perm)	0	0	0	0	3539	0	0	0	0	0	5085	0
Right Turn on Red	0	0	Yes	Yes	5557	Yes	U	0	Yes	0	5005	Yes
Satd. Flow (RTOR)			163	163		163			163			163
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		135			109			140			150	
. ,		2.6			2.1			2.7			2.9	
Travel Time (s)	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0	0	0	0	(0)	0	0	0	0	0	1500	
Lane Group Flow (vph)	0	0	0	0	693	0	0	0	0	0	1529	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type					NA						NA	
Protected Phases					4						6	
Permitted Phases												
Detector Phase					4						6	
Switch Phase												
Minimum Initial (s)					10.0						10.0	
Minimum Split (s)					22.0						22.0	
Total Split (s)					26.0						34.0	
Total Split (%)					43.3%						56.7%	
Maximum Green (s)					20.0						28.0	
Yellow Time (s)					4.0						4.0	
All-Red Time (s)					2.0						2.0	
Lost Time Adjust (s)					0.0						0.0	
Total Lost Time (s)					6.0						6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)					3.0						3.0	
Recall Mode					Min						C-Max	
Act Effct Green (s)					17.3						30.7	
Actuated g/C Ratio					0.29						0.51	
v/c Ratio					0.27						0.59	
Control Delay					19.2						10.2	
Queue Delay					0.0						0.0	
,					19.2						10.2	
Total Delay LOS					19.2 B							
											B	
Approach Delay					19.2						10.2	

Lanes, Volumes, Timings 1: I-26 EB Ramps & Columbia Ave

	٦	-	\mathbf{F}	•	-	۰.	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					В						В	
Queue Length 50th (ft)					113						125	
Queue Length 95th (ft)					84						221	
Internal Link Dist (ft)		55			29			60			70	
Turn Bay Length (ft)												
Base Capacity (vph)					1179						2598	
Starvation Cap Reductn					0						0	
Spillback Cap Reductn					0						0	
Storage Cap Reductn					0						0	
Reduced v/c Ratio					0.59						0.59	
Intersection Summary												
	Other											
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 48 (80%), Reference	ed to phase	6:SBT, S	Start of G	reen								
Natural Cycle: 45												
Control Type: Actuated-Coc	ordinated											
Maximum v/c Ratio: 0.68												
Intersection Signal Delay: 1					itersection		_					
Intersection Capacity Utiliza	ation 53.8%			IC	CU Level	of Service	e A					
Analysis Period (min) 15												

Splits and Phases: 1: I-26 EB Ramps & Columbia Ave

	← Ø4	
	26 s	
▼ Ø6 (R)		
34 s		

	۶	-	\mathbf{F}	∢	-	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					- ††						ተተተ	
Traffic Volume (veh/h)	0	0	0	0	624	0	0	0	0	0	1376	0
Future Volume (veh/h)	0	0	0	0	624	0	0	0	0	0	1376	0
Number				7	4	14				1	6	16
Initial Q (Qb), veh				0	0	0				0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00				1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				0	1863	0				0	1863	0
Adj Flow Rate, veh/h				0	693	0				0	1529	0
Adj No. of Lanes				0	2	0				0	3	0
Peak Hour Factor				0.90	0.90	0.90				0.90	0.90	0.90
Percent Heavy Veh, %				0	2	0				0	2	0
Cap, veh/h				0	911	0				0	2373	0
Arrive On Green				0.00	0.26	0.00				0.00	0.15	0.00
Sat Flow, veh/h				0	3725	0				0	5421	0
Grp Volume(v), veh/h				0	693	0				0	1529	0
Grp Sat Flow(s), veh/h/ln				0	1770	0				0	1695	0
Q Serve(g_s), s				0.0	10.8	0.0				0.0	16.9	0.0
Cycle Q Clear(q_c), s				0.0	10.8	0.0				0.0	16.9	0.0
Prop In Lane				0.00	10.0	0.00				0.00	10.7	0.00
Lane Grp Cap(c), veh/h				0.00	911	0.00				0.00	2373	0.00
V/C Ratio(X)				0.00	0.76	0.00				0.00	0.64	0.00
Avail Cap(c_a), veh/h				0.00	1180	0.00				0.00	2373	0.00
HCM Platoon Ratio				1.00	1.00	1.00				1.00	0.33	1.00
Upstream Filter(I)				0.00	1.00	0.00				0.00	1.00	0.00
Uniform Delay (d), s/veh				0.0	20.6	0.0				0.0	20.7	0.0
Incr Delay (d2), s/veh				0.0	2.2	0.0				0.0	1.4	0.0
Initial Q Delay(d3),s/veh				0.0	0.0	0.0				0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				0.0	5.6	0.0				0.0	8.2	0.0
LnGrp Delay(d),s/veh				0.0	22.8	0.0				0.0	22.1	0.0
LnGrp LOS				0.0	22.0 C	0.0				0.0	C	0.0
Approach Vol, veh/h					693						1529	
Approach Delay, s/veh					22.8						22.1	
Approach LOS					22.0 C						22.1 C	
Appidacii EOS					C						U	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs				4		6						
Phs Duration (G+Y+Rc), s				21.4		34.0						
Change Period (Y+Rc), s				6.0		6.0						
Max Green Setting (Gmax), s				20.0		28.0						
Max Q Clear Time (g_c+I1), s				12.8		18.9						
Green Ext Time (p_c), s				2.6		6.3						
Intersection Summary												
HCM 2010 Ctrl Delay			22.3									
HCM 2010 LOS			С									

	_				<u> </u>	<u> </u>
	-	~	T	1	•	÷
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ካካ					† †
Traffic Volume (vph)	953	0	0	0	0	669
Future Volume (vph)	953	0	0	0	0	669
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	3433	0	0	0	0	3539
Flt Permitted	0.950	0	U	U	U	5557
Satd. Flow (perm)	3433	0	0	0	0	3539
Right Turn on Red	Yes	Yes	0	Yes	0	3337
Satd. Flow (RTOR)	142	163		163		
Link Speed (mph)	30		35			35
Link Distance (ft)	149		327			152
.,			527 6.4			3.0
Travel Time (s)	3.4	0.00		0.00	0.00	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	4050	2	^	^	^	7.10
Lane Group Flow (vph)	1059	0	0	0	0	743
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	24		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Turn Type	Prot					NA
Protected Phases	8					6
Permitted Phases						
Detector Phase	8					6
Switch Phase	-					-
Minimum Initial (s)	7.0					10.0
Minimum Split (s)	22.0					22.0
Total Split (s)	32.0					28.0
Total Split (%)	53.3%					46.7%
• • • •	26.0					22.0
Maximum Green (s)						
Yellow Time (s)	4.0					4.0
All-Red Time (s)	2.0					2.0
Lost Time Adjust (s)	0.0					0.0
Total Lost Time (s)	6.0					6.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0					3.0
Recall Mode	Min					C-Max
Act Effct Green (s)	22.4					25.6
Actuated g/C Ratio	0.37					0.43
v/c Ratio	0.77					0.49
Control Delay	18.2					6.1
Queue Delay	0.0					0.2
Total Delay	18.2					6.3
LOS	B					0.5 A
Approach Delay	18.2					6.3
	10.2					0.3

	4	۰.	Ť	1	1	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Approach LOS	В					А
Queue Length 50th (ft)	141					24
Queue Length 95th (ft)	189					32
Internal Link Dist (ft)	69		247			72
Turn Bay Length (ft)						
Base Capacity (vph)	1568					1510
Starvation Cap Reductn	0					215
Spillback Cap Reductn	0					0
Storage Cap Reductn	0					0
Reduced v/c Ratio	0.68					0.57

Intersection Summary							
Area Type: Other							
Cycle Length: 60							
Actuated Cycle Length: 60							
Offset: 0 (0%), Referenced to phase 6:SBT, Start of Green							
Natural Cycle: 45							
Control Type: Actuated-Coordinated							
Maximum v/c Ratio: 0.77							
Intersection Signal Delay: 13.3	Intersection LOS: B						
Intersection Capacity Utilization 55.7%	ICU Level of Service B						
Analysis Period (min) 15							

Splits and Phases: 21: Columbia Ave/I-26 WB Ramps & I-26 WB Off Ramp

Ø6 (R)	√ Ø8	
28 s	32 s	

	•	•	Ť	1	1	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ሻሻ					††	
Traffic Volume (veh/h)	953	0	0	0	0	669	
Future Volume (veh/h)	953	0	0	0	0	669	
Number	3	18			1	6	
Initial Q (Qb), veh	0	0			0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00			1.00	-	
Parking Bus, Adj	1.00	1.00			1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	0			0	1863	
Adj Flow Rate, veh/h	1059	0			0	743	
Adj No. of Lanes	2	0			0	2	
Peak Hour Factor	0.90	0.90			0.90	0.90	
Percent Heavy Veh, %	2	0.70			0.70	2	
Cap, veh/h	0	0			0	1298	
Arrive On Green	0.00	0.00			0.00	0.12	
Sat Flow, veh/h	0.00	0.00			0.00	3725	
· · · · · · · · · · · · · · · · · · ·							
Grp Volume(v), veh/h	0.0				0	743	
Grp Sat Flow(s), veh/h/ln					0	1770	
Q Serve(g_s), s					0.0	11.9	
Cycle Q Clear(g_c), s					0.0	11.9	
Prop In Lane					0.00	1000	
Lane Grp Cap(c), veh/h					0	1298	
V/C Ratio(X)					0.00	0.57	
Avail Cap(c_a), veh/h					0	1298	
HCM Platoon Ratio					1.00	0.33	
Upstream Filter(I)					0.00	0.93	
Uniform Delay (d), s/veh					0.0	21.9	
Incr Delay (d2), s/veh					0.0	1.7	
Initial Q Delay(d3),s/veh					0.0	0.0	
%ile BackOfQ(50%),veh/In					0.0	6.1	
LnGrp Delay(d),s/veh					0.0	23.6	
LnGrp LOS						С	
Approach Vol, veh/h						743	
Approach Delay, s/veh						23.6	
Approach LOS						С	
Timer	1	2	3	4	5	6	7 8
Assigned Phs						6	
Phs Duration (G+Y+Rc), s						28.0	
Change Period (Y+Rc), s						6.0	
Max Green Setting (Gmax), s						22.0	
Max Q Clear Time (g_c+11), s						13.9	
Green Ext Time (p_c), s						3.0	
• •						5.0	
Intersection Summary			22.4				
HCM 2010 Ctrl Delay			23.6				
HCM 2010 LOS			С				

Lanes, Volumes, Timings 22: I-26 WB Ramps & Columbia Ave

22. 1-20 WD Namps			/ 110									
	≯	-	\mathbf{r}	*	-	*	1	1	1	1	Ŧ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† †									^	
Traffic Volume (vph)	0	510	0	0	0	0	0	0	0	0	669	0
Future Volume (vph)	0	510	0	0	0	0	0	0	0	0	669	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	3539	0	0	0	0	0	0	0	0	3539	0
Flt Permitted												
Satd. Flow (perm)	0	3539	0	0	0	0	0	0	0	0	3539	0
Right Turn on Red			Yes			Yes			Yes	Yes		Yes
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		159			115			152			129	
Travel Time (s)		3.1			2.2			3.0			2.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	567	0	0	0	0	0	0	0	0	743	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lon	0	rugin	Lon	0	rugin	Lon	0	rugitt	Lon	0	rugin
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1.00	9	15	1.00	9	15	1.00	9	15	1.00	9
Turn Type	10	NA	,	10		,	10		,	10	NA	,
Protected Phases		4									6	
Permitted Phases											U	
Detector Phase		4									6	
Switch Phase											U	
Minimum Initial (s)		10.0									10.0	
Minimum Split (s)		22.0									22.0	
Total Split (s)		27.0									33.0	
Total Split (%)		45.0%									55.0%	
Maximum Green (s)		21.0									27.0	
Yellow Time (s)		4.0									4.0	
All-Red Time (s)		2.0									2.0	
Lost Time Adjust (s)		0.0									0.0	
Total Lost Time (s)		6.0									6.0	
Lead/Lag		010									010	
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0									3.0	
Recall Mode		None									C-Max	
Act Effct Green (s)		15.4									32.6	
Actuated g/C Ratio		0.26									0.54	
v/c Ratio		0.63									0.39	
Control Delay		5.5									9.3	
Queue Delay		0.0									0.0	
Total Delay		5.5									9.3	
LOS		A									A	
Approach Delay		5.5									9.3	
Approach Delay		5.5									9.3	

	٠	+	*	4	Ļ	•	•	Ť	*	1	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		А									А	
Queue Length 50th (ft)		11									74	
Queue Length 95th (ft)		9									128	
Internal Link Dist (ft)		79			35			72			49	
Turn Bay Length (ft)												
Base Capacity (vph)		1238									1924	
Starvation Cap Reductn		0									0	
Spillback Cap Reductn		0									19	
Storage Cap Reductn		0									0	
Reduced v/c Ratio		0.46									0.39	
Intersection Summary												
51	Other											
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 1 (2%), Referenced to	o phase 6:	SBT, Sta	rt of Gree	en								
Natural Cycle: 45												
Control Type: Actuated-Coor	rdinated											
Maximum v/c Ratio: 0.63	_											
Intersection Signal Delay: 7.					itersection		^					
Intersection Capacity Utilizat	tion 42.6%			IC	U Level	of Service	A					
Analysis Period (min) 15												

Splits and Phases: 22: I-26 WB Ramps & Columbia Ave

	→ Ø4	
	27 s	
Ø6 (R)		
33 s		

	۶	→	\mathbf{r}	4	-	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- † †									- 44	
Traffic Volume (veh/h)	0	510	0	0	0	0	0	0	0	0	669	0
Future Volume (veh/h)	0	510	0	0	0	0	0	0	0	0	669	0
Number	7	4	14							1	6	16
Initial Q (Qb), veh	0	0	0							0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00							1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00							1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1863	0							0	1863	0
Adj Flow Rate, veh/h	0	567	0							0	743	0
Adj No. of Lanes	0	2	0							0	2	0
Peak Hour Factor	0.90	0.90	0.90							0.90	0.90	0.90
Percent Heavy Veh, %	0	2	0							0	2	0
Cap, veh/h	0	796	0							0	1593	0
Arrive On Green	0.00	0.22	0.00							0.00	0.45	0.00
Sat Flow, veh/h	0	3725	0							0	3725	0
Grp Volume(v), veh/h	0	567	0							0	743	0
Grp Sat Flow(s), veh/h/ln	0	1770	0							0	1770	0
Q Serve(g_s), s	0.0	8.9	0.0							0.0	8.8	0.0
Cycle Q Clear(q_c), s	0.0	8.9	0.0							0.0	8.8	0.0
Prop In Lane	0.00		0.00							0.00		0.00
Lane Grp Cap(c), veh/h	0	796	0							0	1593	0
V/C Ratio(X)	0.00	0.71	0.00							0.00	0.47	0.00
Avail Cap(c_a), veh/h	0	1239	0							0	1593	0
HCM Platoon Ratio	1.00	1.00	1.00							1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	0.00							0.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	21.5	0.0							0.0	11.5	0.0
Incr Delay (d2), s/veh	0.0	1.2	0.0							0.0	1.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0							0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	4.5	0.0							0.0	4.4	0.0
LnGrp Delay(d),s/veh	0.0	22.7	0.0							0.0	12.5	0.0
LnGrp LOS		С									В	
Approach Vol, veh/h		567									743	
Approach Delay, s/veh		22.7									12.5	
Approach LOS		C									B	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	•			4		6						
Phs Duration (G+Y+Rc), s				19.5		33.0						
Change Period (Y+Rc), s				6.0		6.0						
Max Green Setting (Gmax), s				21.0		27.0						
Max Q Clear Time (g_c+11), s				10.9		10.8						
Green Ext Time (p_c), s				2.6		4.5						
4 - 7				2.0		+.J						
Intersection Summary			1/ 0									
HCM 2010 Ctrl Delay			16.9									
HCM 2010 LOS			В									
Summary of All Intervals

Dur Number	1	2	2	A	
Run Number		2	3	Avg	
Start Time	4:35	4:35	4:35	4:35	
End Time	5:45	5:45	5:45	5:45	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	6412	6287	6312	6337	
Vehs Exited	6393	6283	6349	6341	
Starting Vehs	206	195	226	208	
Ending Vehs	225	199	189	202	
Travel Distance (mi)	6935	6808	6870	6871	
Travel Time (hr)	195.6	188.4	189.5	191.2	
Total Delay (hr)	67.8	62.9	63.5	64.7	
Total Stops	3682	3309	3448	3481	
Fuel Used (gal)	286.7	279.3	281.2	282.4	

Interval #0 Information Seeding

Start Time	4:35	
End Time	4:45	
Total Time (min)	10	
Volumes adjusted by Gro	owth Factors.	
No data recorded this int	erval.	

Interval #1 Information Recording

Start Time	4:45	
End Time	5:45	
Total Time (min)	60	
Volumes adjusted by Grow	vth Factors.	

Run Number	1	2	3	Avg
Vehs Entered	6412	6287	6312	6337
Vehs Exited	6393	6283	6349	6341
Starting Vehs	206	195	226	208
Ending Vehs	225	199	189	202
Travel Distance (mi)	6935	6808	6870	6871
Travel Time (hr)	195.6	188.4	189.5	191.2
Total Delay (hr)	67.8	62.9	63.5	64.7
Total Stops	3682	3309	3448	3481
Fuel Used (gal)	286.7	279.3	281.2	282.4

Intersection: 1: I-26 EB Ramps & Columbia Ave

Movement	WB	WB	SB	SB	SB
Directions Served	Т	T	T	Т	T
Maximum Queue (ft)	150	120	113	114	83
Average Queue (ft)	119	68	81	91	31
95th Queue (ft)	156	113	112	102	71
Link Distance (ft)	57	57	5	5	5
Upstream Blk Time (%)	41	13	23	39	8
Queuing Penalty (veh)	128	40	107	178	37
Storage Bay Dist (ft)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 21: Columbia Ave/I-26 WB Ramps & I-26 WB Off Ramp

Movement	WB	WB	SB	SB
	WD	٧٧D	зD	SD
Directions Served	L	L	Т	Т
Maximum Queue (ft)	153	152	50	74
Average Queue (ft)	126	130	22	39
95th Queue (ft)	154	160	46	61
Link Distance (ft)	91	91	10	10
Upstream Blk Time (%)	20	22	17	41
Queuing Penalty (veh)	96	106	55	137
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 22: I-26 WB Ramps & Columbia Ave

N 4	50	FD	CD	00
Movement	EB	EB	SB	SB
Directions Served	Т	Т	Т	Т
Maximum Queue (ft)	103	113	109	165
Average Queue (ft)	55	81	51	136
95th Queue (ft)	108	128	101	178
Link Distance (ft)	22	22	16	16
Upstream Blk Time (%)	30	46	17	44
Queuing Penalty (veh)	77	118	56	149
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

APPENDIX K

BUILD ALT 2 2020 SYNCHRO AND SIM TRAFFIC REPORTS

Lanes, Volumes, Timings 1: Columbia Ave & I-26 EB Ramps

	≯	-	>	4	+	×	•	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	1					•	1	7	<u>†</u> †	
Traffic Volume (vph)	27	8	129	0	0	0	0	433	942	143	1077	0
Future Volume (vph)	27	8	129	0	0	0	0	433	942	143	1077	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	225	1700	0	0	1700	0	0	1700	0	150	1700	0
Storage Lanes	1		1	0		0	0		1	1		0
Taper Length (ft)	100		•	100		Ū	100		•	100		U
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00
Frt	1.00	1.00	0.850	1.00	1.00	1.00	1.00	1.00	0.850	1.00	0.70	1.00
Flt Protected		0.963	0.000						0.000	0.950		
Satd. Flow (prot)	0	1794	1583	0	0	0	0	1863	1583	1770	3539	0
Flt Permitted	U	0.963	1000	U	Ū	Ū	U	1000	1000	0.480	0007	Ū
Satd. Flow (perm)	0	1794	1583	0	0	0	0	1863	1583	894	3539	0
Right Turn on Red	U	1771	Yes	U	Ū	Yes	U	1000	Yes	071	0007	Yes
Satd. Flow (RTOR)			95			103			1011			103
Link Speed (mph)		45	75		45			35	1011		35	
Link Distance (ft)		881			239			1099			740	
Travel Time (s)		13.3			3.6			21.4			14.4	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	30	9	143	0.70	0.70	0.70	0.70	481	1047	159	1197	0.70
Shared Lane Traffic (%)	50	,	ITJ	0	0	0	0	101	10-1	157	1177	0
Lane Group Flow (vph)	0	39	143	0	0	0	0	481	1047	159	1197	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	LOIL	0	Right	LUII	0	Right	LUIT	12	Ngn	LUIT	12	Right
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			Yes			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1.00	9	15	1.00	9	15	1.00	9	15	1.00	9
Number of Detectors	1	2	,	15		1	15	2	, 1	1	2	,
Detector Template	Left	Thru	Right					Thru	Right	Left	Thru	
Leading Detector (ft)	20	100	20					100	20	20	100	
Trailing Detector (ft)	0	0	0					0	0	0	0	
Detector 1 Position(ft)	0	0	0					0	0	0	0	
Detector 1 Size(ft)	20	6	20					6	20	20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex					CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel	OFFER	OTTEX	OTTEX					OTTEX	OTTEX	OTTEX	OTTEX	
Detector 1 Extend (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 2 Position(ft)	0.0	94	0.0					94	0.0	0.0	94	
Detector 2 Size(ft)		6						6			6	
Detector 2 Type		CI+Ex						CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0						0.0			0.0	
Turn Type	Perm	NA	Perm					NA	Perm	Perm	NA	
Protected Phases	i cini	4	i onn					2	i citii	1 0111	6	
Permitted Phases	4		4					2	2	6	Ū	
	7		т						2	U		

Lanes, Volumes, Timings 1: Columbia Ave & I-26 EB Ramps

	٦	+	*	4	Ļ	*	•	1	*	*	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4	4					2	2	6	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0					10.0	10.0	10.0	10.0	
Minimum Split (s)	15.0	15.0	15.0					22.0	22.0	22.0	22.0	
Total Split (s)	15.0	15.0	15.0					45.0	45.0	45.0	45.0	
Total Split (%)	25.0%	25.0%	25.0%					75.0%	75.0%	75.0%	75.0%	
Maximum Green (s)	9.0	9.0	9.0					39.0	39.0	39.0	39.0	
Yellow Time (s)	4.0	4.0	4.0					4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0					2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0	0.0					0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.0	6.0					6.0	6.0	6.0	6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0					3.0	3.0	3.0	3.0	
Recall Mode	None	None	None					C-Min	C-Min	C-Min	C-Min	
Act Effct Green (s)		7.9	7.9					43.9	43.9	43.9	43.9	
Actuated g/C Ratio		0.13	0.13					0.73	0.73	0.73	0.73	
v/c Ratio		0.17	0.49					0.35	0.73	0.24	0.46	
Control Delay		24.4	16.3					2.6	7.7	5.3	5.3	
Queue Delay		0.0	0.0					0.0	0.0	0.0	0.0	
Total Delay		24.4	16.3					2.6	7.7	5.3	5.3	
LOS		С	В					А	А	А	А	
Approach Delay		18.0						6.1			5.3	
Approach LOS		В						А			А	
Intersection Summary												
Area Type:	Other											
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 23 (38%), Reference	ced to phase	e 2:NBT a	nd 6:SBT	L, Start o	f Green							
Natural Cycle: 60												
Control Type: Actuated-Co	pordinated											
Maximum v/c Ratio: 0.73												
Intersection Signal Delay:					tersectior		_					
Intersection Capacity Utiliz	zation 87.5%	,)		IC	CU Level o	of Service	E					
Analysis Period (min) 15												

Splits and Phases: 1: Columbia Ave & I-26 EB Ramps

Ø2 (R)	4 ₀₄	
45 s	15 s	
Ø6 (R)		
45 s		

	≯	-	\mathbf{F}	∢	+	×	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1					↑	1	<u>۲</u>	- ††	
Traffic Volume (veh/h)	27	8	129	0	0	0	0	433	942	143	1077	0
Future Volume (veh/h)	27	8	129	0	0	0	0	433	942	143	1077	0
Number	7	4	14				5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1863				0	1863	1863	1863	1863	0
Adj Flow Rate, veh/h	30	9	0				0	481	0	159	1197	0
Adj No. of Lanes	0	1	1				0	1	1	1	2	0
Peak Hour Factor	0.90	0.90	0.90				0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	77	23	88				0	1386	1178	716	2634	0
Arrive On Green	0.06	0.06	0.00				0.00	0.74	0.00	0.74	0.74	0.00
Sat Flow, veh/h	1380	414	1583				0.00	1863	1583	910	3632	0.00
Grp Volume(v), veh/h	39	0	0				0	481	0	159	1197	0
Grp Sat Flow(s), veh/h/ln	1794	0	1583				0	1863	1583	910	1770	0
Q Serve(q_s), s	1.3	0.0	0.0				0.0	5.3	0.0	4.4	7.8	0.0
Cycle Q Clear(g_c), s	1.3	0.0	0.0				0.0	5.3	0.0	9.7	7.8	0.0
Prop In Lane	0.77	0.0	1.00				0.00	5.5	1.00	1.00	7.0	0.00
Lane Grp Cap(c), veh/h	100	0	88				0.00	1386	1178	716	2634	0.00
V/C Ratio(X)	0.39	0.00	0.00				0.00	0.35	0.00	0.22	0.45	0.00
Avail Cap(c_a), veh/h	269	0.00	237				0.00	1386	1178	716	2634	0.00
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
			0.00				0.00	0.81	0.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	0.00					2.6				0.00
Uniform Delay (d), s/veh	27.3	0.0					0.0		0.0	4.3	3.0	0.0
Incr Delay (d2), s/veh	2.5	0.0	0.0				0.0	0.6	0.0	0.7	0.6	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.7	0.0	0.0				0.0	2.9	0.0	1.2	3.9	0.0
LnGrp Delay(d),s/veh	29.8	0.0	0.0				0.0	3.2	0.0	5.0	3.5	0.0
LnGrp LOS	С							A		A	A	
Approach Vol, veh/h		39						481			1356	
Approach Delay, s/veh		29.8						3.2			3.7	
Approach LOS		С						А			А	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6						
Phs Duration (G+Y+Rc), s		50.7		9.3		50.7						
Change Period (Y+Rc), s		6.0		6.0		6.0						
Max Green Setting (Gmax), s		39.0		9.0		39.0						
Max Q Clear Time (q_c+I1), s		7.3		3.3		11.7						
Green Ext Time (p_c), s		16.5		0.0		15.2						
Intersection Summary												
HCM 2010 Ctrl Delay			4.1									
HCM 2010 LOS			4.1 A									
			A									

2.4

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			1		eî 👘		ኘ	1			1	1
Traffic Vol, veh/h	0	0	691	0	2	157	90	370	0	0	529	49
Future Vol, veh/h	0	0	691	0	2	157	90	370	0	0	529	49
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Yield	Yield	Yield	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Free	-	-	None	-	-	None	-	-	None
Storage Length	-	-	0	-	-	-	175	-	-	-	-	150
Veh in Median Storage, #	-	-	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	768	0	2	174	100	411	0	0	588	54

Major/Minor	Minor1			Major1			Major2		
Conflicting Flow All	-	1199	411	588	0	-	-	-	0
Stage 1	-	611	-	-	-	-	-	-	-
Stage 2	-	588	-	-	-	-	-	-	-
Critical Hdwy	-	6.52	6.22	4.12	-	-	-	-	-
Critical Hdwy Stg 1	-	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	-	4.018	3.318	2.218	-	-	-	-	-
Pot Cap-1 Maneuver	0	185	641	987	-	0	0	-	-
Stage 1	0	484	-	-	-	0	0	-	-
Stage 2	0	496	-	-	-	0	0	-	-
Platoon blocked, %					-			-	-
Mov Cap-1 Maneuver	-	0	641	987	-	-	-	-	-
Mov Cap-2 Maneuver	-	0	-	-	-	-	-	-	-
Stage 1	-	0	-	-	-	-	-	-	-
Stage 2	-	0	-	-	-	-	-	-	-
Approach	WB			NB			SB		
HCM Control Delay, s	12.7			1.8			0		
HCM LOS	В								

Minor Lane/Major Mvmt	NBL	NBTWBLn1	SBT	SBR	
Capacity (veh/h)	987	- 641	-	-	
HCM Lane V/C Ratio	0.101	- 0.276	-	-	
HCM Control Delay (s)	9.1	- 12.7	-	-	
HCM Lane LOS	А	- B	-	-	
HCM 95th %tile Q(veh)	0.3	- 1.1	-	-	

Summary of All Intervals

Dur Norshar	4	0	2	A	
Run Number		2	3	Avg	
Start Time	7:20	7:20	7:20	7:20	
End Time	8:30	8:30	8:30	8:30	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	5225	5258	5272	5251	
Vehs Exited	5221	5265	5275	5255	
Starting Vehs	131	150	145	139	
Ending Vehs	135	143	142	139	
Travel Distance (mi)	5855	5873	5894	5874	
Travel Time (hr)	137.9	140.5	140.4	139.6	
Total Delay (hr)	25.5	26.8	26.3	26.2	
Total Stops	796	995	936	909	
Fuel Used (gal)	223.1	225.4	227.7	225.4	

Interval #0 Information Seeding

Start Time	7:20	
End Time	7:30	
Total Time (min)	10	
Volumes adjusted by Gr	owth Factors.	
No data recorded this in	terval.	

Interval #1 Information Recording

Start Time	7:30	
End Time	8:30	
Total Time (min)	60	
Volumes adjusted by G	rowth Factors.	

Run Number	1	2	3	Avg	
Vehs Entered	5225	5258	5272	5251	
Vehs Exited	5221	5265	5275	5255	
Starting Vehs	131	150	145	139	
Ending Vehs	135	143	142	139	
Travel Distance (mi)	5855	5873	5894	5874	
Travel Time (hr)	137.9	140.5	140.4	139.6	
Total Delay (hr)	25.5	26.8	26.3	26.2	
Total Stops	796	995	936	909	
Fuel Used (gal)	223.1	225.4	227.7	225.4	

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	EB	NB	SB	SB	SB
Directions Served	LT	Т	L	Т	Т
Maximum Queue (ft)	68	99	89	113	115
Average Queue (ft)	23	21	34	35	33
95th Queue (ft)	55	69	67	94	87
Link Distance (ft)		1032		690	690
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	225		150		
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 2: Columbia Ave & I-26 WB Ramps

Movement	WB	NB
Directions Served	TR	L
Maximum Queue (ft)	71	59
Average Queue (ft)	32	24
95th Queue (ft)	53	52
Link Distance (ft)	543	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		175
Storage Blk Time (%)		
Queuing Penalty (veh)		

Lanes, Volumes, Timings 1: Columbia Ave & I-26 EB Ramps

	≯			-	4		~		•	١.	I	,
	<i>,</i>	-		•	•			T		•	÷	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्च 🚽	1					↑	1	<u>۲</u>	- ††	
Traffic Volume (vph)	45	8	121	0	0	0	0	624	742	246	1376	0
Future Volume (vph)	45	8	121	0	0	0	0	624	742	246	1376	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	225		0	0		0	0		0	150		0
Storage Lanes	1		1	0		0	0		1	1		0
Taper Length (ft)	100			100			100			100		
Satd. Flow (prot)	0	1786	1583	0	0	0	0	1863	1583	1770	3539	0
Flt Permitted		0.959								0.346		
Satd. Flow (perm)	0	1786	1583	0	0	0	0	1863	1583	645	3539	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			55						824			
Link Speed (mph)		45			45			35			35	
Link Distance (ft)		881			239			1090			740	
Travel Time (s)		13.3			3.6			21.2			14.4	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	59	134	0	0	0	0	693	824	273	1529	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane								Yes				
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA	Perm					NA	Perm	Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4		4						2	6		
Detector Phase	4	4	4					2	2	6	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0					10.0	10.0	10.0	10.0	
Minimum Split (s)	15.0	15.0	15.0					22.0	22.0	22.0	22.0	
Total Split (s)	15.0	15.0	15.0					45.0	45.0	45.0	45.0	
Total Split (%)	25.0%	25.0%	25.0%					75.0%	75.0%	75.0%	75.0%	
Maximum Green (s)	9.0	9.0	9.0					39.0	39.0	39.0	39.0	
Yellow Time (s)	4.0	4.0	4.0					4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0					2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0	0.0					0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.0	6.0					6.0	6.0	6.0	6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0					3.0	3.0	3.0	3.0	
Recall Mode	None	None	None					C-Min	C-Min	C-Min	C-Min	
Act Effct Green (s)		8.1	8.1					43.7	43.7	43.7	43.7	
Actuated g/C Ratio		0.14	0.14					0.73	0.73	0.73	0.73	
v/c Ratio		0.25	0.52					0.51	0.60	0.58	0.59	
Control Delay		25.6	22.6					10.3	6.6	13.0	6.7	
Queue Delay		0.0	0.0					0.0	0.0	0.0	0.0	

S-48 IMR AECOM

Lanes, Volumes, Timings 1: Columbia Ave & I-26 EB Ramps

	≯ →	\rightarrow	4	+	•	1	1	1	1	Ļ	~
Lane Group	EBL EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay	25.6	22.6					10.3	6.6	13.0	6.7	
LOS	С	С					В	А	В	А	
Approach Delay	23.5						8.3			7.6	
Approach LOS	С						А			А	
Queue Length 50th (ft)	19	26					108	0	48	142	
Queue Length 95th (ft)	48	71					380	343	#176	206	
Internal Link Dist (ft)	801			159			1010			660	
Turn Bay Length (ft)									150		
Base Capacity (vph)	267	284					1357	1377	470	2578	
Starvation Cap Reductn	0	0					0	0	0	0	
Spillback Cap Reductn	0	0					0	0	0	0	
Storage Cap Reductn	0	0					0	0	0	0	
Reduced v/c Ratio	0.22	0.47					0.51	0.60	0.58	0.59	
Intersection Summary											
J	her										
Cycle Length: 60											
Actuated Cycle Length: 60											
Offset: 32 (53%), Referenced	to phase 2:NBT	and 6:SB	FL, Start o	of Green							
Natural Cycle: 60											
Control Type: Actuated-Coord	inated										
Maximum v/c Ratio: 0.60											
Intersection Signal Delay: 8.8				itersection							
Intersection Capacity Utilization	on 80.4%		IC	CU Level	of Service	e D					
Analysis Period (min) 15											
# 95th percentile volume ex			y be longe	er.							
Queue shown is maximum	after two cycles										

Splits and Phases: 1: Columbia Ave & I-26 EB Ramps

Ø2 (R)	Ø4	
45 s	15 s	
Ø6 (R)		
45 s		

	≯	-	\mathbf{F}	4	+	•	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		स	1					↑	1	ሻ	- ††	
Traffic Volume (veh/h)	45	8	121	0	0	0	0	624	742	246	1376	0
Future Volume (veh/h)	45	8	121	0	0	0	0	624	742	246	1376	0
Number	7	4	14				5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1863				0	1863	1863	1863	1863	0
Adj Flow Rate, veh/h	50	9	0				0	693	0	273	1529	0
Adj No. of Lanes	0	1	1				0	1	1	1	2	0
Peak Hour Factor	0.90	0.90	0.90				0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	111	20	116				0	1354	1151	645	2573	0
Arrive On Green	0.07	0.07	0.00				0.00	0.97	0.00	0.73	0.73	0.00
Sat Flow, veh/h	1514	273	1583				0	1863	1583	748	3632	0
Grp Volume(v), veh/h	59	0	0				0	693	0	273	1529	0
Grp Sat Flow(s), veh/h/ln	1787	0	1583				0	1863	1583	748	1770	0
Q Serve(g_s), s	1.9	0.0	0.0				0.0	1.5	0.0	10.3	12.5	0.0
Cycle Q Clear(g_c), s	1.9	0.0	0.0				0.0	1.5	0.0	11.7	12.5	0.0
Prop In Lane	0.85	010	1.00				0.00		1.00	1.00	. 2.0	0.00
Lane Grp Cap(c), veh/h	130	0	116				0	1354	1151	645	2573	0
V/C Ratio(X)	0.45	0.00	0.00				0.00	0.51	0.00	0.42	0.59	0.00
Avail Cap(c_a), veh/h	268	0	237				0	1354	1151	645	2573	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.33	1.33	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00				0.00	0.85	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	26.7	0.0	0.0				0.0	0.3	0.0	4.2	3.9	0.0
Incr Delay (d2), s/veh	2.4	0.0	0.0				0.0	1.2	0.0	2.0	1.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.0	0.0	0.0				0.0	1.0	0.0	2.4	6.3	0.0
LnGrp Delay(d),s/veh	29.1	0.0	0.0				0.0	1.5	0.0	6.2	5.0	0.0
LnGrp LOS	C	0.0	0.0				0.0	A	0.0	A	A	0.0
Approach Vol, veh/h		59						693			1802	
Approach Delay, s/veh		29.1						1.5			5.1	
Approach LOS		27.1 C						1.5 A				
••			_								A	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6						
Phs Duration (G+Y+Rc), s		49.6		10.4		49.6						_
Change Period (Y+Rc), s		6.0		6.0		6.0						
Max Green Setting (Gmax), s		39.0		9.0		39.0						_
Max Q Clear Time (g_c+l1), s		3.5		3.9		14.5						
Green Ext Time (p_c), s		26.1		0.1		19.5						
Intersection Summary												
HCM 2010 Ctrl Delay			4.7									
HCM 2010 LOS			А									

4

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			1		- î>		ሻ	- †			↑	1
Traffic Vol, veh/h	0	0	953	0	2	245	159	510	0	0	669	35
Future Vol, veh/h	0	0	953	0	2	245	159	510	0	0	669	35
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Yield	Yield	Yield	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Free	-	-	None	-	-	None	-	-	None
Storage Length	-	-	0	-	-	-	175	-	-	-	-	150
Veh in Median Storage, #	-	-	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	1059	0	2	272	177	567	0	0	743	39

Major/Minor	Minor1		Major1			Major2		
Conflicting Flow All	- 16	63 567	743	0	-	-	-	0
Stage 1	- 92	20 -	-	-	-	-	-	-
Stage 2	- 74	43 -	-	-	-	-	-	-
Critical Hdwy	- 6.	52 6.22	4.12	-	-	-	-	-
Critical Hdwy Stg 1	- 5.!	52 -	-	-	-	-	-	-
Critical Hdwy Stg 2	- 5.!	52 -	-	-	-	-	-	-
Follow-up Hdwy	- 4.0	18 3.318	2.218	-	-	-	-	-
Pot Cap-1 Maneuver	0 0	97 523	864	-	0	0	-	-
Stage 1	0 3	50 -	-	-	0	0	-	-
Stage 2	0 42	22 -	-	-	0	0	-	-
Platoon blocked, %				-			-	-
Mov Cap-1 Maneuver		77 523	864	-	-	-	-	-
Mov Cap-2 Maneuver	- 1	54 -	-	-	-	-	-	-
Stage 1	- 2	78 -	-	-	-	-	-	-
Stage 2	- 42	22 -	-	-	-	-	-	-
Approach	WB		NB			SB		
LICM Control Delay	10.0		2.4			0		

	110	ND	55
HCM Control Delay, s	19.8	2.4	0
HCM LOS	С		

Minor Lane/Major Mvmt	NBL	NBTWBLn1	SBT	SBR
Capacity (veh/h)	864	- 513	-	-
HCM Lane V/C Ratio	0.204	- 0.535	-	-
HCM Control Delay (s)	10.2	- 19.8	-	-
HCM Lane LOS	В	- C	-	-
HCM 95th %tile Q(veh)	0.8	- 3.1	-	-

Summary of All Intervals

Run Number Start Time	4:35	2	3	Avg	
	4:35				
		4:35	4:35	4:35	
End Time	5:45	5:45	5:45	5:45	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	6331	6373	6113	6270	
Vehs Exited	6335	6337	6152	6275	
Starting Vehs	195	171	194	187	
Ending Vehs	191	207	155	185	
Travel Distance (mi)	7081	7118	6924	7041	
Travel Time (hr)	181.2	184.6	173.4	179.7	
Total Delay (hr)	44.3	46.7	40.8	43.9	
Total Stops	1444	1351	1205	1333	
Fuel Used (gal)	277.6	281.1	271.3	276.7	

Interval #0 Information Seeding

Start Time	4:35		
End Time	4:45		
Total Time (min)	10		
Volumes adjusted by Gro	wth Factors.		
No data recorded this inte	erval.		

Interval #1 Information Recording

Start Time	4:45	
End Time	5:45	
Total Time (min)	60	
Volumes adjusted by Gr	owth Factors.	

Run Number	1	2	3	Avg	
Vehs Entered	6331	6373	6113	6270	
Vehs Exited	6335	6337	6152	6275	
Starting Vehs	195	171	194	187	
Ending Vehs	191	207	155	185	
Travel Distance (mi)	7081	7118	6924	7041	
Travel Time (hr)	181.2	184.6	173.4	179.7	
Total Delay (hr)	44.3	46.7	40.8	43.9	
Total Stops	1444	1351	1205	1333	
Fuel Used (gal)	277.6	281.1	271.3	276.7	

Intersection: 1: Columbia Ave & I-26 EB Ramps

				~~	~~	
Movement	EB	EB	NB	SB	SB	SB
Directions Served	LT	R	Т	L	Т	Т
Maximum Queue (ft)	102	18	172	160	140	126
Average Queue (ft)	39	1	58	76	51	52
95th Queue (ft)	81	10	142	141	117	113
Link Distance (ft)		762	1024		690	690
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)	225			150		
Storage Blk Time (%)				1	0	
Queuing Penalty (veh)				4	0	

Intersection: 2: Columbia Ave & I-26 WB Ramps

Movement	WB	NB	SB
Directions Served	TR	L	R
Maximum Queue (ft)	117	114	7
Average Queue (ft)	53	44	0
95th Queue (ft)	94	80	4
Link Distance (ft)	543		
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		175	150
Storage Blk Time (%)			
Queuing Penalty (veh)			

Phone: Fax: E-mail: _____Diverge Analysis______ AECOM Analyst: Agency/Co.: AECOM Agency/col.AnconDate performed:7/1/2016Analysis time period:AM Peak 7/1/2016 Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Alt 2 Jurisdiction: Analysis Year: 2020 Build Alt 2 Ramp Description: S-48 IMR _____Freeway Data_____ Type of analysis Diverge Number of lanes in freeway 2. Free-flow speed on freeway 75.0 mph Volume on freeway 1713 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph 159 Volume on ramp vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 691 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1000 ft _____Conversion to pc/h Under Base Conditions______ Freeway Junction Components Ramp Adjacent Ramp 159 Volume, V (vph) 1713 691 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 476 44 192 v Trucks and buses 4 2 2 8 0 0 Recreational vehicles 0 % Rolling Rolling Rolling Terrain type: 0.00 % 0.00 % 0.00 Grade 8 0.00 mi 0.00 mi 0.00 Length mi Trucks and buses PCE, ET 2.5 2.5 2.5 2.0 Recreational vehicle PCE, ER 2.0 2.0

Heavy vehicle adju Driver population Flow rate, vp				0.971 1.00 791	pcph
	Estimatior	n of V12 Diver	ge Areas		
	L = (Equation 13-1	2 or 13-13)	
	P = 1.000 t FD	Jsing Equation	0		
	v = v + (v - v) $12 R F F$		pc/h		
	Capa	acity Checks			
v = v Fi F	Actual 2018	Maximum 4800	L L C	OS F? O	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1836	4800	N	0	
v R	182	2100	N	0	
v or v 3 av34	0 pc/	h (Equati	on 13-14 o:	r 13-17)	
	> 2700 pc/h?	No			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		No			
If yes, v = 201 12A		(Equation	13-15, 13-	16, 13-18,	or 13-19)
		g Diverge Infl			
v	Actual 2018	Max Desirabl 4400		Violation? No	
12 I	Level of Service I	Determination	(if not F)		
Density,		0.0086 v - 0		= 10.6	pc/mi/ln
Level of service f	R For ramp-freeway r	12 junction areas	D of influe	nce B	
	Speed	Estimation			
Intermediate speed	l variable,		= 0.314		
Space mean speed i	in ramp influence		= 64.6	mph	
Space mean speed i	in outer lanes,		= N/A 1	mph	
Space mean speed f	for all vehicles,	0 S	= 64.6	mph	

Phone: Fax: E-mail: _____Diverge Analysis______ AECOM Analyst: Agency/Co.: AECOM Agency/col.AnconDate performed:7/1/2016Analysis time period:AM Peak 7/1/2016 Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Alt 2 Loop Jurisdiction: Analysis Year: 2020 Build Alt 2 Loop Description: S-48 IMR _____Freeway Data_____ Type of analysis Diverge Number of lanes in freeway 2. Free-flow speed on freeway 75.0 mph Volume on freeway 1554 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 691 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 141 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 550 ft _____Conversion to pc/h Under Base Conditions______ Freeway Junction Components Ramp Adjacent Ramp Volume, V (vph) 691 1554 141 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 432 192 39 v Trucks and buses 4 2 2 8 0 0 Recreational vehicles 0 % Rolling Rolling Rolling Terrain type: 0.00 % 0.00 % 0.00 Grade 8 0.00 mi 0.00 mi 0.00 Length mi Trucks and buses PCE, ET 2.5 2.5 2.5 2.0 Recreational vehicle PCE, ER 2.0 2.0

Heavy vehicle adj Driver population Flow rate, vp					pcph
	Estimatio	n of V12 Diver	ge Areas		
	L = EQ	(Equation 13-1)	2 or 13-13)		
	P = 1.000 FD	Using Equation	0		
	v = v + (v - v) 12 R F		pc/h		
	Cap	acity Checks			
v = v Fi F	Actual 1830	Maximum 4800	LO No	S F?	
V = V - V FO F R	1039	4800	No		
V	791	2100	No		
R v or v	0 pc	/h (Equatio	on 13-14 or	13-17)	
	> 2700 pc/h?	No			
3 av34 Is v or v		No			
3 av34 If yes, v = 18 12A		(Equation 3	13-15, 13-1	6, 13-18, 0	or 13-19)
		g Diverge Infl			
v 12	Actual 1830	Max Desirable 4400	e V N		
	Level of Service	Determination	(if not F)_		
Density,		0.0086 v - 0		9.0	pc/mi/ln
Level of service :	R for ramp-freeway	12 junction areas	D of influen	ce A	
	Speed	Estimation			
Intermediate speed	d variable,		= 0.369		
Space mean speed	in ramp influence		= 62.8 m	ph	
Space mean speed	in outer lanes,		= N/A m	ph	
Space mean speed :	for all vehicles,	0 S :	= 62.8 m	ph	

Phone: Fax: E-mail: _____Diverge Analysis______ AECOM Analyst: Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Alt 2 Jurisdiction: Analysis Year: 2020 Build Alt 2 Ramp Description: S-48 IMR _____Freeway Data_____ Type of analysis Diverge Number of lanes in freeway 2. Free-flow speed on freeway 75.0 mph Volume on freeway 2523 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 247 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 953 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1000 ft _____Conversion to pc/h Under Base Conditions______ Freeway Junction Components Ramp Adjacent Ramp Volume, V (vph) 2523 247 953 vph 0.90 Peak-hour factor, PHF 0.90 0.90 Peak 15-min volume, v15 701 69 265 v Trucks and buses 4 2 2 8 0 0 Recreational vehicles 0 % Rolling Rolling Rolling Terrain type: 0.00 % 0.00 % 0.00 Grade 8 0.00 mi 0.00 mi 0.00 Length mi Trucks and buses PCE, ET 2.5 2.5 2.5 2.0 Recreational vehicle PCE, ER 2.0 2.0

Heavy vehicle adjust Driver population fa Flow rate, vp		0.943 1.00 2972		0.971 1.00 1091	pcph
	Estimation of	of V12 Diverge	e Areas_		
	= (Ec	quation 13-12	or 13-1	3)	
Р	= 1.000 Usi 7D	ing Equation	0		
	= v + (v - v) L2 R F R		pc/h		
	Capaci	ty Checks			
v = v Fi F	Actual 2972	Maximum 4800		LOS F? No	
v = v - v FO F R	2689	4800		No	
v	283	2100		No	
R v or v	0 pc/h	(Equation	n 13-14	or 13-17)	
3 av34 Is v or v >	2700 pc/h?	No			
3 av34 Is v or v >		No			
3 av34 If yes, v = 2972 12A	12	(Equation 1)	3-15, 13	3-16, 13-18,	or 13-19)
	Flow Entering I				
V	Actual M 2972 4	Max Desirable 1400		Violation? No	
12 Lev	vel of Service Det	cermination (if not F	י)	
Density,	D = 4.252 + 0.	.0086 v - 0.0	009 L D	= 18.8	pc/mi/ln
Level of service for			_	ience B	
	Speed Es	stimation			
Intermediate speed v	variable,		0.323		
Space mean speed in	ramp influence ar		64.3	mph	
Space mean speed in	outer lanes,		N/A	mph	
Space mean speed for	all vehicles,	0 S =	64.3	mph	

Phone: Fax: E-mail: _____Diverge Analysis______ AECOM Analyst: Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Alt 2 Loop Jurisdiction: Analysis Year: 2020 Build Alt 2 Loop Description: S-48 IMR _____Freeway Data_____ Type of analysis Diverge Number of lanes in freeway 2. Free-flow speed on freeway 75.0 mph Volume on freeway 2276 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph 953 Volume on ramp vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 196 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 550 ft _____Conversion to pc/h Under Base Conditions______ Freeway Junction Components Ramp Adjacent Ramp Volume, V (vph) 2276 953 196 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 632 265 54 v Trucks and buses 4 2 2 8 0 0 Recreational vehicles 0 % Rolling Rolling Rolling Terrain type: 0.00 % 0.00 % 0.00 Grade 8 0.00 mi 0.00 mi 0.00 Length mi Trucks and buses PCE, ET 2.5 2.5 2.5 2.0 Recreational vehicle PCE, ER 2.0 2.0

Heavy vehicle adju Driver population Flow rate, vp			1.00	0.971 1.00 224	pcph
	Estimation	n of V12 Diver	ge Areas		
	L = (EO	Equation 13-1	2 or 13-13)	
	P = 1.000 U FD	Jsing Equation	0		
	v = v + (v - v) $12 R F F$		pc/h		
	Capa	acity Checks			
v = v Fi F	Actual 2681	Maximum 4800		OS F? Io	
v = v - v FO F R	1590	4800	N	ĨO	
v	1091	2100	N	ÍO	
R v or v	0 pc/	'h (Equati	on 13-14 o	or 13-17)	
	> 2700 pc/h?	No			
3 av34 Is v or v	> 1.5 v /2	No			
3 av34 If yes, v = 268 12A		(Equation	13-15, 13-	16, 13-18,	or 13-19)
		g Diverge Infl			
v	Actual 2681	Max Desirabl 4400		Violation? No	
12 I	Level of Service I	Determination	(if not F)		
Density,		0.0086 v - 0		= 16.3	pc/mi/ln
Level of service f	R For ramp-freeway	12 junction areas	D of influe	nce B	
	Speed	Estimation			
Intermediate speed	l variable,		= 0.396		
Space mean speed i	in ramp influence		= 61.9	mph	
Space mean speed i	in outer lanes,		= N/A	mph	
Space mean speed f	for all vehicles,	0 S	= 61.9	mph	

APPENDIX L

BUILD ALT 1 2040 SYNCHRO AND SIM TRAFFIC REPORTS

Lanes, Volumes, Timings <u>1: Columbia Ave & I-26 EB Ramps</u>

		, itani				•		•		、		
	٭	-		1	-		1	T		-	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					- † †						ተተተ	
Traffic Volume (vph)	0	0	0	0	498	0	0	0	0	0	1461	0
Future Volume (vph)	0	0	0	0	498	0	0	0	0	0	1461	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	0	0	0	3539	0	0	0	0	0	5085	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	3539	0	0	0	0	0	5085	0
Right Turn on Red			Yes	Yes		Yes			Yes			Yes
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		153			109			130			161	
Travel Time (s)		3.0			2.1			2.5			3.1	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0170	0170	0170	0170	0170	0170	0170	0170	0170	0170	0170	0170
Lane Group Flow (vph)	0	0	0	0	553	0	0	0	0	0	1623	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	LOIT	0	Right	Lon	0	Right	Lon	0	Right	LOII	0	Night
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	15		7	15	NA	9	15		9	15	NA	9
Turn Type Protected Phases												
Permitted Phases					4						6	
Detector Phase					4						4	
Switch Phase					4						6	
					10.0						10.0	
Minimum Initial (s)					22.0						22.0	
Minimum Split (s)												
Total Split (s)					27.0						43.0	
Total Split (%)					38.6%						61.4%	
Maximum Green (s)					21.0						37.0	
Yellow Time (s)					4.0						4.0	
All-Red Time (s)					2.0						2.0	_
Lost Time Adjust (s)					0.0						0.0	
Total Lost Time (s)					6.0						6.0	_
Lead/Lag												
Lead-Lag Optimize?					0.0							_
Vehicle Extension (s)					3.0						3.0	
Recall Mode					Min						C-Max	_
Act Effct Green (s)					16.5						41.5	
Actuated g/C Ratio					0.24						0.59	
v/c Ratio					0.66						0.54	
Control Delay					21.8						7.6	
Queue Delay					0.0						0.0	
Total Delay					21.8						7.6	
LOS					С						A	
Approach Delay					21.8						7.6	

Lanes, Volumes, Timings 1: Columbia Ave & I-26 EB Ramps

	۶	-	\mathbf{r}	4	←	•	1	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					С						А	
Queue Length 50th (ft)					102						43	
Queue Length 95th (ft)					119						238	
Internal Link Dist (ft)		73			29			50			81	
Turn Bay Length (ft)												
Base Capacity (vph)					1061						3011	
Starvation Cap Reductn					0						0	
Spillback Cap Reductn					0						0	
Storage Cap Reductn					0						0	
Reduced v/c Ratio					0.52						0.54	
Intersection Summary												
	Other											
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 55 (79%), Reference	d to phase	6:SBT, S	Start of G	reen								
Natural Cycle: 45												
Control Type: Actuated-Coor	dinated											
Maximum v/c Ratio: 0.66												
Intersection Signal Delay: 11					itersection		-					
Intersection Capacity Utilizat	ion 58.1%			IC	CU Level	of Service	B					
Analysis Period (min) 15												

Splits and Phases: 1: Columbia Ave & I-26 EB Ramps

	← Ø4	
	27 s	
Ø6 (R)		
43 s		

	۶	-	\mathbf{F}	4	-	•	1	1	1	1	ţ	∢
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					- ††						†††	
Traffic Volume (veh/h)	0	0	0	0	498	0	0	0	0	0	1461	0
Future Volume (veh/h)	0	0	0	0	498	0	0	0	0	0	1461	0
Number				7	4	14				1	6	16
Initial Q (Qb), veh				0	0	0				0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00				1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				0	1863	0				0	1863	0
Adj Flow Rate, veh/h				0	553	0				0	1623	0
Adj No. of Lanes				0	2	0				0	3	0
Peak Hour Factor				0.90	0.90	0.90				0.90	0.90	0.90
Percent Heavy Veh, %				0	2	0				0	2	0
Cap, veh/h				0	738	0				0	2688	0
Arrive On Green				0.00	0.21	0.00				0.00	0.17	0.00
Sat Flow, veh/h				0	3725	0				0	5421	0
Grp Volume(v), veh/h				0	553	0				0	1623	0
Grp Sat Flow(s), veh/h/ln				0	1770	0				0	1695	0
Q Serve(g_s), s				0.0	10.3	0.0				0.0	20.6	0.0
Cycle Q Clear(g_c), s				0.0	10.3	0.0				0.0	20.6	0.0
Prop In Lane				0.00		0.00				0.00		0.00
Lane Grp Cap(c), veh/h				0	738	0				0	2688	0
V/C Ratio(X)				0.00	0.75	0.00				0.00	0.60	0.00
Avail Cap(c_a), veh/h				0	1062	0				0	2688	0
HCM Platoon Ratio				1.00	1.00	1.00				1.00	0.33	1.00
Upstream Filter(I)				0.00	1.00	0.00				0.00	1.00	0.00
Uniform Delay (d), s/veh				0.0	26.0	0.0				0.0	22.1	0.0
Incr Delay (d2), s/veh				0.0	1.8	0.0				0.0	1.0	0.0
Initial Q Delay(d3),s/veh				0.0	0.0	0.0				0.0	0.0	0.0
%ile BackOfQ(50%),veh/In				0.0	5.2	0.0				0.0	9.9	0.0
LnGrp Delay(d),s/veh				0.0	27.8	0.0				0.0	23.1	0.0
LnGrp LOS					С						С	
Approach Vol, veh/h					553						1623	
Approach Delay, s/veh					27.8						23.1	
Approach LOS					С						С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs				4		6						
Phs Duration (G+Y+Rc), s				20.6		43.0						
Change Period (Y+Rc), s				6.0		6.0						
Max Green Setting (Gmax), s				21.0		37.0						
Max Q Clear Time (g_c+I1) , s				12.3		22.6						
Green Ext Time (p_c), s				2.3		9.4						
Intersection Summary				-								
HCM 2010 Ctrl Delay			24.3									
HCM 2010 LOS			24.3 C									

	4	×.	t	*	1	Ţ
				r NDD	CDI	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	<u>ካ</u>	^	^	•	^	
Traffic Volume (vph)	1026	0	0	0	0	582
Future Volume (vph)	1026	0	0	0	0	582
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	3433	0	0	0	0	3539
Flt Permitted	0.950					
Satd. Flow (perm)	3433	0	0	0	0	3539
Right Turn on Red	Yes	Yes		Yes		
Satd. Flow (RTOR)	191					
Link Speed (mph)	30		35			35
Link Distance (ft)	161		300			170
Travel Time (s)	3.7		5.8			3.3
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0.70	0.70	0.70	0.70	0.70	0.70
Lane Group Flow (vph)	1140	0	0	0	0	647
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	24		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Turn Type	Prot					NA
Protected Phases	8					6
Permitted Phases						
Detector Phase	8					6
Switch Phase						
Minimum Initial (s)	7.0					10.0
Minimum Split (s)	22.0					22.0
Total Split (s)	39.0					31.0
Total Split (%)	55.7%					44.3%
Maximum Green (s)	33.0					25.0
Yellow Time (s)	4.0					4.0
All-Red Time (s)	4.0 2.0					4.0 2.0
						0.0
Lost Time Adjust (s)	0.0					
Total Lost Time (s)	6.0					6.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0					3.0
Recall Mode	Min					C-Max
Act Effct Green (s)	27.3					30.7
Actuated g/C Ratio	0.39					0.44
v/c Ratio	0.78					0.42
Control Delay	19.3					8.9
Queue Delay	0.0					0.4
Total Delay	19.3					9.3
LOS	B					A
Approach Delay	19.3					9.3
	17.3					7.3

	✓	•	1	1	1	ŧ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Approach LOS	В					А
Queue Length 50th (ft)	178					97
Queue Length 95th (ft)	215					160
Internal Link Dist (ft)	81		220			90
Turn Bay Length (ft)						
Base Capacity (vph)	1719					1553
Starvation Cap Reductn	0					451
Spillback Cap Reductn	0					0
Storage Cap Reductn	0					0
Reduced v/c Ratio	0.66					0.59
Intersection Summary						
Ama a Tum a	Other a					

Area Type: Other		
Cycle Length: 70		
Actuated Cycle Length: 70		
Offset: 9 (13%), Referenced to phase 6:SBT, Sta	rt of Green	
Natural Cycle: 45		
Control Type: Actuated-Coordinated		
Maximum v/c Ratio: 0.78		
Intersection Signal Delay: 15.6	Intersection LOS: B	
Intersection Capacity Utilization 55.4%	ICU Level of Service B	
Analysis Period (min) 15		

Splits and Phases: 21: Columbia Ave & I-26 WB Off Ramp

Ø6 (R)	√ Ø8
31 s	39 s

	•	•	Ť	1	1	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ሻሻ					<u>†</u> †	
Traffic Volume (veh/h)	1026	0	0	0	0	582	
Future Volume (veh/h)	1026	0	0	0	0	582	
Number	3	18	-	-	1	6	
Initial Q (Qb), veh	0	0			0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00			1.00		
Parking Bus, Adj	1.00	1.00			1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	0			0	1863	
Adj Flow Rate, veh/h	1140	0			0	647	
Adj No. of Lanes	2	0			0	2	
Peak Hour Factor	0.90	0.90			0.90	0.90	
Percent Heavy Veh, %	2	0.70			0.90	0.90	
Cap, veh/h	0	0			0	1264	
Arrive On Green	0.00	0.00			0.00	0.12	
		0.00					
Sat Flow, veh/h	0				0	3725	
Grp Volume(v), veh/h	0.0				0	647	
Grp Sat Flow(s), veh/h/ln					0	1770	
Q Serve(g_s), s					0.0	12.0	
Cycle Q Clear(g_c), s					0.0	12.0	
Prop In Lane					0.00		
Lane Grp Cap(c), veh/h					0	1264	
V/C Ratio(X)					0.00	0.51	
Avail Cap(c_a), veh/h					0	1264	
HCM Platoon Ratio					1.00	0.33	
Upstream Filter(I)					0.00	0.97	
Uniform Delay (d), s/veh					0.0	25.1	
Incr Delay (d2), s/veh					0.0	1.4	
Initial Q Delay(d3),s/veh					0.0	0.0	
%ile BackOfQ(50%),veh/In					0.0	6.1	
LnGrp Delay(d),s/veh					0.0	26.6	
LnGrp LOS						С	
Approach Vol, veh/h						647	
Approach Delay, s/veh						26.6	
Approach LOS						C	
Timer	1	2	3	4	5	6	7 8
Assigned Phs		_				6	
Phs Duration (G+Y+Rc), s						31.0	
Change Period (Y+Rc), s						6.0	
Max Green Setting (Gmax), s						25.0	
Max Q Clear Time (g_c+11) , s						14.0	
Green Ext Time (p_c), s						3.2	
• •						J.Z	
Intersection Summary							
HCM 2010 Ctrl Delay			26.6				
HCM 2010 LOS			С				

Lanes, Volumes, Timings 22: Columbia Ave & I-26 WB Ramps

	≯	-	7	4	+	×	•	1	*	1	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† †	2011							002	1	
Traffic Volume (vph)	0	402	0	0	0	0	0	0	0	0	582	0
Future Volume (vph)	0	402	0	0	0	0	0	0	0	0	582	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	3539	0	0	0	0	0	0	0	0	3539	0
Flt Permitted	0	3337	0	0	0	0	U	0	0	0	3337	0
Satd. Flow (perm)	0	3539	0	0	0	0	0	0	0	0	3539	0
Right Turn on Red	0	3337	Yes	0	U	Yes	U	0	Yes	Yes	3337	Yes
Satd. Flow (RTOR)			163			163			163	163		163
. ,		35			35			35			35	
Link Speed (mph)					30 115			35 170				
Link Distance (ft)												
Travel Time (s)	0.00	2.9	0.00	0.00	2.2	0.00	0.00	3.3	0.00	0.00	2.5	0.00
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0	4.47	0	0	0	0	0	0	0	0	(17	0
Lane Group Flow (vph)	0	447	0	0	0	0	0	0	0	0	647	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type		NA									NA	
Protected Phases		4									6	
Permitted Phases												
Detector Phase		4									6	
Switch Phase												
Minimum Initial (s)		10.0									10.0	
Minimum Split (s)		22.0									22.0	
Total Split (s)		32.0									38.0	
Total Split (%)		45.7%									54.3%	
Maximum Green (s)		26.0									32.0	
Yellow Time (s)		4.0									4.0	
All-Red Time (s)		2.0									2.0	
Lost Time Adjust (s)		0.0									0.0	
Total Lost Time (s)		6.0									6.0	
Lead/Lag		010									010	
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0									3.0	
Recall Mode		None									C-Max	
Act Effct Green (s)		14.5									43.5	
Actuated g/C Ratio		0.21									0.62	
v/c Ratio		0.21									0.02	
Control Delay		6.1									7.1	
Queue Delay		0.1									0.1	
-		0.0 6.1									7.2	
Total Delay LOS												
		A									A 7 2	
Approach Delay		6.1									7.2	

Lanes, Volumes, Timings 22: Columbia Ave & I-26 WB Ramps

	≯	+	*	4	←	•	•	Ť	1	1	Ŧ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		А									А	
Queue Length 50th (ft)		4									58	
Queue Length 95th (ft)		5									101	
Internal Link Dist (ft)		67			35			90			49	
Turn Bay Length (ft)												
Base Capacity (vph)		1314									2199	
Starvation Cap Reductn		0									0	
Spillback Cap Reductn		0									439	
Storage Cap Reductn		0									0	
Reduced v/c Ratio		0.34									0.37	
Intersection Summary												
J)ther											
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 5 (7%), Referenced to	phase 6:	SBT, Sta	rt of Gree	en								
Natural Cycle: 45												
Control Type: Actuated-Coor	dinated											
Maximum v/c Ratio: 0.61												
Intersection Signal Delay: 6.7					tersection							
Intersection Capacity Utilizati	ion 37.2%			IC	U Level	of Service	A					
Analysis Period (min) 15												

Splits and Phases: 22: Columbia Ave & I-26 WB Ramps

	→ Ø4	
	32 s	
Ø6 (R)		
38 s		

	≯	-	\mathbf{F}	4	+	•	•	Ť	1	1	ţ	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- ††									- 44	
Traffic Volume (veh/h)	0	402	0	0	0	0	0	0	0	0	582	0
Future Volume (veh/h)	0	402	0	0	0	0	0	0	0	0	582	0
Number	7	4	14							1	6	16
Initial Q (Qb), veh	0	0	0							0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00							1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00							1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1863	0							0	1863	0
Adj Flow Rate, veh/h	0	447	0							0	647	0
Adj No. of Lanes	0	2	0							0	2	0
Peak Hour Factor	0.90	0.90	0.90							0.90	0.90	0.90
Percent Heavy Veh, %	0	2	0							0	2	0
Cap, veh/h	0	646	0							0	1618	0
Arrive On Green	0.00	0.18	0.00							0.00	0.46	0.00
Sat Flow, veh/h	0	3725	0							0	3725	0
Grp Volume(v), veh/h	0	447	0							0	647	0
Grp Sat Flow(s), veh/h/ln	0	1770	0							0	1770	0
Q Serve(g_s), s	0.0	8.3	0.0							0.0	8.5	0.0
Cycle Q Clear(g_c), s	0.0	8.3	0.0							0.0	8.5	0.0
Prop In Lane	0.00		0.00							0.00		0.00
Lane Grp Cap(c), veh/h	0	646	0							0	1618	0
V/C Ratio(X)	0.00	0.69	0.00							0.00	0.40	0.00
Avail Cap(c_a), veh/h	0	1315	0							0	1618	0
HCM Platoon Ratio	1.00	1.00	1.00							1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	0.00							0.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	26.8	0.0							0.0	12.6	0.0
Incr Delay (d2), s/veh	0.0	1.3	0.0							0.0	0.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0							0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	4.2	0.0							0.0	4.3	0.0
LnGrp Delay(d),s/veh	0.0	28.1	0.0							0.0	13.4	0.0
LnGrp LOS		С									В	
Approach Vol, veh/h		447									647	
Approach Delay, s/veh		28.1									13.4	
Approach LOS		С									В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	•			4		6		0				
Phs Duration (G+Y+Rc), s				18.8		38.0						
Change Period (Y+Rc), s				6.0		6.0						
Max Green Setting (Gmax), s				26.0		32.0						
Max Q Clear Time (g_c+11), s				10.3		10.5						
Green Ext Time (p_c), s				2.5		4.3						
• ·				2.5		+.J						
Intersection Summary			10.4									
HCM 2010 Ctrl Delay			19.4									
HCM 2010 LOS			В									

Summary of All Intervals

	4	0	0	•	
Run Number	1	2	3	Avg	
Start Time	7:20	7:20	7:20	7:20	
End Time	8:30	8:30	8:30	8:30	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	7063	7226	7216	7169	
Vehs Exited	7023	7148	7084	7085	
Starting Vehs	248	289	256	261	
Ending Vehs	288	367	388	343	
Travel Distance (mi)	7643	7805	7774	7741	
Travel Time (hr)	266.1	346.3	275.9	296.1	
Total Delay (hr)	125.2	203.6	133.2	154.0	
Total Stops	7425	9634	6909	7988	
Fuel Used (gal)	307.1	328.7	314.1	316.6	

Interval #0 Information Seeding

Start Time	7:20		
End Time	7:30		
Total Time (min)	10		
Volumes adjusted by Gro	owth Factors.		
No data recorded this int	erval.		

Interval #1 Information Recording

Start Time	7:30
End Time	8:30
Total Time (min)	60
Volumes adjusted by Grov	vth Factors.

Run Number	1	2	3	Avg	
Vehs Entered	7063	7226	7216	7169	
Vehs Exited	7023	7148	7084	7085	
Starting Vehs	248	289	256	261	
Ending Vehs	288	367	388	343	
Travel Distance (mi)	7643	7805	7774	7741	
Travel Time (hr)	266.1	346.3	275.9	296.1	
Fotal Delay (hr)	125.2	203.6	133.2	154.0	
Total Stops	7425	9634	6909	7988	
Fuel Used (gal)	307.1	328.7	314.1	316.6	

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	WB	WB	SB	SB	SB
Directions Served	Т	Т	Т	Т	Т
Maximum Queue (ft)	138	125	98	108	88
Average Queue (ft)	123	51	66	92	37
95th Queue (ft)	159	103	112	110	77
Link Distance (ft)	57	57	13	13	13
Upstream Blk Time (%)	44	9	18	33	14
Queuing Penalty (veh)	111	23	86	159	70
Storage Bay Dist (ft)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 21: Columbia Ave & I-26 WB Off Ramp

Movement	WB	WB	SB	SB
Directions Served	L	L	Т	Т
Maximum Queue (ft)	168	186	62	96
Average Queue (ft)	136	151	26	43
95th Queue (ft)	175	183	62	72
Link Distance (ft)	103	103	30	30
Upstream Blk Time (%)	18	25	11	39
Queuing Penalty (veh)	94	127	32	112
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 22: Columbia Ave & I-26 WB Ramps

Movement	EB	EB	SB	SB
Directions Served	Т	Т	Т	Т
Maximum Queue (ft)	94	90	83	171
Average Queue (ft)	59	73	23	127
95th Queue (ft)	100	111	60	177
Link Distance (ft)	13	13	16	16
Upstream Blk Time (%)	46	45	8	43
Queuing Penalty (veh)	92	90	23	124
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Lanes, Volumes, Timings 1: I-26 EB Ramps & Columbia Ave

1. 1-20 ED Raitips &			_		_							<u> </u>
	≯	→	\rightarrow	-	-	•	1	- Ť-	1	×	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					<u></u>						ተተተ	
Traffic Volume (vph)	0	0	0	0	723	0	0	0	0	0	1781	0
Future Volume (vph)	0	0	0	0	723	0	0	0	0	0	1781	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	0	0	0	3539	0	0	0	0	0	5085	0
Flt Permitted	Ũ	Ű	Ū	Ű	0007	Ű	Ŭ	Ŭ	Ū	Ű	0000	Ű
Satd. Flow (perm)	0	0	0	0	3539	0	0	0	0	0	5085	0
Right Turn on Red	U	U	Yes	Yes	0007	Yes	Ū	U	Yes	U	0000	Yes
Satd. Flow (RTOR)			105	105		105			105			105
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		135			109			140			150	
Travel Time (s)		2.6			2.1			2.7			2.9	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Lane Group Flow (vph)	0	0	0	0	803	0	0	0	0	0	1979	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
	Left	Left		Left	Left		Left	Left		Left	Left	
Lane Alignment	Leit	Len 0	Right	Len	Len 0	Right	Len		Right	Leit	Len 0	Right
Median Width(ft)								0				
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	1 00	1 00	1.00	1.00	1 00	1 00	1 00	1 00	1.00	1.00	1 00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15	NLA	9	15		9	15	NLA	9
Turn Type					NA						NA	
Protected Phases					4						6	
Permitted Phases												
Detector Phase					4						6	_
Switch Phase												
Minimum Initial (s)					10.0						10.0	_
Minimum Split (s)					22.0						22.0	
Total Split (s)					25.0						35.0	_
Total Split (%)					41.7%						58.3%	
Maximum Green (s)					19.0						29.0	
Yellow Time (s)					4.0						4.0	
All-Red Time (s)					2.0						2.0	
Lost Time Adjust (s)					0.0						0.0	
Total Lost Time (s)					6.0						6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)					3.0						3.0	
Recall Mode					Min						C-Max	
Act Effct Green (s)					18.0						30.0	
Actuated g/C Ratio					0.30						0.50	
v/c Ratio					0.76						0.78	
Control Delay					19.5						11.1	
Queue Delay					0.0						0.0	
Total Delay					19.5						11.1	
LOS					В						В	
Approach Delay					19.5						11.1	
Lanes, Volumes, Timings 1: I-26 EB Ramps & Columbia Ave

			•									
	٦	+	*	4	+	*	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					В						В	
Queue Length 50th (ft)					83						127	
Queue Length 95th (ft)					m146						209	
Internal Link Dist (ft)		55			29			60			70	
Turn Bay Length (ft)												
Base Capacity (vph)					1120						2542	
Starvation Cap Reductn					0						0	
Spillback Cap Reductn					0						0	
Storage Cap Reductn					0						0	
Reduced v/c Ratio					0.72						0.78	
Intersection Summary												
21	Other											
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 45 (75%), Reference	ed to phase	6:SBT, S	Start of G	reen								
Natural Cycle: 55												
Control Type: Actuated-Coo	rdinated											
Maximum v/c Ratio: 0.78												
Intersection Signal Delay: 13					ntersection							
Intersection Capacity Utiliza	tion 64.4%			IC	CU Level	of Service	e C					
Analysis Period (min) 15												
m Volumo for 05th porcon	tilo auquo i	s matara	d hy unst	roam cia	nal							

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: I-26 EB Ramps & Columbia Ave

	← Ø4	
	25 s	
Ø6 (R)		
35 s		

Movement EBL EBT EBR WBL WBT WBL NBL NBT NBL SBL SBL SBT SBR Lane Configurations 1 0		۶	-	$\mathbf{\hat{z}}$	•	-	•	1	1	1	1	ţ	~
Traffic Volume (veh/n) 0 <th>Movement</th> <th>EBL</th> <th>EBT</th> <th>EBR</th> <th>WBL</th> <th></th> <th>WBR</th> <th>NBL</th> <th>NBT</th> <th>NBR</th> <th>SBL</th> <th></th> <th>SBR</th>	Movement	EBL	EBT	EBR	WBL		WBR	NBL	NBT	NBR	SBL		SBR
Future Volume (veh/h) 0 0 0 7 24 14 1 6 16 Number 7 7 4 14 1 6 16 Initial O (Db) veh 0	Lane Configurations					- ††						***	
Number 7 4 14 1 6 16 Initial Q (2b), veh 0 </td <td>Traffic Volume (veh/h)</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>0</td>	Traffic Volume (veh/h)	0	0	0	0		0	0	0	0	0		0
Initial (2b), veh 0 0 0 0 0 0 0 0 0 0 1.00	Future Volume (veh/h)	0	0	0	0	723	0	0	0	0	0	1781	0
Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, vehrhin 0 1863 0 1863 0 1863 0 Adj No of Lanes 0 2 0 0 3 0 Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 Cap, vehrh 0 987 0 2.40 0 2.60 Arrive On Green 0.00 0.28 0.00 0.00 0.16 0.00 Cap, vehrh 0 3725 0 0 1497 0 Grp Volume(V), vehrh 0 803 0 1979 0 Grp Sat Flow(S), vehrh/ln 0 177 0 0.02 25.00 0 Cycle C Clear(G_c.), s 0.00 1.27 0.0 0.25 0.0 0.00 2458 0 0 Arai Cap(c_a), vehrh 0 987 0 0 2458 0 0	Number				7	4	14				1	6	16
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/m 0 1863 0 0 1863 0 Adj Flow Rate, veh/h 0 803 0 0 979 0 Adj No, of Lanes 0 2 0 0 3 0 Peak Hour Factor 0.90 Adj Su (Adj, Su (Initial Q (Qb), veh				0	0	0				0	0	0
Adj Sał Flow, veľvh/ln 0 1863 0 0 1863 0 Adj No. of Lanes 0 2 0 0 3 0 Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 Peace Heavy Veh, % 0 2 0 0 2 0 Arrive On Green 0.00 0.28 0.00 0.00 0.16 0.00 Grp Volume(v), veh/h 0 3725 0 0 5421 0 Grp Volume(v), veh/h 0 3725 0 0 1695 0 Grp Volume(v), veh/h 0 803 0 0 1695 0 Grp Sat Flow(s), veh/h/ln 0 1770 0 0 1695 0 Qrele Q. Clarg, c, s 0.01 12.7 0.0 0.00 22.5 0.0 Prop In Lane 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Ped-Bike Adj(A_pbT)				1.00		1.00				1.00		1.00
Adj Saf How, veh/hin 0 1863 0 0 1863 0 Adj Flow Rate, veh/h 0 803 0 0 1979 0 Adj No. of Lanes 0 2 0 0 3 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 2458 0 0 2458 0 0 5421 0 0 5421 0 0 5421 0 0 1979 0 0 1979 0 0 1979 0 0 1979 0 0 125 0 0 0 22.5 0.0 0 0 0 0 127 0.0 0	Parking Bus, Adj				1.00	1.00	1.00				1.00	1.00	1.00
Adj No. of Lanes 0 2 0 0 3 0 Peak Hour Factor 0.90 2.458 0 Arrive On Green 0.00 0.00 1.77 0 0 1.777 0 0 1.777 0 0.00 2.25 0.00 Cycle Q Clear(g, c), s 0.00					0	1863	0				0	1863	0
Peak Hour Factor 0.90	Adj Flow Rate, veh/h				0	803	0				0	1979	0
Percent Heavy Veh, % 0 2 0 0 2 0 Cap, veh/h 0 987 0 0 2458 0 Arrive On Green 0.00 0.28 0.00 0.00 0.16 0.00 Sat Flow, veh/h 0 3725 0 0 5421 0 Grp Volume(V), veh/h 0 803 0 0 1979 0 Grp Sat Flow(s), veh/h/ln 0 1770 0 0 1695 0 O Serve(g.s), s 0.01 12.7 0.0 0.02 22.5 0.0 Cycle O Clear(g_c), s 0.01 12.7 0.0 0.00 200 Anea Gro, Cap(c), veh/h 0 987 0 0 2458 0 V/C Ratio(X) 0.00 0.81 0.00 0.00 0.00 1.00 Avail Cap(c_a), veh/h 0 1121 0 0 2458 0 HCM Patoon Ratio 1.00 1.00 1.00 <td>Adj No. of Lanes</td> <td></td> <td></td> <td></td> <td>0</td> <td>2</td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td>3</td> <td>0</td>	Adj No. of Lanes				0	2	0				0	3	0
Cap, veh/h 0 987 0 0 2458 0 Arrive On Green 0.00 0.28 0.00 0.00 0.16 0.00 Sat Flow, veh/h 0 3725 0 0 5421 0 Grp Volume(0), veh/h 0 803 0 1979 0 Grp Sat Flow(s), veh/h/ln 0 1770 0 0 1665 0 Qcyle Q Clear(g_c), s 0.00 12.7 0.0 0.02 22.5 0.0 Prop In Lane 0.00 0.00 0.00 0.00 0.00 0.00 Lane Grp Cap(c), veh/h 0 987 0 0 2458 0 V/C Ratio(X) 0.00 0.81 0.00 0.00 0.81 0.00 V/C Ratio(X) 0.00 1.00 1.00 1.00 0.00 1.00 0.00 Upstream Filter(I) 0.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 1.00 <	Peak Hour Factor				0.90	0.90	0.90				0.90	0.90	0.90
Cap, veh/h 0 987 0 0 2458 0 Arrive On Green 0.00 0.28 0.00 0.00 0.16 0.00 Sat Flow, veh/h 0 3725 0 0 5421 0 Grp Volume(V), veh/h 0 803 0 0 1695 0 Grp Sat Flow(s), veh/h/in 0 1770 0 0.01 22.5 0.0 Oserve(g_s), s 0.00 12.7 0.0 0.02 22.5 0.0 Cycle Q Clear(g_c), s 0.00 0.00 0.00 0.00 2458 0 V/C Ratio(X) 0.00 0.81 0.00 0.00 0.01 0.00 V/C Ratio(X) 0.00 1.00 1.00 0.00 0.01 1.00 V/C Ratio(X) 0.00 0.00 0.00 0.00 1.00 0.00 Uhristrene Filter(I) 0.00 1.00 0.00 0.00 1.00 0.00 Uhristrene Filter(I)	Percent Heavy Veh, %				0	2	0				0	2	0
Arrive On Green 0.00 0.28 0.00 0.00 0.16 0.00 Sat Flow, veh/h 0 3725 0 0 5421 0 Grp Volume(v), veh/h 0 803 0 0 1979 0 Grp Sat Flow(s), veh/h/In 0 1770 0 0 1655 0.0 Q Serve(g, s), s 0.0 12.7 0.0 0.0 22.5 0.0 Cycle O Clear(g_C), s 0.0 12.7 0.0 0.00 0.00 0.00 Lane Grp Cap(c), veh/h 0 987 0 0 2458 0 V/C Ratio(X) 0.00 0.81 0.00 0.00 0.01 1.00 1.00 0.03 1.00 Avail Cap(c_a), veh/h 0 1121 0 0 2458 0 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 1.					0	987	0				0	2458	0
Sat Flow, verv/h 0 3725 0 5421 0 Grp Volume(V), verv/h 0 803 0 1979 0 Grp Sat Flow(s), verv/h/ln 0 1770 0 0 1695 0 O Serve(g.s, s) 0.0 12.7 0.0 0.0 22.5 0.0 Cycle O Clear(g.c), s 0.0 12.7 0.0 0.00 2458 0 Dane Grp Cap(c), verv/h 0 987 0 0 2458 0 V/C Ratio(X) 0.00 0.81 0.00 0.00 0.00 1.00 Avait Cap(c. a), verv/h 0 1121 0 0 2458 0 HCM Platoon Ratio 1.00 1.00 1.00 0.00 0.00 0.00 1.00 0.00 Upstram Filter(I) 0.00 1.00 1.00 0.00 0.00 0.0 <t< td=""><td></td><td></td><td></td><td></td><td>0.00</td><td>0.28</td><td>0.00</td><td></td><td></td><td></td><td>0.00</td><td>0.16</td><td>0.00</td></t<>					0.00	0.28	0.00				0.00	0.16	0.00
Grp Volume(v), veh/h 0 803 0 0 1979 0 Grp Sat Flow(s), veh/h/ln 0 1770 0 0 1695 0 Q Serve(g_s), s 0.0 12.7 0.0 0.0 22.5 0.0 Cycle Q Clear(g_c), s 0.00 0.00 0.00 0.00 0.00 0.00 Prop In Lane 0.00 0.00 0.00 0.00 0.00 0.00 Lane Grp Cap(C), veh/h 0 987 0 0 2458 0 V/C Ratio(X) 0.00 1.00 1.00 0.00 0.33 1.00 Mail Cap(C, a), veh/h 0 1121 0 0 2458 0 HCM Platoon Ratio 1.00 1.00 1.00 0.00 0.00 1.00 0.00 Uniform Delay (d), s/veh 0.0 4.2 0.0 0.0 2.9 0.0 Intra Delay(d2), s/veh 0.0 24.4 0.0 0.0 2.9 0.0 Inder Delay (d3), s/veh 0.0 24.4 0.0 0.0 2.4 0.0	Sat Flow, veh/h						0				0	5421	
Grp Sat Flow(s), veh/h/ln 0 1770 0 0 1695 0 Q Serve(g_s), s 0.0 12.7 0.0 0.0 22.5 0.0 Cycle O Clear(g_c), s 0.0 12.7 0.0 0.0 22.5 0.0 Prop In Lane 0.00 0.00 0.00 0.00 0.00 0.00 Lane Grp Cap(c), veh/h 0 987 0 0 2458 0 V/C Ratio(X) 0.00 0.81 0.00 0.01 0.00 0.81 0.00 Avail Cap(c_a), veh/h 0 1121 0 0 2458 0 HCM Platoon Ratio 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td></td>													
Q Serve(g_s), s 0.0 12.7 0.0 0.0 22.5 0.0 Cycle Q Clear(g_c), s 0.00 12.7 0.0 0.0 22.5 0.0 Prop In Lane 0.00 0.00 0.00 0.00 0.00 0.00 Lane Grp Cap(c), veh/h 0 987 0 0 2458 0 V/C Ratio(X) 0.00 0.81 0.00 0.00 0.01 2458 0 V/C Ratio(X) 0.00 1.00 1.00 0 2458 0 VUC Ratio(X) 0.00 0.01 0.00 0.00 0.03 1.00 Upstream Filter(1) 0.00 1.00 1.00 0.00 2.9 0.0 Initial Q Delay(d3), s/veh 0.0 2.0 0.0 0.0 2.9 0.0 Indig Q Delay(d3), s/veh 0.0 2.0 0.0 0.0 2.9 0.0 Indig Q Delay(d3), s/veh 0.0 0.0 2.9 0.0 1.12 0.0													
Cycle Q Clear(g_c), s 0.0 12.7 0.0 0.0 22.5 0.0 Prop In Lane 0.00 0.0													
Prop In Lane 0.00 0.00 0.00 0.00 Lane Grp Cap(c), veh/h 0 987 0 0 2458 0 V/C Ratio(X) 0.00 0.81 0.00 0.00 0.81 0.00 Avail Cap(c_a), veh/h 0 1121 0 2458 0 HCM Platoon Ratio 1.00 1.00 1.00 0.033 1.00 Upstream Filter(I) 0.00 1.00 0.00 0.00 0.00 1.00 0.00 Upstream Filter(I) 0.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.12 0.00 0.00 1.2 0.00													
Lane Grp Cap(c), veh/h 0 987 0 0 2458 0 V/C Ratio(X) 0.00 0.81 0.00 0.81 0.00 0.81 0.00 Avail Cap(c_a), veh/h 0 1121 0 0 2458 0 HCM Platoon Ratio 1.00 1.00 1.00 1.00 0.03 1.00 Upstream Filter(I) 0.00 0.00 0.00 0.00 0.00 0.00 Uniform Delay (d), s/veh 0.0 20.2 0.0 0.0 2.9 0.0 Intital O Delay(d3), s/veh 0.0 2.0 0.0 0.0 2.9 0.0 Indital O Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Kile BackOfO(50%), veh/ln 0.0 6.7 0.0 0.0 11.2 0.0 LGrp LOS C C C Approach Vol, veh/h 803 1979 Approach LOS C C C C C C Imer 1 2 3 4 5	,					12.7						EE.0	
V/C Ratio(X) 0.00 0.81 0.00 0.81 0.00 Avail Cap(c_a), veh/h 0 1121 0 0 2458 0 HCM Platoon Ratio 1.00 1.00 1.00 1.00 0.00 0.33 1.00 Upstream Filter(I) 0.00 1.00 0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>987</td><td></td><td></td><td></td><td></td><td></td><td>2458</td><td></td></t<>						987						2458	
Avail Cap(c_a), veh/h 0 1121 0 0 2458 0 HCM Platoon Ratio 1.00 1.00 1.00 1.00 0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>													-
HCM Platon Ratio 1.00 1.00 1.00 0.33 1.00 Upstream Filter(I) 0.00 1.00 0.00 0.00 1.00 0.00 Uniform Delay (d), s/veh 0.0 20.2 0.0 0.0 22.5 0.0 Intri Delay (d2), s/veh 0.0 4.2 0.0 0.0 2.9 0.0 Intial Q Delay(d3), s/veh 0.0													
Upstream Filter(I) 0.00 1.00 0.00 1.00 0.00 Uniform Delay (d), s/veh 0.0 20.2 0.0 0.0 22.5 0.0 Incr Delay (d2), s/veh 0.0 4.2 0.0 0.0 2.9 0.0 Intial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Sile BackOfQ(50%), veh/ln 0.0 6.7 0.0 0.0 11.2 0.0 InGrp Delay(d), s/veh 0.0 24.4 0.0 0.0 25.4 0.0 LnGrp LOS C C C C C C C Approach Vol, veh/h 803 1979 Approach Delay, s/veh 24.4 25.4 Approach LOS C </td <td></td> <td>-</td>													-
Uniform Delay (d), s/veh 0.0 20.2 0.0 0.0 22.5 0.0 Incr Delay (d2), s/veh 0.0 4.2 0.0 0.0 2.9 0.0 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Sile BackOfQ(50%), veh/In 0.0 6.7 0.0 0.0 11.2 0.0 LnGrp Delay(d), s/veh 0.0 24.4 0.0 0.0 25.4 0.0 LnGrp LOS C C C C Approach Vol, veh/h 803 1979 Approach LOS C C C C C C Timer 1 2 3 4 5 6 7 8 Assigned Phs 4 6 C													
Incr Delay (d2), s/veh 0.0 4.2 0.0 0.0 2.9 0.0 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%), veh/ln 0.0 6.7 0.0 0.0 11.2 0.0 LnGrp Delay(d), s/veh 0.0 24.4 0.0 0.0 25.4 0.0 LnGrp LOS C C C C C C Approach Vol, veh/h 803 1979 Approach Delay, s/veh 24.4 25.4 Approach LOS C C C C C Timer 1 2 3 4 5 6 7 8 Assigned Phs 4 6 C C C C C C Immer 1 2 3 4 5 6 7 8 S S C C C C C C C C C C C C C C C C C <													
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 0.0 6.7 0.0 0.0 11.2 0.0 LnGrp Delay(d),s/veh 0.0 24.4 0.0 0.0 25.4 0.0 LnGrp LOS C C C C C Approach Vol, veh/h 803 1979 25.4 25.4 Approach LOS C C C C Timer 1 2 3 4 5 6 7 8 Assigned Phs 4 6 C C C C C Max Green Setting (Gmax), s 19.0 29.0 29.0 C C C C Max Q Clear Time (g_c+11), s 14.7 24.5 C C C C C C Intersection Summary 2.0 3.9 3.9 C C C C C C C C C C C C C C C C C													
%ile BackOfQ(50%),veh/ln 0.0 6.7 0.0 0.0 11.2 0.0 LnGrp Delay(d),s/veh 0.0 24.4 0.0 0.0 25.4 0.0 LnGrp LOS C C C C C C Approach Vol, veh/h 803 1979 Approach Delay, s/veh 24.4 25.4 25.4 Approach LOS C C C C C C C Timer 1 2 3 4 5 6 7 8 25.4 Approach LOS C													
LnGrp Delay(d),s/veh 0.0 24.4 0.0 0.0 25.4 0.0 LnGrp LOS C													
LnGrp LOS C C Approach Vol, veh/h 803 1979 Approach Delay, s/veh 24.4 25.4 Approach LOS C C Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 3 4 5 6 7 8 Assigned Phs 4 6 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 7 9	, ,												
Approach Vol, veh/h 803 1979 Approach Delay, s/veh 24.4 25.4 Approach LOS C C Timer 1 2 3 4 5 6 7 8 Assigned Phs 4 6 6 6 7 8 1000000000000000000000000000000000000					0.0		0.0				0.0		0.0
Approach Delay, s/veh 24.4 25.4 Approach LOS C C C Timer 1 2 3 4 5 6 7 8 Assigned Phs 4 6 7 8 6 7 8 Assigned Phs 4 6 7 8 6 7 8 Change Period (Y+Rc), s 22.7 35.0 6.0 7.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
Approach LOS C C Timer 1 2 3 4 5 6 7 8 Assigned Phs 4 6 4 6 4 6 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7													
Timer 1 2 3 4 5 6 7 8 Assigned Phs 4 6 7 8 8 14 9 9 6 14 7 24.5 6 6 14 7 24.5 5 6 6 14 7 24.5 14 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Assigned Phs 4 6 Phs Duration (G+Y+Rc), s 22.7 35.0 Change Period (Y+Rc), s 6.0 6.0 Max Green Setting (Gmax), s 19.0 29.0 Max Q Clear Time (g_c+I1), s 14.7 24.5 Green Ext Time (p_c), s 2.0 3.9 Intersection Summary 25.1												C	
Phs Duration (G+Y+Rc), s 22.7 35.0 Change Period (Y+Rc), s 6.0 6.0 Max Green Setting (Gmax), s 19.0 29.0 Max Q Clear Time (g_c+I1), s 14.7 24.5 Green Ext Time (p_c), s 2.0 3.9 Intersection Summary HCM 2010 Ctrl Delay 25.1		1	2	3		5		7	8				
Change Period (Y+Rc), s 6.0 6.0 Max Green Setting (Gmax), s 19.0 29.0 Max Q Clear Time (g_c+I1), s 14.7 24.5 Green Ext Time (p_c), s 2.0 3.9 Intersection Summary HCM 2010 Ctrl Delay 25.1													
Max Green Setting (Gmax), s 19.0 29.0 Max Q Clear Time (g_c+I1), s 14.7 24.5 Green Ext Time (p_c), s 2.0 3.9 Intersection Summary HCM 2010 Ctrl Delay 25.1													
Max Q Clear Time (g_c+I1), s 14.7 24.5 Green Ext Time (p_c), s 2.0 3.9 Intersection Summary 25.1													
Green Ext Time (p_c), s 2.0 3.9 Intersection Summary 25.1													
Intersection Summary HCM 2010 Ctrl Delay 25.1													
HCM 2010 Ctrl Delay 25.1	Green Ext Time (p_c), s				2.0		3.9						
,	Intersection Summary												
	HCM 2010 Ctrl Delay			25.1									
	HCM 2010 LOS			С									

Lanes, Volumes, Timings 21: Columbia Ave & I-26 WB Off Ramp

	∢	•	Ť	1	1	Ŧ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ካካ					<u></u>
Traffic Volume (vph)	1325	0	0	0	0	713
Future Volume (vph)	1325	0	0	0	0	713
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	3433		1900			3539
		0	0	0	0	3039
Flt Permitted	0.950	0	0	0	0	2520
Satd. Flow (perm)	3433	0	0	0	0	3539
Right Turn on Red	Yes	Yes		Yes		
Satd. Flow (RTOR)	59					
Link Speed (mph)	30		35			35
Link Distance (ft)	149		327			152
Travel Time (s)	3.4		6.4			3.0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1472	0	0	0	0	792
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	24	i agrit	0	i agin	Lon	0
Link Offset(ft)	24		0			0
Crosswalk Width(ft)	16		16			16
	10		10			10
Two way Left Turn Lane	1.00	1.00	1.00	1.00	1 00	1 00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Turn Type	Prot					NA
Protected Phases	8					6
Permitted Phases						
Detector Phase	8					6
Switch Phase						
Minimum Initial (s)	7.0					10.0
Minimum Split (s)	15.0					22.0
Total Split (s)	36.0					24.0
Total Split (%)	60.0%					40.0%
Maximum Green (s)	30.0					18.0
Yellow Time (s)	4.0					4.0
All-Red Time (s)	2.0					2.0
	0.0					0.0
Lost Time Adjust (s)						
Total Lost Time (s)	6.0					6.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0					3.0
Recall Mode	Min					C-Max
Act Effct Green (s)	29.0					19.0
Actuated g/C Ratio	0.48					0.32
v/c Ratio	0.87					0.71
Control Delay	20.3					13.0
Queue Delay	0.0					0.5
Total Delay	20.3					13.5
LOS	C					B
Approach Delay	20.3					13.5
	20.3					10.0

Synchro 9 Report

	1	*	Ť	1	1	Ŧ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Approach LOS	С					В
Queue Length 50th (ft)	210					134
Queue Length 95th (ft)	#308					193
Internal Link Dist (ft)	69		247			72
Turn Bay Length (ft)						
Base Capacity (vph)	1746					1118
Starvation Cap Reductn	0					86
Spillback Cap Reductn	0					0
Storage Cap Reductn	0					0
Reduced v/c Ratio	0.84					0.77
Intersection Summary						
Area Type:	Other					
Cycle Length: 60						
Actuated Cycle Length: 60						
Offset: 16 (27%), Referenc	ed to phase	6:SBT, S	Start of G	reen		
Natural Cycle: 60						
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.87						
Intersection Signal Delay: 1	17.9			In	tersection	ILOS: B

Intersection Signal Delay: 17.9 Intersection Capacity Utilization 67.5%

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. # Queue shown is maximum after two cycles.

Splits and Phases: 21: Columbia Ave & I-26 WB Off Ramp

1		
🛡 🕈 Ø6 (R)	✓ Ø8	
24 s	36 s	

ICU Level of Service C

	•	•	Ť	1	1	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ሻሻ					††	
Traffic Volume (veh/h)	1325	0	0	0	0	713	
Future Volume (veh/h)	1325	0	0	0	0	713	
Number	3	18	U	0	1	6	
Initial Q (Qb), veh	0	0			0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00			1.00	0	
Parking Bus, Adj	1.00	1.00			1.00	1.00	
	1863	1.00			1.00	1863	
Adj Sat Flow, veh/h/ln							
Adj Flow Rate, veh/h	1472	0			0	792	
Adj No. of Lanes	2	0			0	2	
Peak Hour Factor	0.90	0.90			0.90	0.90	
Percent Heavy Veh, %	2	0			0	2	
Cap, veh/h	0	0			0	1062	
Arrive On Green	0.00	0.00			0.00	0.10	
Sat Flow, veh/h	0				0	3725	
Grp Volume(v), veh/h	0.0				0	792	
Grp Sat Flow(s), veh/h/ln					0	1770	
Q Serve(g_s), s					0.0	13.1	
Cycle Q Clear(g_c), s					0.0	13.1	
Prop In Lane					0.00		
Lane Grp Cap(c), veh/h					0	1062	
V/C Ratio(X)					0.00	0.75	
Avail Cap(c_a), veh/h					0.00	1062	
HCM Platoon Ratio					1.00	0.33	
Upstream Filter(I)					0.00	0.91	
Uniform Delay (d), s/veh					0.00	24.8	
					0.0	24.0 4.4	
Incr Delay (d2), s/veh							
Initial Q Delay(d3),s/veh					0.0	0.0	
%ile BackOfQ(50%),veh/In					0.0	7.0	
LnGrp Delay(d),s/veh					0.0	29.2	
LnGrp LOS						С	
Approach Vol, veh/h						792	
Approach Delay, s/veh						29.2	
Approach LOS						С	
Timer	1	2	3	4	5	6	7 8
Assigned Phs						6	
Phs Duration (G+Y+Rc), s						24.0	
Change Period (Y+Rc), s						6.0	
Max Green Setting (Gmax), s						18.0	
Max Q Clear Time (g_c+11) , s						15.1	
Green Ext Time (p_c), s						1.4	
• •						1.7	
Intersection Summary			20.2				
HCM 2010 Ctrl Delay			29.2				
HCM 2010 LOS			С				

Lanes, Volumes, Timings 22: Columbia Ave & I-26 WB Ramps

	<u> </u>		~	~	+	•	•	t	*	1	Ţ	
	רח	ГОТ) NDI			CDI		CDD
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	0		0	•	0	0	0	0	0	0		0
Traffic Volume (vph)	0	543	0	0	0	0	0	0	0	0	713	0
Future Volume (vph)	0	543	0	0	0	0	0	0	0	0	713	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	3539	0	0	0	0	0	0	0	0	3539	0
Flt Permitted												
Satd. Flow (perm)	0	3539	0	0	0	0	0	0	0	0	3539	0
Right Turn on Red			Yes			Yes			Yes	Yes		Yes
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		159			115			152			129	
Travel Time (s)		3.1			2.2			3.0			2.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	603	0	0	0	0	0	0	0	0	792	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0	5		0	5		0	J -		0	. J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9
Turn Type	15	NA	/	15		/	15		/	15	NA	,
Protected Phases		4									6	
Permitted Phases		4									0	
Detector Phase		4									6	
Switch Phase		4									0	
Minimum Initial (s)		10.0									10.0	
. ,		22.0									22.0	
Minimum Split (s)		22.0									33.0	
Total Split (s)											33.0 55.0%	
Total Split (%)		45.0%										
Maximum Green (s)		21.0									27.0	
Yellow Time (s)		4.0									4.0	
All-Red Time (s)		2.0									2.0	
Lost Time Adjust (s)		0.0									0.0	
Total Lost Time (s)		6.0									6.0	_
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0									3.0	
Recall Mode		None									C-Max	
Act Effct Green (s)		16.2									31.8	
Actuated g/C Ratio		0.27									0.53	
v/c Ratio		0.63									0.42	
Control Delay		5.8									10.2	
Queue Delay		0.0									0.8	
Total Delay		5.8									11.0	
LOS		А									В	
Approach Delay		5.8									11.0	

Synchro 9 Report

Lanes, Volumes, Timings 22: Columbia Ave & I-26 WB Ramps

	≯	+	*	4	ł	•	•	1	1	1	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		А									В	
Queue Length 50th (ft)		5									83	
Queue Length 95th (ft)		6									144	
Internal Link Dist (ft)		79			35			72			49	
Turn Bay Length (ft)												
Base Capacity (vph)		1238									1875	
Starvation Cap Reductn		0									0	
Spillback Cap Reductn		0									718	
Storage Cap Reductn		0									0	
Reduced v/c Ratio		0.49									0.68	
Intersection Summary												
51	Other											
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 4 (7%), Referenced to	o phase 6:	SBT, Sta	rt of Gree	en								
Natural Cycle: 45												
Control Type: Actuated-Coor	dinated											
Maximum v/c Ratio: 0.63												
Intersection Signal Delay: 8.8					tersection							
Intersection Capacity Utilizat	ion 44.7%			IC	CU Level	of Service	A					
Analysis Period (min) 15												

Splits and Phases: 22: Columbia Ave & I-26 WB Ramps

	→ Ø4	
	27 s	
Ø6 (R)		
33 s		

	۶	-	$\mathbf{\hat{z}}$	4	+	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- ††									- † †	
Traffic Volume (veh/h)	0	543	0	0	0	0	0	0	0	0	713	0
Future Volume (veh/h)	0	543	0	0	0	0	0	0	0	0	713	0
Number	7	4	14							1	6	16
Initial Q (Qb), veh	0	0	0							0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00							1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00							1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1863	0							0	1863	0
Adj Flow Rate, veh/h	0	603	0							0	792	0
Adj No. of Lanes	0	2	0							0	2	0
Peak Hour Factor	0.90	0.90	0.90							0.90	0.90	0.90
Percent Heavy Veh, %	0	2	0							0	2	0
Cap, veh/h	0	834	0							0	1593	0
Arrive On Green	0.00	0.24	0.00							0.00	0.45	0.00
Sat Flow, veh/h	0	3725	0							0	3725	0
Grp Volume(v), veh/h	0	603	0							0	792	0
Grp Sat Flow(s), veh/h/ln	0	1770	0							0	1770	0
Q Serve(g_s), s	0.0	9.4	0.0							0.0	9.5	0.0
Cycle Q Clear(g_c), s	0.0	9.4	0.0							0.0	9.5	0.0
Prop In Lane	0.00		0.00							0.00		0.00
Lane Grp Cap(c), veh/h	0	834	0							0	1593	0
V/C Ratio(X)	0.00	0.72	0.00							0.00	0.50	0.00
Avail Cap(c_a), veh/h	0	1239	0							0	1593	0
HCM Platoon Ratio	1.00	1.00	1.00							1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	0.00							0.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	21.1	0.0							0.0	11.7	0.0
Incr Delay (d2), s/veh	0.0	1.2	0.0							0.0	1.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0							0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	4.7	0.0							0.0	4.9	0.0
LnGrp Delay(d),s/veh	0.0	22.3	0.0							0.0	12.8	0.0
LnGrp LOS		С									В	
Approach Vol, veh/h		603									792	
Approach Delay, s/veh		22.3									12.8	
Approach LOS		С									В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs				4		6						
Phs Duration (G+Y+Rc), s				20.1		33.0						
Change Period (Y+Rc), s				6.0		6.0						
Max Green Setting (Gmax), s				21.0		27.0						
Max Q Clear Time (g_c+11), s				11.4		11.5						
Green Ext Time (p_c), s				2.7		4.8						
Intersection Summary												
			14.0									
HCM 2010 Ctrl Delay			16.9									
HCM 2010 LOS			В									

APPENDIX M

BUILD ALT 2 2040 SYNCHRO AND SIM TRAFFIC REPORTS

Lanes, Volumes, Timings 1: Columbia Ave & I-26 EB Ramps

-	≯	-	\mathbf{r}	4	+	×	•	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1					•	1	ሻ	† †	
Traffic Volume (vph)	29	9	185	0	0	0	0	498	1261	147	1461	0
Future Volume (vph)	29	9	185	0	0	0	0	498	1261	147	1461	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	225	1700	0	0	1700	0	0	1700	0	150	1700	0
Storage Lanes	1		1	0		0	0		1	130		0
Taper Length (ft)	100		•	100		U	100			100		U
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00
Frt	1.00	1.00	0.850	1.00	1.00	1.00	1.00	1.00	0.850	1.00	0.75	1.00
Flt Protected		0.963	0.050						0.000	0.950		
Satd. Flow (prot)	0	1794	1583	0	0	0	0	1863	1583	1770	3539	0
Flt Permitted	0	0.963	1303	0	U	0	0	1005	1303	0.432	3337	U
Satd. Flow (perm)	0	1794	1583	0	0	0	0	1863	1583	805	3539	0
Right Turn on Red	0	17.74	Yes	0	0	Yes	0	1005	Yes	005	3337	Yes
Satd. Flow (RTOR)			62			163			973			163
Link Speed (mph)		45	02		45			35	773		35	
Link Distance (ft)		881			239			1099			740	
Travel Time (s)		13.3			3.6			21.4			14.4	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	32	10	206	0.90	0.90	0.90	0.90	553	1401	163	1623	0.90
Shared Lane Traffic (%)	32	10	200	0	0	0	0	000	1401	105	1023	U
Lane Group Flow (vph)	0	42	206	0	0	0	0	553	1401	163	1623	0
Enter Blocked Intersection	No	4Z No	No	No	No	No	No	No	No	No	No	0 No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	LEII	0	Right	Leit	0	Nyn	LEII	12	Night	LEIL	12	Nyn
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			Yes			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9
Number of Detectors	13	2	1	15		7	IJ	2	1	13	2	7
Detector Template	Left	Thru	Right					Thru	Right	Left	Thru	
Leading Detector (ft)	20	100	20					100	20	20	100	
Trailing Detector (ft)	0	0	0					0	20	0	0	
Detector 1 Position(ft)	0	0	0					0	0	0	0	
Detector 1 Size(ft)	20	6	20					6	20	20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex					CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel	OFLX	OFLA	OHEX					OFLA	OTLA	OHEA	OTIEX	
Detector 1 Extend (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 2 Position(ft)	0.0	94	0.0					94	0.0	0.0	94	
Detector 2 Size(ft)		6						6			6	
Detector 2 Type		CI+Ex						CI+Ex			CI+Ex	
Detector 2 Channel		OFLA						OFLA			OULY	
Detector 2 Extend (s)		0.0						0.0			0.0	
Turn Type	Perm	NA	Perm					NA	Perm	Perm	NA	
Protected Phases	i chin	4	i cilli					2	i cilli	i cilli	6	
Permitted Phases	4	4	4					2	2	6	0	
	4		4						۷	U		

Synchro 9 Report

Lanes, Volumes, Timings 1: Columbia Ave & I-26 EB Ramps

	≯	+	*	4	Ļ	•	<	1	1	*	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4	4					2	2	6	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0					10.0	10.0	10.0	10.0	
Minimum Split (s)	15.0	15.0	15.0					22.0	22.0	22.0	22.0	
Total Split (s)	16.0	16.0	16.0					74.0	74.0	74.0	74.0	
Total Split (%)	17.8%	17.8%	17.8%					82.2%	82.2%	82.2%	82.2%	
Maximum Green (s)	10.0	10.0	10.0					68.0	68.0	68.0	68.0	
Yellow Time (s)	4.0	4.0	4.0					4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0					2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0	0.0					0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.0	6.0					6.0	6.0	6.0	6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0					3.0	3.0	3.0	3.0	
Recall Mode	None	None	None					C-Min	C-Min	C-Min	C-Min	
Act Effct Green (s)		9.9	9.9					68.1	68.1	68.1	68.1	
Actuated g/C Ratio		0.11	0.11					0.76	0.76	0.76	0.76	
v/c Ratio		0.21	0.90					0.39	0.98	0.27	0.61	
Control Delay		39.4	67.3					2.0	25.5	4.6	6.1	
Queue Delay		0.0	0.0					0.0	0.0	0.0	0.0	
Total Delay		39.4	67.3					2.0	25.5	4.6	6.1	
LOS		D	E					А	С	А	А	
Approach Delay		62.6						18.8			6.0	
Approach LOS		E						В			А	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 21 (23%), Reference	ced to phase	e 2:NBT a	nd 6:SBT	L, Start o	f Green							
Natural Cycle: 90												
Control Type: Actuated-Co	pordinated											
Maximum v/c Ratio: 0.98												
Intersection Signal Delay:					tersectior		_					
Intersection Capacity Utiliz	zation 107.2	%		IC	CU Level o	of Service	G					
Analysis Period (min) 15												

Splits and Phases: 1: Columbia Ave & I-26 EB Ramps

Ø2 (R)	4 ₀₄	
74 s	16 s	
▼ Ø6 (R)		
74 s		

	≯	-	$\mathbf{\hat{z}}$	∢	+	×	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	1					↑	1	<u>۲</u>	- ††	
Traffic Volume (veh/h)	29	9	185	0	0	0	0	498	1261	147	1461	0
Future Volume (veh/h)	29	9	185	0	0	0	0	498	1261	147	1461	0
Number	7	4	14				5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1863				0	1863	1863	1863	1863	0
Adj Flow Rate, veh/h	32	10	0				0	553	0	163	1623	0
Adj No. of Lanes	0	1	1				0	1	1	1	2	0
Peak Hour Factor	0.90	0.90	0.90				0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	69	22	80				0	1520	1292	709	2888	0
Arrive On Green	0.05	0.05	0.00				0.00	0.82	0.00	0.82	0.82	0.00
Sat Flow, veh/h	1367	427	1583				0	1863	1583	852	3632	0.00
Grp Volume(v), veh/h	42	0	0				0	553	0	163	1623	0
Grp Sat Flow(s), veh/h/ln	1794	0	1583				0	1863	1583	852	1770	0
Q Serve(q_s), s	2.0	0.0	0.0				0.0	7.0	0.0	5.6	14.0	0.0
Cycle Q Clear(g_c), s	2.0	0.0	0.0				0.0	7.0	0.0	12.6	14.0	0.0
Prop In Lane	0.76	0.0	1.00				0.00	7.0	1.00	1.00	14.0	0.00
Lane Grp Cap(c), veh/h	91	0	80				0.00	1520	1292	709	2888	0.00
V/C Ratio(X)	0.46	0.00	0.00				0.00	0.36	0.00	0.23	0.56	0.00
Avail Cap(c_a), veh/h	199	0.00	176				0.00	1520	1292	709	2888	0.00
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00				0.00	0.69	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	41.5	0.00	0.00				0.00	2.2	0.00	3.8	2.8	0.00
Incr Delay (d2), s/veh	3.6	0.0	0.0				0.0	0.5	0.0	0.8	2.0 0.8	0.0
	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh												
%ile BackOfQ(50%),veh/ln	1.1	0.0	0.0				0.0	3.7	0.0	1.4	6.9	0.0
LnGrp Delay(d),s/veh	45.2	0.0	0.0				0.0	2.6	0.0	4.6	3.6	0.0
LnGrp LOS	D	10						A		A	A	
Approach Vol, veh/h		42						553			1786	
Approach Delay, s/veh		45.2						2.6			3.7	
Approach LOS		D						А			А	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6						
Phs Duration (G+Y+Rc), s		79.4		10.6		79.4						
Change Period (Y+Rc), s		6.0		6.0		6.0						
Max Green Setting (Gmax), s		68.0		10.0		68.0						
Max Q Clear Time (g_c+I1), s		9.0		4.0		16.0						
Green Ext Time (p_c), s		33.2		0.0		30.9						
Intersection Summary												
HCM 2010 Ctrl Delay			4.2									
HCM 2010 LOS			А									

2.5

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			1		4		ሻ	↑			↑	1
Traffic Vol, veh/h	0	0	1026	0	3	159	125	402	0	0	582	56
Future Vol, veh/h	0	0	1026	0	3	159	125	402	0	0	582	56
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Yield	Yield	Yield	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Free	-	-	None	-	-	None	-	-	None
Storage Length	-	-	0	-	-	-	175	-	-	-	-	150
Veh in Median Storage, #	-	-	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	1140	0	3	177	139	447	0	0	647	62

Major/Minor			Ν	/linor1			Major1			Major2		
Conflicting Flow All				-	1371	447	647	0	-	-	-	0
Stage 1				-	724	-	-	-	-	-	-	-
Stage 2				-	647	-	-	-	-	-	-	-
Critical Hdwy				-	6.52	6.22	4.12	-	-	-	-	-
Critical Hdwy Stg 1				-	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2				-	5.52	-	-	-	-	-	-	-
Follow-up Hdwy				-	4.018	3.318	2.218	-	-	-	-	-
Pot Cap-1 Maneuver				0	146	612	939	-	0	0	-	-
Stage 1				0	430	-	-	-	0	0	-	-
Stage 2				0	467	-	-	-	0	0	-	-
Platoon blocked, %								-			-	-
Mov Cap-1 Maneuver				-	0	612	939	-	-	-	-	-
Mov Cap-2 Maneuver				-	0	-	-	-	-	-	-	-
Stage 1				-	0	-	-	-	-	-	-	-
Stage 2				-	0	-	-	-	-	-	-	-
Approach				WB			NB			SB		
HCM Control Delay, s				13.3			2.3			0		
HCM LOS				В								
Minor Lane/Major Mymt	NBL	NRTWRI n1	SBT	SBR								

Minor Lane/Major Mvmt	NBL	NBTWBLn1	SBT	SBR	
Capacity (veh/h)	939	- 612	-	-	
HCM Lane V/C Ratio	0.148	- 0.294	-	-	
HCM Control Delay (s)	9.5	- 13.3	-	-	
HCM Lane LOS	А	- B	-	-	
HCM 95th %tile Q(veh)	0.5	- 1.2	-	-	

Summary of All Intervals

		0	0	•	
Run Number	1	2	3	Avg	
Start Time	7:20	7:20	7:20	7:20	
End Time	8:30	8:30	8:30	8:30	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	7126	7166	7170	7153	
Vehs Exited	7053	7137	7105	7097	
Starting Vehs	206	249	253	232	
Ending Vehs	279	278	318	289	
Travel Distance (mi)	7952	8033	8009	7998	
Travel Time (hr)	264.0	268.1	284.3	272.1	
Total Delay (hr)	110.8	114.2	130.7	118.5	
Total Stops	5500	5470	6120	5699	
Fuel Used (gal)	308.2	311.4	313.6	311.1	

Interval #0 Information Seeding

Start Time	7:20		
End Time	7:30		
Total Time (min)	10		
Volumes adjusted by Gro	wth Factors.		
No data recorded this inte	erval.		

Interval #1 Information Recording

Start Time	7:30	
End Time	8:30	
Total Time (min)	60	
Volumes adjusted by Gro	wth Factors.	

Run Number	1	2	3	Avg	
Vehs Entered	7126	7166	7170	7153	
Vehs Exited	7053	7137	7105	7097	
Starting Vehs	206	249	253	232	
Ending Vehs	279	278	318	289	
Travel Distance (mi)	7952	8033	8009	7998	
Travel Time (hr)	264.0	268.1	284.3	272.1	
Total Delay (hr)	110.8	114.2	130.7	118.5	
Total Stops	5500	5470	6120	5699	
Fuel Used (gal)	308.2	311.4	313.6	311.1	

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	EB	EB	NB	NB	SB	SB	SB
Directions Served	LT	R	Т	R	L	Т	Т
Maximum Queue (ft)	105	94	404	738	93	126	158
Average Queue (ft)	30	4	44	82	36	49	54
95th Queue (ft)	74	43	180	456	69	117	127
Link Distance (ft)		761	1032	1032		690	690
Upstream Blk Time (%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)	225				150		
Storage Blk Time (%)						0	
Queuing Penalty (veh)						0	

Intersection: 2: Columbia Ave & I-26 WB Ramps

Movement	WB	NB
Directions Served	TR	L
Maximum Queue (ft)	74	72
Average Queue (ft)	35	30
95th Queue (ft)	56	59
Link Distance (ft)	543	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		175
Storage Blk Time (%)		
Queuing Penalty (veh)		

Lanes, Volumes, Timings 1: Columbia Ave & I-26 EB Ramps

	*		~	~	+	•	4	*	•	Υ.	I	7
		-	•	•				I	1	*	÷	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		୍ କ	1					↑	1	- ሽ	- ††	
Traffic Volume (vph)	48	9	173	0	0	0	0	723	1096	257	1781	0
Future Volume (vph)	48	9	173	0	0	0	0	723	1096	257	1781	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	225		0	0		0	0		0	150		0
Storage Lanes	1		1	0		0	0		1	1		0
Taper Length (ft)	100			100			100			100		
Satd. Flow (prot)	0	1788	1583	0	0	0	0	1863	1583	1770	3539	0
FIt Permitted		0.960								0.291		
Satd. Flow (perm)	0	1788	1583	0	0	0	0	1863	1583	542	3539	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			36						992			
Link Speed (mph)		45			45			35			35	
Link Distance (ft)		881			239			1090			740	
Travel Time (s)		13.3			3.6			21.2			14.4	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	63	192	0	0	0	0	803	1218	286	1979	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			12	-		12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane								Yes				
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA	Perm					NA	Perm	Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4		4						2	6		
Detector Phase	4	4	4					2	2	6	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0					10.0	10.0	10.0	10.0	
Minimum Split (s)	15.0	15.0	15.0					22.0	22.0	22.0	22.0	
Total Split (s)	18.0	18.0	18.0					72.0	72.0	72.0	72.0	
Total Split (%)	20.0%	20.0%	20.0%					80.0%	80.0%	80.0%	80.0%	
Maximum Green (s)	12.0	12.0	12.0					66.0	66.0	66.0	66.0	
Yellow Time (s)	4.0	4.0	4.0					4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0					2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0	0.0					0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.0	6.0					6.0	6.0	6.0	6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0					3.0	3.0	3.0	3.0	
Recall Mode	None	None	None					C-Min	C-Min	C-Min	C-Min	
Act Effct Green (s)		11.6	11.6					66.4	66.4	66.4	66.4	
Actuated g/C Ratio		0.13	0.13					0.74	0.74	0.74	0.74	
v/c Ratio		0.27	0.82					0.58	0.85	0.72	0.76	
Control Delay		38.5	58.4					5.9	12.5	19.6	9.6	
Queue Delay		0.0	0.0					0.0	0.0	0.0	0.0	

S-48 IMR AECOM Synchro 9 Report

Lanes, Volumes, Timings <u>1: Columbia Ave & I-26 EB Ramps</u>

	≯	→	\mathbf{F}	•	-	۰.	1	1	1	5	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay		38.5	58.4					5.9	12.5	19.6	9.6	
LOS		D	E					А	В	В	А	
Approach Delay		53.5						9.9			10.8	
Approach LOS		D						А			В	
Queue Length 50th (ft)		33	87					117	215	76	295	
Queue Length 95th (ft)		71	#198					200	387	#260	381	
Internal Link Dist (ft)		801			159			1010			660	
Turn Bay Length (ft)										150		
Base Capacity (vph)		241	245					1378	1429	400	2618	
Starvation Cap Reductn		0	0					0	0	0	0	
Spillback Cap Reductn		0	0					0	0	0	0	
Storage Cap Reductn		0	0					0	0	0	0	
Reduced v/c Ratio		0.26	0.78					0.58	0.85	0.71	0.76	
Intersection Summary												
J J J	Other											
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 83 (92%), Referenced	d to phase 2	2:NBT a	nd 6:SBT	L, Start o	of Green							
Natural Cycle: 65												
Control Type: Actuated-Coor	dinated											
Maximum v/c Ratio: 0.85												
Intersection Signal Delay: 12					ntersectior		-					
Intersection Capacity Utilizat	ion 102.9%			IC	CU Level o	of Service	G					
Analysis Period (min) 15												_
# 95th percentile volume e		2 1	leue may	be longe	er.							
Queue shown is maximur	n atter two	cycles.										

Splits and Phases: 1: Columbia Ave & I-26 EB Ramps

, 1	Ø2 (R)		
72 s		18 s	
4	Ø6 (R)		
72 s			

	≯	-	\mathbf{F}	4	+	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		स ्	1					↑	1		- ††	
Traffic Volume (veh/h)	48	9	173	0	0	0	0	723	1096	257	1781	0
Future Volume (veh/h)	48	9	173	0	0	0	0	723	1096	257	1781	0
Number	7	4	14				5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1863				0	1863	1863	1863	1863	0
Adj Flow Rate, veh/h	53	10	0				0	803	0	286	1979	0
Adj No. of Lanes	0	1	1				0	1	1	1	2	0
Peak Hour Factor	0.90	0.90	0.90				0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	93	18	98				0	1499	1275	623	2849	0
Arrive On Green	0.06	0.06	0.00				0.00	1.00	0.00	0.80	0.80	0.00
Sat Flow, veh/h	1504	284	1583				0	1863	1583	675	3632	0
Grp Volume(v), veh/h	63	0	0				0	803	0	286	1979	0
Grp Sat Flow(s), veh/h/ln	1788	0	1583				0	1863	1583	675	1770	0
Q Serve(q_s), s	3.1	0.0	0.0				0.0	0.0	0.0	12.9	22.3	0.0
Cycle Q Clear(g_c), s	3.1	0.0	0.0				0.0	0.0	0.0	12.9	22.3	0.0
Prop In Lane	0.84		1.00				0.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	110	0	98				0	1499	1275	623	2849	0
V/C Ratio(X)	0.57	0.00	0.00				0.00	0.54	0.00	0.46	0.69	0.00
Avail Cap(c_a), veh/h	238	0	211				0	1499	1275	623	2849	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.33	1.33	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00				0.00	0.56	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	41.1	0.0	0.0				0.0	0.0	0.0	3.0	3.9	0.0
Incr Delay (d2), s/veh	4.6	0.0	0.0				0.0	0.8	0.0	2.4	1.4	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.7	0.0	0.0				0.0	0.3	0.0	2.7	11.0	0.0
LnGrp Delay(d),s/veh	45.7	0.0	0.0				0.0	0.8	0.0	5.4	5.3	0.0
LnGrp LOS	D							A		А	A	
Approach Vol, veh/h		63						803			2265	
Approach Delay, s/veh		45.7						0.8			5.3	
Approach LOS		D						A			A	
	1		2	4	-		7				7.	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6 70 4						
Phs Duration (G+Y+Rc), s		78.4		11.6		78.4						
Change Period (Y+Rc), s		6.0		6.0		6.0						
Max Green Setting (Gmax), s		66.0		12.0		66.0						_
Max Q Clear Time (g_c+I1), s		2.0		5.1		24.3						
Green Ext Time (p_c), s		51.7		0.1		36.1						
Intersection Summary												
HCM 2010 Ctrl Delay			5.0									
HCM 2010 LOS			А									

4.4

Intersection

Int Delay, s/veh

EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	1		4		ሻ	•			↑	1
0	1325	0	3	248	228	543	0	0	713	36
0	1325	0	3	248	228	543	0	0	713	36
0	0	0	0	0	0	0	0	0	0	0
Yield	Yield	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
-	Free	-	-	None	-	-	None	-	-	None
-	0	-	-	-	175	-	-	-	-	150
-	-	-	0	-	-	0	-	-	0	-
0	-	-	0	-	-	0	-	-	0	-
90	90	90	90	90	90	90	90	90	90	90
2	2	2	2	2	2	2	2	2	2	2
0	1472	0	3	276	253	603	0	0	792	40
) 	0 0 0 0 1 Yield - 0 90 2 2	0 0 1325 0 0 1325 0 0 0 1 Yield Yield - - Free - - 0 - - - 0 90 - 2 2 2	Image: constraint of the system Image: constraint of the system 0 0 1325 0 0 0 1325 0 0 0 0 0 1 Yield Yield Stop - - - - - 0 - - 0 - - - 0 - - - 0 - - - 0 - - - 0 90 90 90 2 2 2 2	Image: constraint of the state of	Image: constraint of the system Image: constraint of the system 0 1325 0 3 248 0 1325 0 3 248 0 1325 0 3 248 0 0 0 0 0 0 Yield Yield Stop Stop Stop - - - None - - 0 - - - - 0 - 0 - - 0 - 0 - - 0 - 0 - - 0 - 0 - - 0 - 0 - - 0 - 0 - - 0 90 90 90 90 90 90 90 90 2 2 2 2 2	Image: constraint of the state of	Image: constraint of the second sec	Image: constraint of the state of	Image: Constraint of the state of	Image: Non-State Image: Non-State<

Major/Minor			Ν	/linor1			Major1			Major2		
Conflicting Flow All				-	1902	603	792	0	-	-	-	0
Stage 1				-	1110	-	-	-	-	-	-	-
Stage 2				-	792	-	-	-	-	-	-	-
Critical Hdwy				-	6.52	6.22	4.12	-	-	-	-	-
Critical Hdwy Stg 1				-	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2				-	5.52	-	-	-	-	-	-	-
Follow-up Hdwy				-	4.018		2.218	-	-	-	-	-
Pot Cap-1 Maneuver				0	69	499	829	-	0	0	-	-
Stage 1				0	285	-	-	-	0	0	-	-
Stage 2				0	401	-	-	-	0	0	-	-
Platoon blocked, %								-			-	-
Mov Cap-1 Maneuver				-	0	499	829	-	-	-	-	-
Mov Cap-2 Maneuver				-	0	-	-	-	-	-	-	-
Stage 1				-	0	-	-	-	-	-	-	-
Stage 2				-	0	-	-	-	-	-	-	-
Approach				WB			NB			SB		
HCM Control Delay, s				21			3.3			0		
HCM LOS				С								
Minor Lane/Major Mvmt	NBL	NBTWBLn1	SBT	SBR								

Capacity (veh/h)	829	- 499	-	-
HCM Lane V/C Ratio	0.306	- 0.559	-	-
HCM Control Delay (s)	11.2	- 21	-	-
HCM Lane LOS	В	- C	-	-
HCM 95th %tile Q(veh)	1.3	- 3.4	-	-

Summary of All Intervals

Dure Mureleer	1	2	2	A	
Run Number		2	3	Avg	
Start Time	4:35	4:35	4:35	4:35	
End Time	5:45	5:45	5:45	5:45	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	7947	7934	7944	7939	
Vehs Exited	7774	7802	7793	7790	
Starting Vehs	293	297	322	301	
Ending Vehs	466	429	473	455	
Travel Distance (mi)	8876	8865	8887	8876	
Travel Time (hr)	714.6	740.6	789.1	748.1	
Total Delay (hr)	545.6	571.2	620.8	579.2	
Total Stops	7925	7708	9099	8242	
Fuel Used (gal)	444.8	453.7	461.6	453.4	

Interval #0 Information Seeding

Start Time	4:35
End Time	4:45
Total Time (min)	10
Volumes adjusted by Grov	wth Factors.
No data recorded this inte	erval.

Interval #1 Information Recording

Start Time	4:45
End Time	5:45
Total Time (min)	60
Volumes adjusted by Gro	wth Factors.

Run Number	1	2	3	Avg	
Vehs Entered	7947	7934	7944	7939	
Vehs Exited	7774	7802	7793	7790	
Starting Vehs	293	297	322	301	
Ending Vehs	466	429	473	455	
Travel Distance (mi)	8876	8865	8887	8876	
Travel Time (hr)	714.6	740.6	789.1	748.1	
Total Delay (hr)	545.6	571.2	620.8	579.2	
Total Stops	7925	7708	9099	8242	
Fuel Used (gal)	444.8	453.7	461.6	453.4	

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	EB	EB	NB	NB	SB	SB	SB
Directions Served	LT	R	Т	R	L	Т	Т
Maximum Queue (ft)	103	80	629	606	160	171	160
Average Queue (ft)	45	7	189	173	70	70	71
95th Queue (ft)	94	43	669	758	124	155	151
Link Distance (ft)		762	1024	1024		690	690
Upstream Blk Time (%)			0	2			
Queuing Penalty (veh)			4	16			
Storage Bay Dist (ft)	225				150		
Storage Blk Time (%)					0	0	
Queuing Penalty (veh)					3	1	

Intersection: 3: Columbia Ave & I-26 WB Ramps

Movement	WB	NB	SB
Directions Served	TR	L	R
Maximum Queue (ft)	96	137	7
Average Queue (ft)	46	56	0
95th Queue (ft)	76	102	4
Link Distance (ft)	543		
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		175	150
Storage Blk Time (%)		0	
Queuing Penalty (veh)		1	

Phone: Fax: E-mail: _____Diverge Analysis______ AECOM Analyst: Agency/Co.: AECOM Agency/col.AnconDate performed:7/1/2016Analysis time period:AM Peak 7/1/2016 Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Alt 2 Jurisdiction: Analysis Year: 2040 Build Alt 2 Ramp Description: S-48 IMR _____Freeway Data_____ Type of analysis Diverge Number of lanes in freeway 2. Free-flow speed on freeway 75.0 mph Volume on freeway 1713 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 162 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes 1026 Volume on adjacent ramp vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1000 ft _____Conversion to pc/h Under Base Conditions______ Freeway Junction Components Ramp Adjacent Ramp 162 Volume, V (vph) 1713 1026 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 476 45 285 v Trucks and buses 4 2 2 8 ____0 0 Recreational vehicles 0 % Rolling Rolling Rolling Terrain type: 0.00 % 0.00 % 0.00 Grade 8 0.00 mi 0.00 mi 0.00 Length mi Trucks and buses PCE, ET 2.5 2.5 2.5 2.0 Recreational vehicle PCE, ER 2.0 2.0

Heavy vehicle adj Driver population Flow rate, vp				0.971 1.00 1174	pcph
	Estimation	n of V12 Diver	ge Areas		
	L = EQ	(Equation 13-1	2 or 13-13)	
	P = 1.000 T FD	Using Equation	n 0		
	v = v + (v - v) $12 R F I$		pc/h		
	Capa	acity Checks			
v = v Fi F	Actual 2018	Maximum 4800	ı L N	OS F? O	
$ \begin{array}{cccc} FI & F \\ V &= V - V \\ FO & F & R \end{array} $	1833	4800	N	o	
v R	185	2100	N	o	
v or v 3 av34	0 pc.	/h (Equati	on 13-14 o	r 13-17)	
Is v or v	> 2700 pc/h?	No			
3 av34 Is v or v 3 av34		No			
If yes, v = 20 12A		(Equation	13-15, 13-	16, 13-18,	or 13-19)
		g Diverge Infl			
v	Actual 2018	Max Desirabl 4400		Violation? No	
12	Level of Service 1	Determination	(if not F)		
Density,		0.0086 v - 0		= 10.6	pc/mi/ln
Level of service	R for ramp-freeway	12 junction areas	D s of influe	nce B	
	Speed	Estimation			
Intermediate spee	d variable,		= 0.315		
Space mean speed	in ramp influence		= 64.6	mph	
Space mean speed	in outer lanes,		= N/A	mph	
Space mean speed	for all vehicles,	0 S	= 64.6	mph	

Phone: Fax: E-mail: _____Diverge Analysis______ AECOM Analyst: Agency/Co.: AECOM Agency/col.AnconDate performed:7/1/2016Analysis time period:AM Peak 7/1/2016 Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Alt 2 Loop Jurisdiction: Analysis Year: 2040 Build Alt 2 Loop Description: S-48 IMR _____Freeway Data_____ Type of analysis Diverge Number of lanes in freeway 2. Free-flow speed on freeway 75.0 mph Volume on freeway 2256 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 1026 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 184 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 550 ft _____Conversion to pc/h Under Base Conditions______ Freeway Junction Components Ramp Adjacent Ramp Volume, V (vph) 2256 1026 184 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 627 285 51 v 2 0 Trucks and buses 4 2 8 0 Recreational vehicles 0 % Rolling Rolling Rolling Terrain type: 0.00 % 0.00 % 0.00 Grade 8 0.00 mi 0.00 mi 0.00 Length mi Trucks and buses PCE, ET 2.5 2.5 2.5 2.0 Recreational vehicle PCE, ER 2.0 2.0

Heavy vehicle adjustme Driver population fact Flow rate, vp				0.971 1.00 211	pcph			
	Estimation	of V12 Diverg	e Areas					
L = E0	(1	Equation 13-12	or 13-13)				
~	1.000 Us	sing Equation	0					
	v + (v - v) R F R		pc/h					
	Capac	city Checks						
v = v Fi F	Actual 2657	Maximum 4800		OS F? O				
v = v - v FO F R	1483	4800	N	ō				
v	1174	2100	N	ō				
v or v	0 pc/h	n (Equatio	on 13-14 o	r 13-17)				
Is v or v > 27	00 pc/h?	No						
Is v or v > 1.		No						
3 av34 If yes, v = 2657 12A	12	(Equation 1	.3-15, 13-	16, 13-18,	or 13-19)			
v								
	of Service De	etermination (if not F)					
Density,				= 16.1	pc/mi/ln			
Level of service for r			_	nce B				
	Speed H	Istimation						
3 av34 Is v or v > 2700 pc/h? No 3 av34 Is v or v > 1.5 v /2 No 3 av34 12 If yes, v = 2657 (Equation 13-15, 13-16, 13-18, or 13-19) 12A Flow Entering Diverge Influence Area Actual Max Desirable Violation? v 2657 4400 No 12 Level of Service Determination (if not F)								
Space mean speed in ra	mp influence a	area, S =	61.7	mph				
Space mean speed in ou	ter lanes,		N/A	mph				
Space mean speed for a	ll vehicles,	0 S =	61.7	mph				

Phone: Fax: E-mail: _____Diverge Analysis______ AECOM Analyst: Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Alt 2 Jurisdiction: Analysis Year: 2040 Build Alt 2 Ramp Description: S-48 IMR _____Freeway Data_____ Type of analysis Diverge Number of lanes in freeway 2. Free-flow speed on freeway 75.0 mph Volume on freeway 1325 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 247 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes 1026 Volume on adjacent ramp vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1000 ft _____Conversion to pc/h Under Base Conditions______ Freeway Junction Components Ramp Adjacent Ramp Volume, V (vph) 247 1325 1026 vph 0.90 Peak-hour factor, PHF 0.90 0.90 Peak 15-min volume, v15 368 69 285 v Trucks and buses 4 2 2 8 0 0 Recreational vehicles 0 % Rolling Rolling Rolling Terrain type: 0.00 % 0.00 % 0.00 Grade 8 0.00 mi 0.00 mi 0.00 Length mi Trucks and buses PCE, ET 2.5 2.5 2.5 2.0 Recreational vehicle PCE, ER 2.0 2.0

Heavy vehicle adjustme Driver population fact Flow rate, vp				0.971 1.00 1174	pcph
	Estimation	of V12 Diverg	e Areas		
L = EO	(E	Equation 13-12	or 13-13)	
~	1.000 Us	ing Equation	0		
	v + (v - v) R F R		pc/h		
	Capac	ity Checks			
v = v Fi F	Actual 1561	Maximum 4800	L(No	DS F? D	
FIF V = V - V FOF R	1278	4800	No	c	
v R	283	2100	No	C	
v or v 3 av34	0 pc/h	n (Equatio	n 13-14 or	r 13-17)	
Is v or v > 27 3 av34	00 pc/h?	No			
Is v or v > 1. 3 av34	5 v /2	No			
If yes, v = 1561 12A		(Equation 1	3-15, 13-3	16, 13-18,	or 13-19)
	Flow Entering				
V	Actual 1561	Max Desirable 4400		Violation? No	
12 Level	of Service De	etermination (if not F) <u></u>		
Density,	D = 4.252 + C	0.0086 v - 0. 12	009 L : D	= 6.7	pc/mi/ln
Level of service for r			_	nce A	
	Speed E	Stimation			
Intermediate speed var	iable,	D = S	0.323		
Space mean speed in ra	mp influence a		64.3 r	nph	
Space mean speed in ou	ter lanes,		N/A t	mph	
Space mean speed for a	ll vehicles,	-	64.3 r	nph	

Phone: Fax: E-mail: _____Diverge Analysis______ AECOM Analyst: Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Alt 2 Loop Jurisdiction: Analysis Year: 2040 Build Alt 2 Loop Description: S-48 IMR _____Freeway Data_____ Type of analysis Diverge Number of lanes in freeway 2. Free-flow speed on freeway 75.0 mph Volume on freeway 3216 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 45.0 mph Volume on ramp 1325 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 267 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 550 ft _____Conversion to pc/h Under Base Conditions______ Freeway Junction Components Ramp Adjacent Ramp Volume, V (vph) 1325 3216 267 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 893 368 74 v Trucks and buses 4 2 2 8 0 0 Recreational vehicles 0 % Rolling Rolling Rolling Terrain type: 0.00 % 0.00 % 0.00 Grade 8 0.00 mi 0.00 mi 0.00 Length mi Trucks and buses PCE, ET 2.5 2.5 2.5 2.0 Recreational vehicle PCE, ER 2.0 2.0

	ustment, fHV 1 factor, fP		1.00	0.971 1.00 306	pcph
	Estimatio	n of V12 Dive	rge Areas		
	L = EQ	(Equation 13-	12 or 13-13)	
	P = 1.000 FD	Using Equatio	n 0		
	v = v + (v - v 12 R F		pc/h		
	Сар	acity Checks_			
v = v Fi F		Maximu 4800		OS F? O	
v = v - v FO F R	2272	4800	Ν	ō	
v R	1516	2100	Ν	ō	
v or v 3 av34		/h (Equat	ion 13-14 o	r 13-17)	
	> 2700 pc/h?	No			
	> 1.5 v /2	No			
If yes, v = 37 12A		(Equation	13-15, 13-	16, 13-18,	or 13-19)
		g Diverge Inf			
v 12	Actual 3788	Max Desirab 4400		Violation? No	
	Level of Service	Determination	(if not F)		
Density,		0.0086 v -		= 25.8	pc/mi/ln
Level of service	R for ramp-freeway	12 junction area	D s of influe	nce C	
	Speed	Estimation			
Intermediate spee	d variable,		= 0.434		
Space mean speed	in ramp influence		= 60.7	mph	
Space mean speed	in outer lanes,	R S 0	= N/A	mph	
Space mean speed	for all vehicles,	-		mph	

APPENDIX N

BUILD ALT 3 2020 AND 2040 SIDRA REPORTS

SITE LAYOUT

V Site: I-26 WB Ramps 2020 AM - Alt 3

I-26 WB Ramps 2020 AM Roundabout

SIDRA INTERSECTION 6

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes

V Site: I-26 WB Ramps 2020 AM - Alt 3

I-26 WB Ramps 2020 AM Roundabout

Volume Display Method: Total and %

Volumes are shown for Movement Class(es): All Classes and Heavy Vehicles

Total Intersection Volumes (veh)

All Movement Classes: 1891

Light Vehicles (LV): 1853

Heavy Vehicles (HV): 38

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

SIDRA INTERSECTION 6

MOVEMENT SUMMARY

₩ Site: I-26 WB Ramps 2020 AM - Alt 3

I-26 WB Ramps 2020 AM Roundabout

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	South: Columbia Ave								mpri		
3	L2	98	2.0	0.451	8.2	LOS A	0.0	0.0	0.00	0.00	26.0
8	T1	402	2.0	0.451	8.2	LOS A	0.0	0.0	0.00	0.00	25.5
Approa	ach	500	2.0	0.451	8.2	LOS A	0.0	0.0	0.00	0.00	25.6
East: I	-26 WB Off I	Ramp									
1	L2	751	2.0	0.695	20.3	LOS C	5.1	128.5	0.79	0.95	20.6
6	T1	1	2.0	0.695	20.3	LOS C	5.1	128.5	0.79	0.95	20.4
16	R2	173	2.0	0.695	20.3	LOS C	5.1	128.5	0.79	0.95	19.9
Approa	ach	925	2.0	0.695	20.3	LOS C	5.1	128.5	0.79	0.95	20.4
North:	Columbia Av	ve									
4	T1	575	2.0	0.533	15.5	LOS C	2.2	55.3	0.65	0.73	22.0
14	R2	55	2.0	0.533	15.2	LOS C	2.1	53.3	0.64	0.72	21.5
Approa	ach	630	2.0	0.533	15.5	LOS C	2.2	55.3	0.65	0.73	22.0
All Veh	icles	2055	2.0	0.695	15.9	LOS C	5.1	128.5	0.55	0.65	22.0

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Monday, November 28, 2016 3:04:08 PM SIDRA INTERSECTION 6.0.24.4877 Project: Z:\IMR\Sidra\l-26 at Columbia Avenue IMR Final.sip6 8003941, 6023379, AECOM, PLUS / 1PC

SITE LAYOUT Site: I-26 EB Ramps 2020 AM - Alt 3

I-26 EB Ramps 2020 AM Roundabout

Created: Monday, November 28, 2016 3:15:58 PM SIDRA INTERSECTION 6.0.24.4877 ww Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6 8003941, 6023379, AECOM, PLUS / 1PC

Copyright $\textcircled{\sc c}$ 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes

V Site: I-26 EB Ramps 2020 AM - Alt 3

I-26 EB Ramps 2020 AM Roundabout

Volume Display Method: Total and %

Volumes are shown for Movement Class(es): All Classes and Heavy Vehicles

Total Intersection Volumes (veh)

All Movement Classes: 2768

Light Vehicles (LV): 2713

Heavy Vehicles (HV): 55

MOVEMENT SUMMARY

₩ Site: I-26 EB Ramps 2020 AM - Alt 3

I-26 EB Ramps 2020 AM Roundabout

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Columbia A		/0	0,0	000		VOIT				прп
8	T1	471	2.0	0.243	0.0	LOS A	0.0	0.0	0.00	0.00	25.8
18	R2	1033	2.0	0.629	0.2	LOS A	0.0	0.0	0.00	0.00	25.0
Approa	ach	1503	2.0	0.629	0.1	NA	0.0	0.0	0.00	0.00	25.2
North:	Columbia Av	ve									
7	L2	155	2.0	0.598	11.0	LOS B	0.0	0.0	0.00	0.00	25.9
4	T1	1171	2.0	0.598	11.0	LOS B	0.0	0.0	0.00	0.00	25.7
Approa	ach	1326	2.0	0.598	11.0	LOS B	0.0	0.0	0.00	0.00	25.7
West:	I-26 EB Off I	Ramp									
5	L2	29	2.0	0.071	9.4	LOS A	0.2	4.4	0.63	0.63	22.6
2	T1	1	2.0	0.071	9.4	LOS A	0.2	4.4	0.63	0.63	22.3
12	R2	149	2.0	0.310	12.4	LOS B	0.9	22.8	0.65	0.68	22.0
Approa	ach	179	2.0	0.310	11.9	LOS B	0.9	22.8	0.65	0.67	22.1
All Ver	icles	3009	2.0	0.629	5.6	LOS A	0.9	22.8	0.04	0.04	25.2

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Monday, November 28, 2016 3:08:44 PM SIDRA INTERSECTION 6.0.24.4877 Project: Z:\IMR\Sidra\l-26 at Columbia Avenue IMR Final.sip6 8003941, 6023379, AECOM, PLUS / 1PC

SITE LAYOUT

W Site: I-26 WB Ramps 2020 PM - Alt 3

I-26 WB Ramps 2042 PM Roundabout

Vehicles and pedestrians per 60 minutes

V Site: I-26 WB Ramps 2020 PM - Alt 3

I-26 WB Ramps 2042 PM Roundabout

Volume Display Method: Total and %

Volumes are shown for Movement Class(es): All Classes and Heavy Vehicles

Total Intersection Volumes (veh)

All Movement Classes: 2576

Light Vehicles (LV): 2524

Heavy Vehicles (HV): 52

₩ Site: I-26 WB Ramps 2020 PM - Alt 3

I-26 WB Ramps 2042 PM Roundabout

Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total veh/h	l Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph		
South:	Columbia A		/0	V/C	360		ven			per ven	трп		
3	L2	173	2.0	0.656	12.5	LOS B	0.0	0.0	0.00	0.00	25.9		
8	T1	554	2.0	0.656	12.5	LOS B	0.0	0.0	0.00	0.00	25.4		
Approa	ach	727	2.0	0.656	12.5	LOS B	0.0	0.0	0.00	0.00	25.5		
East: I	-26 WB Off	Ramp											
1	L2	1036	2.0	1.237	146.6	LOS F	50.2	1275.0	1.00	4.14	9.7		
6	T1	1	2.0	1.237	146.6	LOS F	50.2	1275.0	1.00	4.14	9.6		
16	R2	268	2.0	1.237	146.6	LOS F	50.2	1275.0	1.00	4.14	9.5		
Approa	ach	1305	2.0	1.237	146.6	LOS F	50.2	1275.0	1.00	4.14	9.6		
North:	Columbia A	ve											
4	T1	727	2.0	0.731	27.0	LOS D	3.8	95.4	0.80	0.99	19.8		
14	R2	40	2.0	0.731	26.4	LOS D	3.7	92.8	0.79	0.97	19.5		
Approa	ach	767	2.0	0.731	27.0	LOS D	3.8	95.4	0.80	0.99	19.8		
All Veh	nicles	2800	2.0	1.237	79.0	LOS F	50.2	1275.0	0.68	2.20	13.8		

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Monday, November 28, 2016 3:05:44 PM SIDRA INTERSECTION 6.0.24.4877 Project: Z:\IMR\Sidra\l-26 at Columbia Avenue IMR Final.sip6 8003941, 6023379, AECOM, PLUS / 1PC

SITE LAYOUT Site: I-26 EB Ramps 2020 PM - Alt 3

I-26 EB Ramps 2020 PM Roundabout

Created: Monday, November 28, 2016 3:17:56 PM SIDRA INTERSECTION 6.0.24.4877 ww Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6 8003941, 6023379, AECOM, PLUS / 1PC

Copyright $\textcircled{\sc c}$ 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Vehicles and pedestrians per 60 minutes

V Site: I-26 EB Ramps 2020 PM - Alt 3

I-26 EB Ramps 2020 PM Roundabout

Volume Display Method: Total and %

Volumes are shown for Movement Class(es): All Classes and Heavy Vehicles

Total Intersection Volumes (veh)

All Movement Classes: 3171

Light Vehicles (LV): 3108

Heavy Vehicles (HV): 63

₩ Site: I-26 EB Ramps 2020 PM - Alt 3

I-26 EB Ramps 2020 PM Roundabout

Move	ment Perfo	ormance - Ve	hicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Columbia A		/0				Volt				mpn
8	T1	678	2.0	0.350	0.0	LOS A	0.0	0.0	0.00	0.00	25.8
18	R2	815	2.0	0.497	0.1	LOS A	0.0	0.0	0.00	0.00	25.0
Approa	ach	1493	2.0	0.497	0.1	NA	0.0	0.0	0.00	0.00	25.3
North:	Columbia Av	ve									
7	L2	267	2.0	0.796	18.5	LOS C	0.0	0.0	0.00	0.00	25.8
4	T1	1496	2.0	0.796	18.5	LOS C	0.0	0.0	0.00	0.00	25.7
Approa	ach	1763	2.0	0.796	18.5	LOS C	0.0	0.0	0.00	0.00	25.7
West:	I-26 EB Off I	Ramp									
5	L2	49	2.0	0.159	14.4	LOS B	0.4	10.0	0.75	0.75	21.6
2	T1	1	2.0	0.159	14.4	LOS B	0.4	10.0	0.75	0.75	21.3
12	R2	140	2.0	0.368	16.7	LOS C	1.1	27.5	0.75	0.81	21.1
Approach		190	2.0	0.368	16.1	LOS C	1.1	27.5	0.75	0.79	21.2
All Vehicles		3447	2.0	0.796	10.4	LOS B	1.1	27.5	0.04	0.04	25.2

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Monday, November 28, 2016 3:10:26 PM SIDRA INTERSECTION 6.0.24.4877 Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6 8003941, 6023379, AECOM, PLUS / 1PC

SITE LAYOUT

V Site: I-26 WB Ramps 2040 AM - Alt 3

I-26 WB Ramps 2040 AM Roundabout

Vehicles and pedestrians per 60 minutes

V Site: I-26 WB Ramps 2040 AM - Alt 3

I-26 WB Ramps 2040 AM Roundabout

Volume Display Method: Total and %

Volumes are shown for Movement Class(es): All Classes and Heavy Vehicles

Total Intersection Volumes (veh)

All Movement Classes: 2357

Light Vehicles (LV): 2310

Heavy Vehicles (HV): 47

₩ Site: I-26 WB Ramps 2040 AM - Alt 3

I-26 WB Ramps 2040 AM Roundabout

Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph		
South:	Columbia A		/0				Von				mpri		
3	L2	136	2.0	0.517	9.3	LOS A	0.0	0.0	0.00	0.00	25.9		
8	T1	437	2.0	0.517	9.3	LOS A	0.0	0.0	0.00	0.00	25.4		
Approa	ach	573	2.0	0.517	9.3	LOS A	0.0	0.0	0.00	0.00	25.5		
East: I	-26 WB Off	Ramp											
1	L2	1115	2.0	1.046	74.6	LOS F	25.7	653.2	1.00	2.42	13.9		
6	T1	1	2.0	1.046	74.6	LOS F	25.7	653.2	1.00	2.42	13.7		
16	R2	176	2.0	1.046	74.6	LOS F	25.7	653.2	1.00	2.42	13.5		
Approa	ach	1292	2.0	1.046	74.6	LOS F	25.7	653.2	1.00	2.42	13.8		
North:	Columbia A	ve											
4	T1	633	2.0	0.765	33.2	LOS D	3.9	98.1	0.85	1.08	18.8		
14	R2	64	2.0	0.765	32.4	LOS D	3.8	95.9	0.84	1.07	18.5		
Approa	ach	697	2.0	0.765	33.1	LOS D	3.9	98.1	0.85	1.08	18.8		
All Vehicles		2562	2.0	1.046	48.7	LOS E	25.7	653.2	0.74	1.52	16.7		

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Monday, November 28, 2016 2:01:11 PM SIDRA INTERSECTION 6.0.24.4877 Project: Z:\IMR\Sidra\l-26 at Columbia Avenue IMR Final.sip6 8003941, 6023379, AECOM, PLUS / 1PC

SITE LAYOUT Site: I-26 EB Ramps 2040 AM - Alt 3

I-26 EB Ramps 2040 AM Roundabout

Created: Monday, November 28, 2016 3:27:04 PM SIDRA INTERSECTION 6.0.24.4877 ww Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6 8003941, 6023379, AECOM, PLUS / 1PC

Copyright $\textcircled{\sc c}$ 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Vehicles and pedestrians per 60 minutes

V Site: I-26 EB Ramps 2040 AM - Alt 3

I-26 EB Ramps 2040 AM Roundabout

Volume Display Method: Total and %

Volumes are shown for Movement Class(es): All Classes and Heavy Vehicles

Total Intersection Volumes (veh)

All Movement Classes: 3600

Light Vehicles (LV): 3528

Heavy Vehicles (HV): 72

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

₩ Site: I-26 EB Ramps 2040 AM - Alt 3

I-26 EB Ramps 2040 AM Roundabout

Move	ment Perfo	ormance - Ve	hicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Columbia A		/0				Volt				mpn
8	T1	541	2.0	0.279	0.0	LOS A	0.0	0.0	0.00	0.00	25.8
18	R2	1380	2.0	0.841	0.5	LOS A	0.0	0.0	0.00	0.00	24.8
Approa	ach	1922	2.0	0.841	0.4	NA	0.0	0.0	0.00	0.00	25.1
North:	Columbia Av	ve									
7	L2	160	2.0	0.789	18.1	LOS C	0.0	0.0	0.00	0.00	26.0
4	T1	1588	2.0	0.789	18.1	LOS C	0.0	0.0	0.00	0.00	25.7
Approa	ach	1748	2.0	0.789	18.1	LOS C	0.0	0.0	0.00	0.00	25.8
West: I	-26 EB Off I	Ramp									
5	L2	32	2.0	0.103	13.1	LOS B	0.2	6.3	0.73	0.73	21.8
2	T1	1	2.0	0.103	13.1	LOS B	0.2	6.3	0.73	0.73	21.6
12	R2	211	2.0	0.592	26.7	LOS D	2.1	52.5	0.83	0.96	19.3
Approa	ach	243	2.0	0.592	24.9	LOS C	2.1	52.5	0.82	0.93	19.6
All Vehicles		3913	2.0	0.841	9.8	LOS A	2.1	52.5	0.05	0.06	24.9

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Monday, November 28, 2016 2:03:54 PM SIDRA INTERSECTION 6.0.24.4877 Project: Z:\IMR\Sidra\l-26 at Columbia Avenue IMR Final.sip6 8003941, 6023379, AECOM, PLUS / 1PC

SITE LAYOUT

W Site: I-26 WB Ramps 2040 PM - Alt 3

I-26 WB Ramps 2040 PM Roundabout

Vehicles and pedestrians per 60 minutes

V Site: I-26 WB Ramps 2040 PM - Alt 3

I-26 WB Ramps 2040 PM Roundabout

Volume Display Method: Total and %

Volumes are shown for Movement Class(es): All Classes and Heavy Vehicles

Total Intersection Volumes (veh)

All Movement Classes: 3100

Light Vehicles (LV): 3038

Heavy Vehicles (HV): 62

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

₩ Site: I-26 WB Ramps 2040 PM - Alt 3

I-26 WB Ramps 2040 PM Roundabout

Move	ment Perfo	ormance - Ve	ehicles								
Mov ID	OD Mov	Demand Total veh/h	l Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Columbia A		70	V/C	300		VCII				трп
3	L2	248	2.0	0.756	16.3	LOS C	0.0	0.0	0.00	0.00	25.9
8	T1	590	2.0	0.756	16.3	LOS C	0.0	0.0	0.00	0.00	25.3
Approa	ach	838	2.0	0.756	16.3	LOS C	0.0	0.0	0.00	0.00	25.5
East: I	-26 WB Off I	Ramp									
1	L2	1440	2.0	1.819	397.3	LOS F	131.7	3345.1	1.00	7.42	4.7
6	T1	1	2.0	1.819	397.3	LOS F	131.7	3345.1	1.00	7.42	4.7
16	R2	273	2.0	1.819	397.3	LOS F	131.7	3345.1	1.00	7.42	4.7
Approa	ach	1714	2.0	1.819	397.3	LOS F	131.7	3345.1	1.00	7.42	4.7
North:	Columbia Av	ve									
4	T1	775	2.0	0.796	33.1	LOS D	4.6	116.5	0.84	1.10	18.8
14	R2	42	2.0	0.796	32.4	LOS D	4.5	113.6	0.83	1.08	18.5
Approach		817	2.0	0.796	33.0	LOS D	4.6	116.5	0.84	1.10	18.8
All Veh	nicles	3370	2.0	1.819	214.2	LOS F	131.7	3345.1	0.71	4.04	7.6

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Monday, November 28, 2016 2:01:25 PM SIDRA INTERSECTION 6.0.24.4877 Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6 8003941, 6023379, AECOM, PLUS / 1PC

SITE LAYOUT Site: I-26 EB Ramps 2040 PM - Alt 3

I-26 EB Ramps 2040 PM Roundabout

Created: Monday, November 28, 2016 3:28:39 PM SIDRA INTERSECTION 6.0.24.4877 ww Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6 8003941, 6023379, AECOM, PLUS / 1PC

Copyright $\textcircled{\sc c}$ 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Vehicles and pedestrians per 60 minutes

V Site: I-26 EB Ramps 2040 PM - Alt 3

I-26 EB Ramps 2040 PM Roundabout

Volume Display Method: Total and %

Volumes are shown for Movement Class(es): All Classes and Heavy Vehicles

Total Intersection Volumes (veh)

All Movement Classes: 4097

Light Vehicles (LV): 4015

Heavy Vehicles (HV): 82

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

₩ Site: I-26 EB Ramps 2040 PM - Alt 3

I-26 EB Ramps 2040 PM Roundabout

Move	ment Perfo	ormance - Ve	hicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Columbia A		/0								mpn
8	T1	786	2.0	0.406	0.1	LOS A	0.0	0.0	0.00	0.00	25.7
18	R2	1201	2.0	0.732	0.3	LOS A	0.0	0.0	0.00	0.00	24.9
Approa	ach	1987	2.0	0.732	0.2	NA	0.0	0.0	0.00	0.00	25.2
North:	Columbia A	ve									
7	L2	279	2.0	1.000	46.4	LOS E	0.0	0.0	1.00	0.04	17.0
4	T1	1936	2.0	1.000	46.4	LOS E	0.0	0.0	1.00	0.04	16.9
Approa	ach	2215	2.0	1.000	46.4	LOS E	0.0	0.0	1.00	0.04	16.9
West:	I-26 EB Off I	Ramp									
5	L2	52	2.0	0.234	21.7	LOS C	0.6	14.8	0.83	0.86	20.2
2	T1	1	2.0	0.234	21.7	LOS C	0.6	14.8	0.83	0.86	19.9
12	R2	198	2.0	0.711	43.0	LOS E	2.6	66.0	0.91	1.11	16.9
Approach		251	2.0	0.711	38.5	LOS E	2.6	66.0	0.89	1.06	17.5
All Vehicles		4453	2.0	1.000	25.4	LOS D	2.6	66.0	0.55	0.08	19.8

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Monday, November 28, 2016 3:10:40 PM SIDRA INTERSECTION 6.0.24.4877 Project: Z:\IMR\Sidra\l-26 at Columbia Avenue IMR Final.sip6 8003941, 6023379, AECOM, PLUS / 1PC

APPENDIX O

ALTERNATIVE 1, 2, & 3 CONCEPTUAL DESIGNS

ALL RIGHT-OF-WAY (R/W) SHOWN IS PROPOSED AND SUBJECT TO CHANGE

ALL RIGHT-OF-WAY (R/W) SHOWN IS PROPOSED AND SUBJECT TO CHANGE

ALL RIGHT-OF-WAY (R/W) SHOWN IS PROPOSED AND SUBJECT TO CHANGE