

Cherokee, SC

May 2017

SCDOT Project ID: P027116

Stormwater Management Design Report

1.	Project	Summary(1 – 3)
2.	FENAer	Maps(4 – 7) MA Flood Maps rial Overlay GS Quadrangle Overlay
3.	Soils In	formation(8 – 57)
4.	Stormv 4.1 4.2	vater Analysis
5.	Append	dix
	5.1	Miscellaneous Outfall Analysis Notes(640)
	5.2	Miscellaneous Cross-Line Analysis Notes(641 - 642)
	5.3	Culvert Assessment Forms With Site Pictures(643 – 769)

1. Project Summary

The South Carolina Department of Transportation (SCDOT) proposes to widen a portion of Interstate 85 (I-85) from four lanes to six travel lanes in Cherokee County. The project limits begin at the I-85 bridge over the Broad River and extends to the South Carolina/North Carolina state line. The scope of the project includes adding a travel lane in each direction along I-85, improving various interchanges and exit ramps, and replacement of overpass bridges. The purpose of this project is to improve the operational efficiency of I-85 to accommodate traffic volumes. The proposed widening will occur within the existing median of I-85 to minimize right-of-way impacts.

This report provides an inventory of the location and condition of existing drainage structures within the project corridor, a hydrological study of the watershed(s), hydraulic analyses of select existing cross drainage and median drainage structures, and identification of any FEMA floodplain crossings that will be impacted. Existing drainage structures were located using information gathered from existing plans, field investigations, and topographic maps. Location and size of existing drainage structures, as well as their conditions were examined during the field study. Various land uses exist along the corridor and include dense woods, residential areas, commercial areas, and industrial areas. The overall drainage patterns for the project area were established through the use of project mapping, SCDNR LiDAR Data, and U.S. Geological Survey (USGS) quadrangle maps. The proposed I-85 improvements are expected to maintain the current drainage patterns. The ultimate receiving waterbodies for the project area include Buffalo Creek, Bee Branch, Jumping Branch, and Mill Creek. Bee Branch is a tributary the feeds into Buffalo Creek. Buffalo Creek flows across the NC/SC state line and discharges into the Broad River. Jumping Branch and Mill Creek are both tributaries that feed into Kings Creek, which ultimately discharges into the Broad River also.

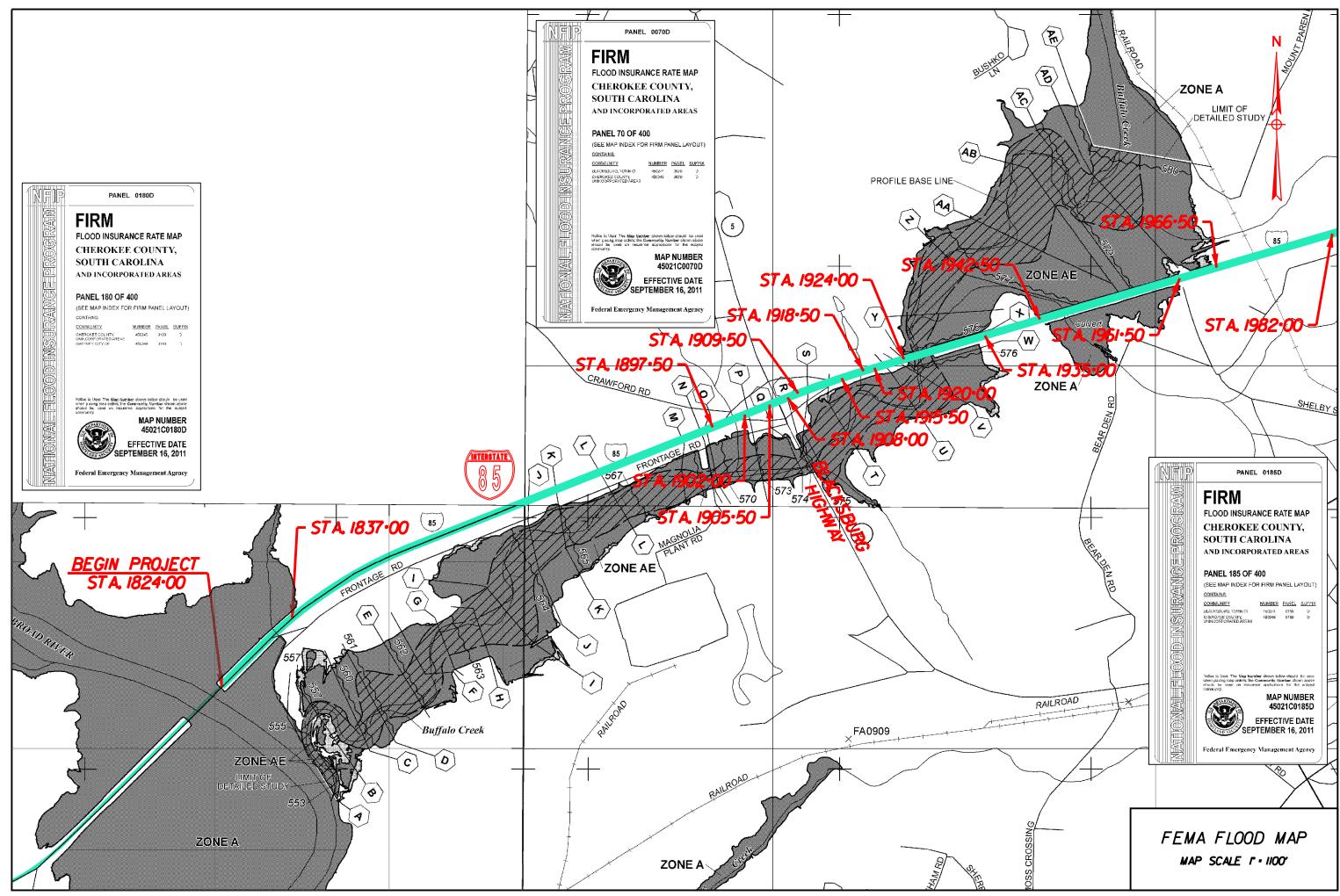
Project location maps and Federal Emergency Management Agency (FEMA) Flood Insurance Rate Firmette Maps are provided in Section 2 of this report. The following FEMA maps encompass the portion of the I-85 project area within the vicinity of a FEMA floodplain:

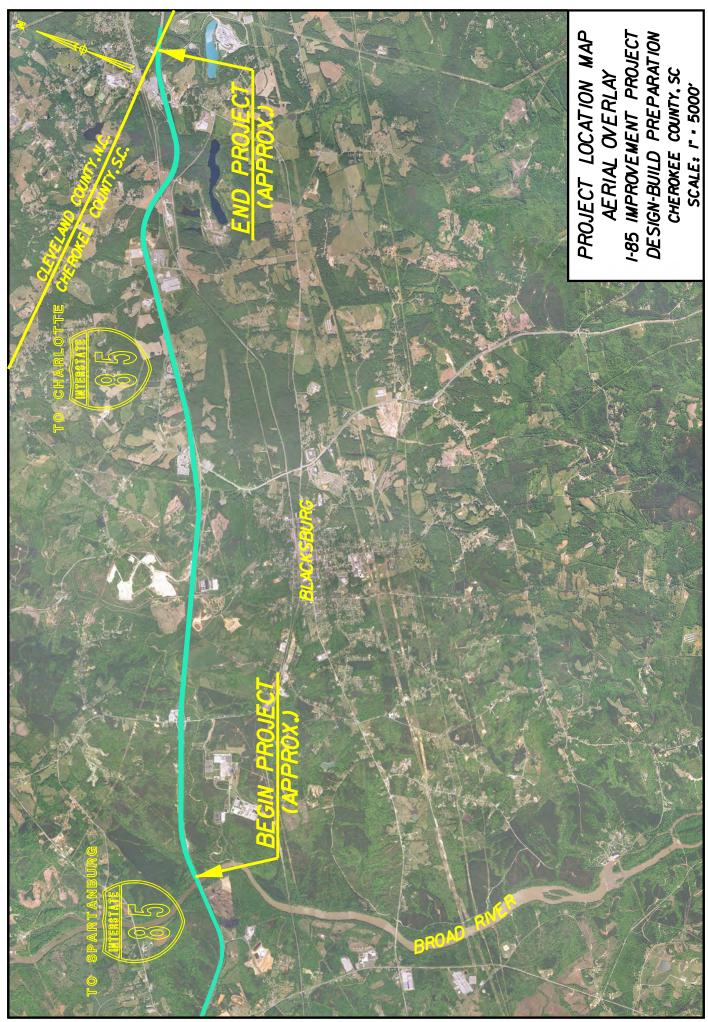
Cherokee County FIRM Panel No. 45021C0180D Cherokee County FIRM Panel No. 45021C0070D Cherokee County FIRM Panel No. 45021C0185D

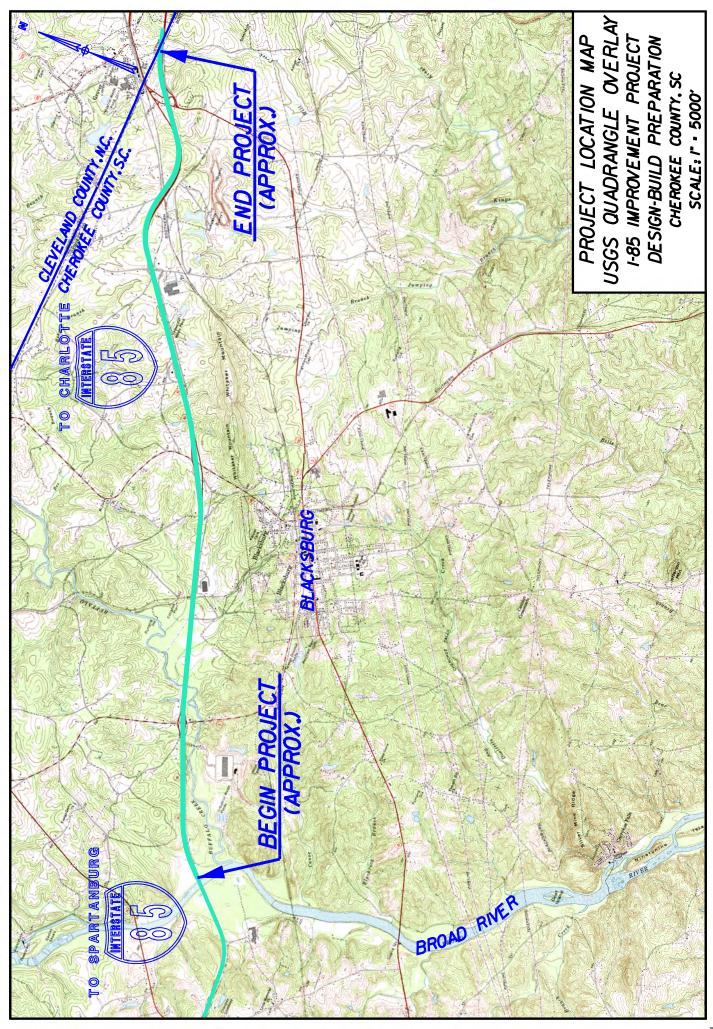
Portions of the project will fall within a FEMA managed floodplain. In particular, three Special Flood Hazard Area crossings.

 Station 1824+00 to Station 1837+00 – FEMA maps indicate a Zone A Special Flood Hazard Area crosses the project site. Due to the Zone A classification, analysis to verify the final design complies with SCDOT Design Requirements for Zone A floodplains will be required. The preliminary analysis suggests that the 8' x 8' culvert crossing under I-85 at Sta. 1834+32 (Site 7) will perform adequately with enlargement of the downstream culvert, located under the frontage road. Therefore, I-85 improvements will encroach into FEMA's floodplain and may have a measurable impact on the effective base flood elevations.

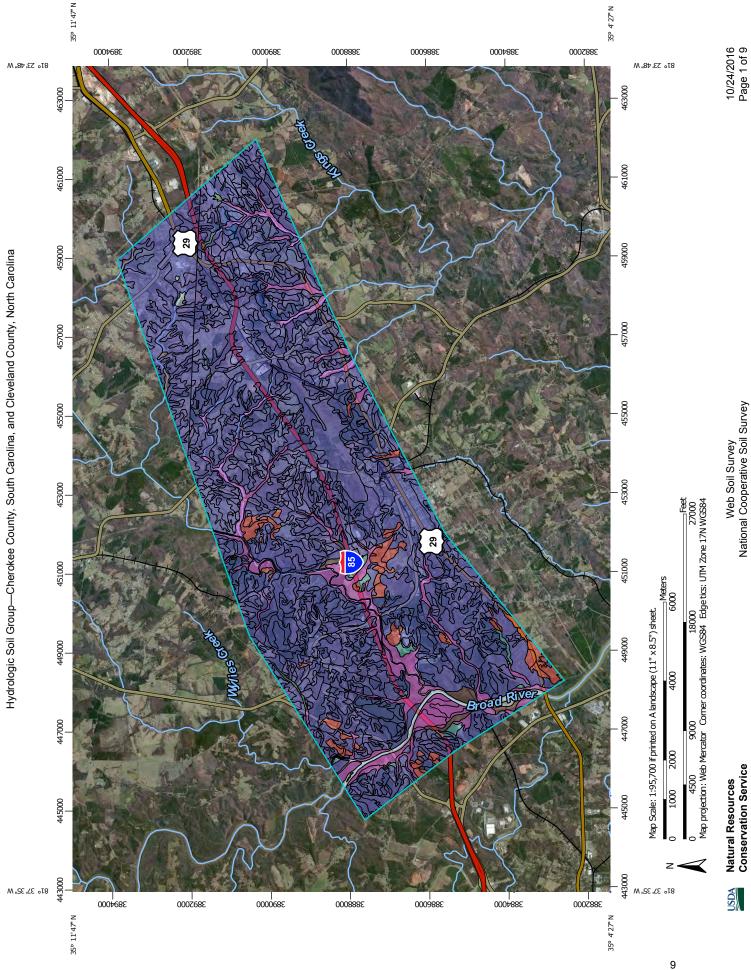
- Station 1897+50 to Station 1902+00 FEMA maps indicate a Zone AE Special Flood Hazard Area located downstream of the project site. The proposed Exit 100 interchange improvements will encroach into the floodplain. Additionally, the culvert crossing under I-85 at Sta. 1900+14 (Site 20) may require extension into the floodplain as a result of the wider roadway footprint. However, improvement of the culvert headwall may allow for the culvert extension to be avoided. The proposed roadway improvements may have a measurable impact on the effective base flood elevations.
- Station 1905+50 to Station 1908+00 FEMA maps indicate a Zone AE Special Flood Hazard Area located downstream of the project site. The proposed improvements for Blacksburg Highway and Exit 100 interchange will increase the roadway footprint and will encroach into the floodplain. The proposed improvements may have a measurable impact on the effective base flood elevations.
- Station 1909+50 to Station 1915+50 FEMA maps indicate a Zone AE Special Flood Hazard Area located downstream of the project site. The proposed Exit 100 interchange and I-85 mainline improvements will increase the roadway footprint and will encroach into the floodplain. Additionally, the culvert crossing under I-85 at Sta. 1909+86 (Site 21) will require an extension into the floodplain. The proposed improvements may have a measurable impact on the effective base flood elevations.
- Station 1924+00 to Station 1935+00 I-85 crosses a FEMA Zone AE Special Flood Hazard Area with established floodway. No changes are anticipated for the I-85 bridge over Buffalo Creek, and any minimal amount of fill in the floodplain mimics existing conditions. The minor amount of fill is not expected to measurably impact effective base flood elevations.
- Station 1942+50 to Station 1961+50 I-85 parallels a FEMA Zone AE Special Flood Hazard Area on the left side of the alignment, with a Zone A Special Flood Hazard Area on the right side of the alignment. Due to the proposed roadway being elevated higher than the existing pavement, project construction limits will encroach into the floodplain. Additionally, the culvert crossing under I-85 at Sta. 1945+56 (Site 24) may require both an upstream and downstream extension into the floodplain. However, improvement of the culvert headwalls may allow for the culvert extension to be avoided. The proposed improvements may have a measurable impact on the effective base flood elevations.
- Station 1918+50 to Station 1920+00; Station 1961+50 to Station 1966+50 FEMA maps indicate a Zone AE Special Flood Hazard Area located downstream of the project site. Due to the proposed roadway being elevated higher than the existing pavement, construction limits for the project will encroach into the effective floodplain. However, the proposed encroachments will be minimal and are not expected to impact the effective base flood elevations.

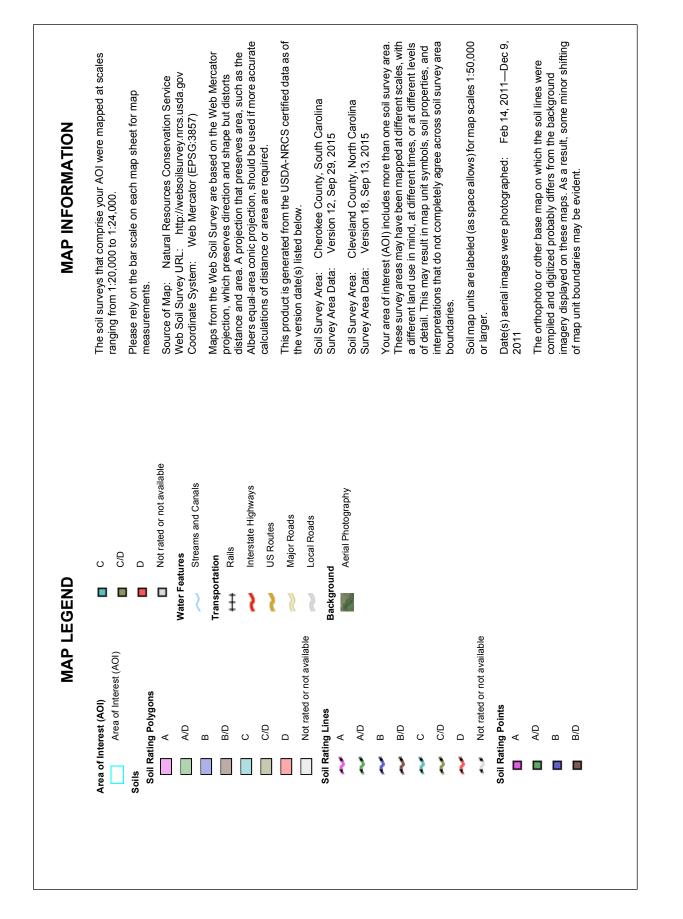

Station 1837+00 to Station 1897+50; Station 1902+00 to Station 1905+50; Station 1908+00 to Station 1909+50; Station 1915+50 to Station 1918+50; Station 1920+00 to Station 1924+00; Station 1935+00 to Station 1942+50 – FEMA maps indicate a Zone AE Special Flood Hazard Area located downstream of the project site. Any existing culverts located within the floodplain are being retained and culvert extensions are not required for the proposed roadway construction. The proposed construction limits are located outside the floodplain and therefore are not expected to alter the effective base flood elevations.


The hydrologic and hydraulic analyses and techniques comply with SCDOT's *Requirements for Hydraulic Design Studies*, dated May 26, 2009.



2. Project Maps




2. Soils Information

The I-85 Improvement Project is located in the Piedmont Region of South Carolina. The project limits begin at the I-85 bridge over the Broad River and extend to the South Carolina/North Carolina state line. The Natural Resources Conservation Service (NRCS) Web Soil Survey indicates that the most predominant soil group within the project limits is Hydrologic Soil Group B, which has moderate infiltration when thoroughly wet. There is a vast range of soil types that exist within the area of interest for the project. The NRCS soils information and descriptions are found in this section.

Hydrologic Soil Group-Cherokee County, South Carolina, and Cleveland County, North Carolina

10

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AfA	Altavista fine sandy loam, 0 to 2 percent slopes	C	33.0	0.2%
AfB2	Altavista fine sandy loam, 2 to 6 percent slopes, eroded	C	86.5	0.4%
АрС	Appling sandy loam, 6 to 10 percent slopes	В	18.3	0.1%
ApD2	Appling sandy loam, 10 to 15 percent slopes, eroded	В	5.0	0.0%
ApE2	Appling sandy loam, 15 to 25 percent slopes, eroded	В	17.5	0.1%
Вс	Buncombe loamy sand	A	205.3	1.0%
CcB3	Cecil clay loam, 2 to 6 percent slopes, severely eroded	В	97.0	0.5%
CcC3	Cecil clay loam, 6 to 10 percent slopes, severely eroded	В	234.2	1.2%
CcD3	Cecil clay loam, 10 to 15 percent slopes, severely eroded	В	304.5	1.5%
CcE3	Cecil clay loam, 15 to 25 percent slopes, severely eroded	В	115.9	0.6%
CdB	Cecil sandy loam, 2 to 6 percent slopes	В	4.5	0.0%
CdB2	Cecil sandy loam, 2 to 6 percent slopes, eroded	В	131.0	0.7%
CdC	Cecil sandy loam, 6 to 10 percent slopes	В	23.1	0.1%
CdC2	Cecil sandy loam, 6 to 10 percent slopes, eroded	В	126.7	0.6%
CdD	Cecil sandy loam, 10 to 15 percent slopes	В	30.2	0.1%
CdD2	Cecil sandy loam, 10 to 15 percent slopes, eroded	В	91.2	0.5%
CdE	Cecil sandy loam, 15 to 25 percent slopes	В	116.6	0.6%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
CdE2	Cecil sandy loam, 15 to 25 percent slopes, eroded	B	27.4	0.1%
CdF	Cecil sandy loam, 25 to 35 percent slopes	В	71.1	0.4%
Ch	Chewacla silt loam, 0 to 2 percent slopes, occasionally flooded	B/D	33.2	0.2%
Cr	Congaree silt loam	С	24.6	0.1%
DaC2	Davidson loam, 2 to 10 percent slopes, eroded	В	6.4	0.0%
Ga	Gullied land, firm materials	В	122.3	0.6%
GfC	Gullied land, friable materials, 2 to 10 percent slopes	В	129.2	0.6%
GfF	Gullied land, friable materials, 10 to 35 percent slopes	В	1,211.5	6.0%
IrC2	Iredell fine sandy loam, 6 to 10 percent slopes, eroded	D	1.3	0.0%
LcB3	Lloyd clay loam, 2 to 6 percent slopes, severely eroded	В	35.1	0.2%
LcC3	Lloyd clay loam, 6 to 10 percent slopes, severely eroded	В	36.4	0.2%
LcD3	Lloyd clay loam, 10 to 15 percent slopes, severely eroded	В	76.8	0.4%
LcE3	Lloyd clay loam, 15 to 25 percent slopes, severely eroded	В	32.7	0.2%
LdB2	Lloyd loam, 2 to 6 percent slopes, eroded	В	14.3	0.1%
LdD2	Lloyd loam, 10 to 15 percent slopes, eroded	В	6.1	0.0%
LdE	Lloyd loam, 15 to 25 percent slopes	В	28.0	0.1%
LdF	Lloyd loam, 25 to 35 percent slopes	В	10.1	0.1%
Ln	Local alluvial land	В	43.1	0.2%
MaB3	Madison and Cecil clay loams, 2 to 6 percent slopes, severely eroded	В	7.9	0.0%

Map unit symbol Map unit name Rating Acres in AOI Percent of AOI						
. ,		•				
MaC3	Madison and Cecil clay loams, 6 to 10 percent slopes, severely eroded	В	25.3	0.1%		
MaD3	Madison and Cecil clay loams, 10 to 15 percent slopes, severely eroded	В	37.5	0.2%		
MaE3	Madison and Cecil clay loams, 15 to 25 percent slopes, severely eroded	В	45.4	0.2%		
MdB2	Madison and Cecil sandy loams, 2 to 6 percent slopes, eroded	В	85.4	0.4%		
MdC2	Madison and Cecil sandy loams, 6 to 10 percent slopes, eroded	В	18.7	0.1%		
MdD2	Madison and Cecil sandy loams, 10 to 15 percent slopes, eroded	В	23.5	0.1%		
MdE	Madison and Cecil sandy loams, 15 to 25 percent slopes	В	26.9	0.1%		
MdE2	Madison and Cecil sandy loams, 15 to 25 percent slopes, eroded	В	4.9	0.0%		
MdF2	Madison and Cecil sandy loams, 25 to 35 percent slopes, eroded	В	64.6	0.3%		
MeC	Manteo channery silt loam, 2 to 10 percent slopes	D	47.2	0.2%		
MeC2	Manteo channery silt loam, 6 to 15 percent slopes, eroded	D	22.0	0.1%		
MeD	Manteo channery silt loam, 10 to 15 percent slopes	D	72.0	0.4%		
MeE	Manteo channery silt loam, 15 to 35 percent slopes	D	121.0	0.6%		
MeE2	Manteo channery silt loam, 15 to 35 percent slopes, eroded	D	82.1	0.4%		
Mv	Mixed alluvial land	A	1,357.8	6.7%		
Mw	Mixed wet alluvial land	B/D	107.5	0.5%		

10/24/2016

Hydrologic Soil Group— Summary by Map Unit — Cherokee County, South Carolina (SC021)					
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
NaB	Nason very fine sandy loam, 2 to 6 percent slopes	В	790.4	3.9%	
NaC2	Nason very fine sandy loam, 6 to 10 percent slopes, eroded	В	453.1	2.2%	
NaD2	Nason very fine sandy loam, 10 to 15 percent slopes, eroded	В	257.0	1.3%	
NaE	Nason very fine sandy loam, 15 to 25 percent slopes	В	411.7	2.0%	
NsC3	Nason silty clay loam, 2 to 10 percent slopes, severely eroded	В	185.5	0.9%	
NsE3	Nason silty clay loam, 10 to 25 percent slopes, severely eroded	В	493.5	2.4%	
Rw	Riverwash		30.6	0.2%	
Sa	State fine sandy loam	В	46.8	0.2%	
St	Stony land	В	387.6	1.9%	
TaB3	Tatum silty clay loam, 2 to 6 percent slopes, severely eroded	В	281.8	1.4%	
TaC3	Tatum silty clay loam, 6 to 10 percent slopes, severely eroded	В	1,081.3	5.4%	
TaD3	Tatum silty clay loam, 10 to 15 percent slopes, severely eroded	В	1,479.2	7.3%	
TaF3	Tatum silty clay loam, 15 to 35 percent slopes, severely eroded	В	798.8	4.0%	
TmB	Tatum very fine sandy loam, 2 to 6 percent slopes	В	63.6	0.3%	
TmB2	Tatum very fine sandy loam, 2 to 6 percent slopes, eroded	В	1,131.2	5.6%	
TmC	Tatum very fine sandy loam, 6 to 10 percent slopes	В	78.1	0.4%	
TmC2	Tatum very fine sandy loam, 6 to 10 percent slopes, eroded	В	1,056.9	5.2%	
TmD	Tatum very fine sandy loam, 10 to 15 percent slopes	В	231.1	1.1%	

Hydrologic Soil Group— Summary by Map Unit — Cherokee County, South Carolina (SC021)				
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
TmD2	Tatum very fine sandy loam, 10 to 15 percent slopes, eroded	В	599.0	3.0%
TmE	Tatum very fine sandy loam, 15 to 25 percent slopes	В	833.7	4.1%
TmE2	Tatum very fine sandy loam, 15 to 25 percent slopes, eroded	В	590.9	2.9%
TmF	Tatum very fine sandy loam, 25 to 35 percent slopes	В	626.7	3.1%
TrC2	Tirzah silt loam, 6 to 10 percent slopes, eroded	В	4.3	0.0%
TrD2	Tirzah silt loam, 10 to 15 percent slopes, eroded	В	43.2	0.2%
W	Water		234.4	1.2%
WcB	Wickham sandy loam, 2 to 6 percent slopes	В	55.9	0.3%
WcC2	Wickham sandy loam, 2 to 10 percent slopes, eroded	В	117.0	0.6%
WcE3	Wickham sandy loam, 10 to 25 percent slopes, severely eroded	В	54.9	0.3%
WkD	Wilkes sandy loam, 6 to 15 percent slopes	D	32.6	0.2%
WkD2	Wilkes sandy loam, 6 to 15 percent slopes, eroded	D	76.2	0.4%
WkE2	Wilkes sandy loam, 15 to 25 percent slopes, eroded	D	53.8	0.3%
WkF	Wilkes sandy loam, 15 to 35 percent slopes	D	100.1	0.5%
WoB	Worsham sandy loam, 0 to 6 percent slopes	A/D	39.5	0.2%
Subtotals for Soil Surv	/ey Area	1	18,420.1	91.4%
Totals for Area of Interest			20,153.0	100.0%

Hydrologic Soil Group— Summary by Map Unit — Cleveland County, North Carolina (NC045)				
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
ChA	Chewacla loam, 0 to 2 percent slopes, frequently flooded	B/D	37.5	0.2%

Hydrold	ogic Soil Group— Summar	y by Map Unit — Clevel	and County, North Carolina	(NC045)
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
GrD	Grover gravelly sandy loam, 15 to 30 percent slopes, rocky	В	142.6	0.7%
НеВ	Helena-Worsham complex 1 to 6 percent slopes	D	0.0	0.0%
HhB	Hulett gravelly sandy loam, 2 to 8 percent slopes	В	661.4	3.3%
HtC	Hulett gravelly sandy loam, 8 to 15 percent slopes, stony	В	401.4	2.0%
HuC	Hulett-Saw complex, 4 to 15 percent slopes, very rocky	В	41.1	0.2%
HwB	Hulett-Urban land complex, 2 to 8 percent slopes	В	207.3	1.0%
MaB2	Madison gravelly sandy clay loam, 2 to 8 percent slopes, moderately eroded	В	100.6	0.5%
MbB2	Madison-Bethlehem complex, 2 to 8 percent slopes, stony, moderately eroded	В	91.4	0.5%
McC2	Madison-Bethlehem complex, 8 to 15 percent slopes, very stony, moderately eroded	В	2.0	0.0%
TaD	Tatum-Montonia complex, 15 to 30 percent slopes	В	3.8	0.0%
UuB2	Uwharrie silty clay loam, 2 to 8 percent slopes, moderately eroded	В	6.2	0.0%
UwC2	Uwharrie-Tatum complex, 8 to 15 percent slopes, moderately eroded	В	19.0	0.1%
W	Water		18.5	0.1%
Subtotals for Soil Surv	vey Area		1,732.9	8.6%
Totals for Area of Interest			20,153.0	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Map Unit Description (Brief, Generated)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this report, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

The Map Unit Description (Brief, Generated) report displays a generated description of the major soils that occur in a map unit. Descriptions of non-soil (miscellaneous areas) and minor map unit components are not included. This description is generated from the underlying soil attribute data.

Additional information about the map units described in this report is available in other Soil Data Mart reports, which give properties of the soils and the limitations, capabilities, and potentials for many uses. Also, the narratives that accompany the Soil Data Mart reports define some of the properties included in the map unit descriptions.

Report—Map Unit Description (Brief, Generated)

Cherokee County, South Carolina

Map Unit: AfA—Altavista fine sandy loam, 0 to 2 percent slopes

Component: Altavista (100%)

The Altavista component makes up 100 percent of the map unit. Slopes are 0 to 2 percent. This component is on stream terraces on piedmonts. The parent material consists of loamy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is low. This soil is rarely flooded. It is not ponded. A seasonal zone of water saturation is at 24 inches during January, February, March, April, December. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 2w. This soil does not meet hydric criteria.

Map Unit: AfB2—Altavista fine sandy loam, 2 to 6 percent slopes, eroded

Component: Altavista (100%)

The Altavista component makes up 100 percent of the map unit. Slopes are 2 to 6 percent. This component is on stream terraces on piedmonts. The parent material consists of loamy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is low. This soil is rarely flooded. It is not ponded. A seasonal zone of water saturation is at 24 inches during January, February, March, April, December. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Map Unit: ApC—Appling sandy loam, 6 to 10 percent slopes

Component: Appling (88%)

The Appling component makes up 88 percent of the map unit. Slopes are 6 to 10 percent. This component is on interfluves, piedmonts. The parent material consists of residuum weathered from gneiss and/or residuum weathered from granite. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Component: Hard Labor (12%)

Generated brief soil descriptions are created for major soil components. The Hard Labor soil is a minor component.

Map Unit: ApD2—Appling sandy loam, 10 to 15 percent slopes, eroded

Component: Appling (100%)

The Appling component makes up 100 percent of the map unit. Slopes are 10 to 15 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Map Unit: ApE2—Appling sandy loam, 15 to 25 percent slopes, eroded

Component: Wedowee (100%)

The Wedowee component makes up 100 percent of the map unit. Slopes are 15 to 25 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Map Unit: Bc—Buncombe loamy sand

Component: Buncombe (100%)

The Buncombe component makes up 100 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on piedmonts. The parent material consists of sandy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is excessively drained. Water movement in the most restrictive layer is high. Available water to a depth of 60 inches (or restricted depth) is low. Shrink-swell potential is low. This soil is rarely flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3s. This soil does not meet hydric criteria.

Map Unit: CcB3—Cecil clay loam, 2 to 6 percent slopes, severely eroded

Component: Cecil, severely eroded (100%)

The Cecil, severely eroded component makes up 100 percent of the map unit. Slopes are 2 to 6 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: CcC3—Cecil clay loam, 6 to 10 percent slopes, severely eroded

Component: Cecil, severely eroded (100%)

The Cecil, severely eroded component makes up 100 percent of the map unit. Slopes are 6 to 10 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Map Unit: CcD3—Cecil clay loam, 10 to 15 percent slopes, severely eroded

Component: Pacolet, severely eroded (100%)

The Pacolet, severely eroded component makes up 100 percent of the map unit. Slopes are 10 to 15 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Map Unit: CcE3—Cecil clay loam, 15 to 25 percent slopes, severely eroded

Component: Pacolet, severely eroded (100%)

The Pacolet, severely eroded component makes up 100 percent of the map unit. Slopes are 15 to 25 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 7e. This soil does not meet hydric criteria.

Map Unit: CdB—Cecil sandy loam, 2 to 6 percent slopes

Component: Cecil (95%)

The Cecil component makes up 95 percent of the map unit. Slopes are 2 to 6 percent. This component is on interfluves on southern piedmonts. The parent material consists of residuum weathered from gneiss and/or granite. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Component: Cataula (3%)

Generated brief soil descriptions are created for major components. The Cataula soil is a minor component.

Component: Bethlehem (2%)

Generated brief soil descriptions are created for major components. The Bethlehem soil is a minor component.

Map Unit: CdB2—Cecil sandy loam, 2 to 6 percent slopes, eroded

Component: Cecil (100%)

The Cecil component makes up 100 percent of the map unit. Slopes are 2 to 6 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Map Unit: CdC—Cecil sandy loam, 6 to 10 percent slopes

Component: Cecil (88%)

The Cecil component makes up 88 percent of the map unit. Slopes are 6 to 10 percent. This component is on interfluves on southern piedmonts. The parent material consists of residuum weathered from granite and/or residuum weathered from gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Component: Bethlehem (10%)

Generated brief soil descriptions are created for major components. The Bethlehem soil is a minor component.

Component: Cataula, moderately eroded (2%)

Generated brief soil descriptions are created for major components. The Cataula soil is a minor component.

Map Unit: CdC2—Cecil sandy loam, 6 to 10 percent slopes, eroded

Component: Cecil (100%)

The Cecil component makes up 100 percent of the map unit. Slopes are 6 to 10 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: CdD-Cecil sandy loam, 10 to 15 percent slopes

Component: Cecil (95%)

The Cecil component makes up 95 percent of the map unit. Slopes are 10 to 15 percent. This component is on interfluves on southern piedmonts. The parent material consists of residuum weathered from granite and/or residuum weathered from gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Component: Saw (3%)

Generated brief soil descriptions are created for major components. The Saw soil is a minor component.

Component: Cataula, moderately eroded (2%)

Generated brief soil descriptions are created for major components. The Cataula soil is a minor component.

Map Unit: CdD2—Cecil sandy loam, 10 to 15 percent slopes, eroded

Component: Cecil (100%)

The Cecil component makes up 100 percent of the map unit. Slopes are 10 to 15 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Map Unit: CdE—Cecil sandy loam, 15 to 25 percent slopes

Component: Pacolet (100%)

The Pacolet component makes up 100 percent of the map unit. Slopes are 15 to 25 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Map Unit: CdE2—Cecil sandy loam, 15 to 25 percent slopes, eroded

Component: Pacolet (100%)

The Pacolet component makes up 100 percent of the map unit. Slopes are 15 to 25 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Map Unit: CdF—Cecil sandy loam, 25 to 35 percent slopes

Component: Pacolet (100%)

The Pacolet component makes up 100 percent of the map unit. Slopes are 25 to 35 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 7e. This soil does not meet hydric criteria.

Map Unit: Ch—Chewacla silt loam, 0 to 2 percent slopes, occasionally flooded

Component: Chewacla, ocassionally flooded (88%)

The Chewacla, ocassionally flooded component makes up 88 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on southern piedmonts. The parent material consists of alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is somewhat poorly drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is low. This soil is occasionally flooded. It is not ponded. A seasonal zone of water saturation is at 10 inches during January, February, March, December. Organic matter content in the surface horizon is about 3 percent. Nonirrigated land capability classification is 3w. This soil does not meet hydric criteria.

Component: Congaree (7%)

Generated brief soil descriptions are created for major components. The Congaree soil is a minor component.

Component: Wehadkee, ponded (5%)

Generated brief soil descriptions are created for major components. The Wehadkee soil is a minor component.

Map Unit: Cr-Congaree silt loam

Component: Congaree (100%)

The Congaree component makes up 100 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on piedmonts. The parent material consists of loamy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is low. This soil is occasionally flooded. It is not ponded. A seasonal zone of water saturation is at 39 inches during January, February, March, April, November, December. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 2w. This soil does not meet hydric criteria.

Map Unit: DaC2—Davidson loam, 2 to 10 percent slopes, eroded

Component: Davidson (100%)

The Davidson component makes up 100 percent of the map unit. Slopes are 2 to 10 percent. This component is on interfluves on piedmonts. The parent material consists of clayey diabase. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: Ga—Gullied land, firm materials

Component: Udorthents (100%)

The Udorthents component makes up 100 percent of the map unit. Slopes are 10 to 35 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 0 percent. Nonirrigated land capability classification is 7e.

Map Unit: GfC—Gullied land, friable materials, 2 to 10 percent slopes

Component: Udorthents (100%)

The Udorthents component makes up 100 percent of the map unit. Slopes are 2 to 10 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 0 percent. Nonirrigated land capability classification is 6e.

Map Unit: GfF—Gullied land, friable materials, 10 to 35 percent slopes

Component: Udorthents (100%)

The Udorthents component makes up 100 percent of the map unit. Slopes are 10 to 35 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 0 percent. Nonirrigated land capability classification is 7e.

Map Unit: IrC2—Iredell fine sandy loam, 6 to 10 percent slopes, eroded

Component: Iredell (100%)

The Iredell component makes up 100 percent of the map unit. Slopes are 6 to 10 percent. This component is on interfluves on piedmonts. The parent material consists of clayey diabase. Depth to a root restrictive layer, bedrock, paralithic, is 20 to 40 inches. The natural drainage class is somewhat poorly drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is low. Shrink-swell potential is very high. This soil is not flooded. It is not ponded. A seasonal zone of water saturation is at 18 inches during January, February, March, April, December. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: LcB3—Lloyd clay loam, 2 to 6 percent slopes, severely eroded

Component: Hiwassee, severely eroded (100%)

The Hiwassee, severely eroded component makes up 100 percent of the map unit. Slopes are 2 to 6 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite gneiss and hornblende schist. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: LcC3—Lloyd clay loam, 6 to 10 percent slopes, severely eroded

Component: Hiwassee, severely eroded (100%)

The Hiwassee, severely eroded component makes up 100 percent of the map unit. Slopes are 6 to 10 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite gneiss and hornblende schist. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Map Unit: LcD3—Lloyd clay loam, 10 to 15 percent slopes, severely eroded

Component: Pacolet, severely eroded (100%)

The Pacolet, severely eroded component makes up 100 percent of the map unit. Slopes are 10 to 15 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Map Unit: LcE3—Lloyd clay loam, 15 to 25 percent slopes, severely eroded

Component: Pacolet, severely eroded (100%)

The Pacolet, severely eroded component makes up 100 percent of the map unit. Slopes are 15 to 25 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Map Unit: LdB2-Lloyd loam, 2 to 6 percent slopes, eroded

Component: Hiwassee (100%)

The Hiwassee component makes up 100 percent of the map unit. Slopes are 2 to 6 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite gneiss and hornblende schist. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Map Unit: LdD2—Lloyd loam, 10 to 15 percent slopes, eroded

Component: Pacolet (100%)

The Pacolet component makes up 100 percent of the map unit. Slopes are 10 to 15 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Map Unit: LdE—Lloyd loam, 15 to 25 percent slopes

Component: Pacolet (100%)

The Pacolet component makes up 100 percent of the map unit. Slopes are 15 to 25 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Map Unit: LdF—Lloyd loam, 25 to 35 percent slopes

Component: Pacolet (100%)

The Pacolet component makes up 100 percent of the map unit. Slopes are 25 to 35 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 7e. This soil does not meet hydric criteria.

Map Unit: Ln-Local alluvial land

Component: Starr (100%)

The Starr component makes up 100 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on piedmonts. The parent material consists of loamy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is moderate. This soil is occasionally flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 2w. This soil does not meet hydric criteria.

Map Unit: MaB3—Madison and Cecil clay loams, 2 to 6 percent slopes, severely eroded

Component: Madison, severely eroded (55%)

The Madison, severely eroded component makes up 55 percent of the map unit. Slopes are 2 to 6 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Component: Cecil, severely eroded (45%)

The Cecil, severely eroded component makes up 45 percent of the map unit. Slopes are 2 to 6 percent. This component is on interfluves, piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: MaC3—Madison and Cecil clay loams, 6 to 10 percent slopes, severely eroded

Component: Madison, severely eroded (55%)

The Madison, severely eroded component makes up 55 percent of the map unit. Slopes are 6 to 10 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Component: Cecil, severely eroded (45%)

The Cecil, severely eroded component makes up 45 percent of the map unit. Slopes are 6 to 10 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Map Unit: MaD3—Madison and Cecil clay loams, 10 to 15 percent slopes, severely eroded

Component: Madison, severely eroded (55%)

The Madison, severely eroded component makes up 55 percent of the map unit. Slopes are 10 to 15 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Component: Pacolet, severely eroded (45%)

The Pacolet, severely eroded component makes up 45 percent of the map unit. Slopes are 10 to 15 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Map Unit: MaE3—Madison and Cecil clay loams, 15 to 25 percent slopes, severely eroded

Component: Madison, severely eroded (55%)

The Madison, severely eroded component makes up 55 percent of the map unit. Slopes are 15 to 25 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Component: Pacolet, severely eroded (45%)

The Pacolet, severely eroded component makes up 45 percent of the map unit. Slopes are 15 to 25 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Map Unit: MdB2-Madison and Cecil sandy loams, 2 to 6 percent slopes, eroded

Component: Madison (55%)

The Madison component makes up 55 percent of the map unit. Slopes are 2 to 6 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Component: Cecil (45%)

The Cecil component makes up 45 percent of the map unit. Slopes are 2 to 6 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Map Unit: MdC2—Madison and Cecil sandy loams, 6 to 10 percent slopes, eroded

Component: Madison (55%)

The Madison component makes up 55 percent of the map unit. Slopes are 6 to 10 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Component: Cecil (45%)

The Cecil component makes up 45 percent of the map unit. Slopes are 6 to 10 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: MdD2—Madison and Cecil sandy loams, 10 to 15 percent slopes, eroded

Component: Madison (55%)

The Madison component makes up 55 percent of the map unit. Slopes are 10 to 15 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Component: Cecil (45%)

The Cecil component makes up 45 percent of the map unit. Slopes are 10 to 15 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Map Unit: MdE—Madison and Cecil sandy loams, 15 to 25 percent slopes

Component: Madison (55%)

The Madison component makes up 55 percent of the map unit. Slopes are 15 to 25 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Component: Pacolet (45%)

The Pacolet component makes up 45 percent of the map unit. Slopes are 15 to 25 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Map Unit: MdE2—Madison and Cecil sandy loams, 15 to 25 percent slopes, eroded

Component: Madison (55%)

The Madison component makes up 55 percent of the map unit. Slopes are 15 to 25 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Component: Pacolet (45%)

The Pacolet component makes up 45 percent of the map unit. Slopes are 15 to 25 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Map Unit: MdF2—Madison and Cecil sandy loams, 25 to 35 percent slopes, eroded

Component: Madison (55%)

The Madison component makes up 55 percent of the map unit. Slopes are 25 to 35 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 7e. This soil does not meet hydric criteria.

Component: Pacolet (45%)

The Pacolet component makes up 45 percent of the map unit. Slopes are 25 to 35 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 7e. This soil does not meet hydric criteria.

Map Unit: MeC—Manteo channery silt loam, 2 to 10 percent slopes

Component: Manteo (100%)

The Manteo component makes up 100 percent of the map unit. Slopes are 2 to 10 percent. This component is on interfluves on piedmonts. The parent material consists of clayey serecite schist. Depth to a root restrictive layer, bedrock, lithic, is 10 to 20 inches. The natural drainage class is somewhat excessively drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is very low. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Map Unit: MeC2—Manteo channery silt loam, 6 to 15 percent slopes, eroded

Component: Manteo (100%)

The Manteo component makes up 100 percent of the map unit. Slopes are 6 to 15 percent. This component is on interfluves on piedmonts. The parent material consists of clayey serecite schist. Depth to a root restrictive layer, bedrock, lithic, is 10 to 20 inches. The natural drainage class is somewhat excessively drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is very low. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Map Unit: MeD-Manteo channery silt loam, 10 to 15 percent slopes

Component: Manteo (100%)

The Manteo component makes up 100 percent of the map unit. Slopes are 10 to 15 percent. This component is on interfluves on piedmonts. The parent material consists of clayey serecite schist. Depth to a root restrictive layer, bedrock, lithic, is 10 to 20 inches. The natural drainage class is somewhat excessively drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is very low. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Map Unit: MeE—Manteo channery silt loam, 15 to 35 percent slopes

Component: Manteo (100%)

The Manteo component makes up 100 percent of the map unit. Slopes are 15 to 35 percent. This component is on interfluves on piedmonts. The parent material consists of clayey serecite schist. Depth to a root restrictive layer, bedrock, lithic, is 10 to 20 inches. The natural drainage class is somewhat excessively drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is very low. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 7e. This soil does not meet hydric criteria.

Map Unit: MeE2—Manteo channery silt loam, 15 to 35 percent slopes, eroded

Component: Manteo (100%)

The Manteo component makes up 100 percent of the map unit. Slopes are 15 to 35 percent. This component is on interfluves on piedmonts. The parent material consists of clayey serecite schist. Depth to a root restrictive layer, bedrock, lithic, is 10 to 20 inches. The natural drainage class is somewhat excessively drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is very low. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 7e. This soil does not meet hydric criteria.

Map Unit: Mv-Mixed alluvial land

Component: Toccoa (55%)

The Toccoa component makes up 55 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on piedmonts. The parent material consists of loamy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is frequently flooded. It is not ponded. A seasonal zone of water saturation is at 45 inches during January, February, March, April, December. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 3w. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 8 percent.

Component: Cartecay (40%)

The Cartecay component makes up 40 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on piedmonts. The parent material consists of loamy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is somewhat poorly drained. Water movement in the most restrictive layer is high. Available water to a depth of 60 inches (or restricted depth) is low. Shrink-swell potential is low. This soil is frequently flooded. It is not ponded. A seasonal zone of water saturation is at 12 inches during January, February, March, April. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 5w. This soil does not meet hydric criteria.

Component: Wehadkee (3%)

Generated brief soil descriptions are created for major components. The Wehadkee soil is a minor component.

Map Unit: Mw-Mixed wet alluvial land

Component: Wehadkee (100%)

The Wehadkee component makes up 100 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on piedmonts. The parent material consists of loamy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is poorly drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is frequently flooded. It is not ponded. A seasonal zone of water saturation is at 6 inches during January, February, March, April, May, November, December. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 5w. This soil meets hydric criteria.

Map Unit: NaB-Nason very fine sandy loam, 2 to 6 percent slopes

Component: Nason (100%)

The Nason component makes up 100 percent of the map unit. Slopes are 2 to 6 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Map Unit: NaC2—Nason very fine sandy loam, 6 to 10 percent slopes, eroded

Component: Nason (100%)

The Nason component makes up 100 percent of the map unit. Slopes are 6 to 10 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: NaD2—Nason very fine sandy loam, 10 to 15 percent slopes, eroded

Component: Nason (100%)

The Nason component makes up 100 percent of the map unit. Slopes are 10 to 15 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: NaE—Nason very fine sandy loam, 15 to 25 percent slopes

Component: Nason (100%)

The Nason component makes up 100 percent of the map unit. Slopes are 15 to 25 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Map Unit: NsC3-Nason silty clay loam, 2 to 10 percent slopes, severely eroded

Component: Nason, severely eroded (100%)

The Nason, severely eroded component makes up 100 percent of the map unit. Slopes are 2 to 10 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Map Unit: NsE3—Nason silty clay loam, 10 to 25 percent slopes, severely eroded

Component: Nason, severely eroded (100%)

The Nason, severely eroded component makes up 100 percent of the map unit. Slopes are 10 to 25 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Map Unit: Rw-Riverwash

Component: Riverwash (97%)

Generated brief soil descriptions are created for major soil components. The Riverwash is a miscellaneous area.

Component: Wehadkee (3%)

Generated brief soil descriptions are created for major components. The Wehadkee soil is a minor component.

Map Unit: Sa—State fine sandy loam

Component: State (100%)

The State component makes up 100 percent of the map unit. Slopes are 0 to 2 percent. This component is on stream terraces on piedmonts. The parent material consists of loamy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is rarely flooded. It is not ponded. A seasonal zone of water saturation is at 60 inches during January, February, March, April, May, June, December. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 1. This soil does not meet hydric criteria.

Map Unit: St—Stony land

Component: Tatum (50%)

The Tatum component makes up 50 percent of the map unit. Slopes are 10 to 40 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 7e. This soil does not meet hydric criteria.

Component: Rock outcrop (50%)

Generated brief soil descriptions are created for major soil components. The Rock outcrop is a miscellaneous area.

Map Unit: TaB3—Tatum silty clay loam, 2 to 6 percent slopes, severely eroded

Component: Tatum, severely eroded (100%)

The Tatum, severely eroded component makes up 100 percent of the map unit. Slopes are 2 to 6 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Map Unit: TaC3—Tatum silty clay loam, 6 to 10 percent slopes, severely eroded

Component: Tatum, severely eroded (100%)

The Tatum, severely eroded component makes up 100 percent of the map unit. Slopes are 6 to 10 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: TaD3—Tatum silty clay loam, 10 to 15 percent slopes, severely eroded

Component: Tatum, severely eroded (100%)

The Tatum, severely eroded component makes up 100 percent of the map unit. Slopes are 10 to 15 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: TaF3—Tatum silty clay loam, 15 to 35 percent slopes, severely eroded

Component: Tatum, severely eroded (100%)

The Tatum, severely eroded component makes up 100 percent of the map unit. Slopes are 15 to 35 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Map Unit: TmB—Tatum very fine sandy loam, 2 to 6 percent slopes

Component: Tatum (100%)

The Tatum component makes up 100 percent of the map unit. Slopes are 2 to 6 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Map Unit: TmB2—Tatum very fine sandy loam, 2 to 6 percent slopes, eroded

Component: Tatum (100%)

The Tatum component makes up 100 percent of the map unit. Slopes are 2 to 6 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Map Unit: TmC—Tatum very fine sandy loam, 6 to 10 percent slopes

Component: Tatum (100%)

The Tatum component makes up 100 percent of the map unit. Slopes are 6 to 10 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: TmC2—Tatum very fine sandy loam, 6 to 10 percent slopes, eroded

Component: Tatum (100%)

The Tatum component makes up 100 percent of the map unit. Slopes are 6 to 10 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: TmD—Tatum very fine sandy loam, 10 to 15 percent slopes

Component: Tatum (100%)

The Tatum component makes up 100 percent of the map unit. Slopes are 10 to 15 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: TmD2—Tatum very fine sandy loam, 10 to 15 percent slopes, eroded

Component: Tatum (100%)

The Tatum component makes up 100 percent of the map unit. Slopes are 10 to 15 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: TmE—Tatum very fine sandy loam, 15 to 25 percent slopes

Component: Tatum (100%)

The Tatum component makes up 100 percent of the map unit. Slopes are 15 to 25 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Map Unit: TmE2—Tatum very fine sandy loam, 15 to 25 percent slopes, eroded

Component: Tatum (100%)

The Tatum component makes up 100 percent of the map unit. Slopes are 15 to 25 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Map Unit: TmF—Tatum very fine sandy loam, 25 to 35 percent slopes

Component: Tatum (100%)

The Tatum component makes up 100 percent of the map unit. Slopes are 25 to 35 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Map Unit: TrC2—Tirzah silt loam, 6 to 10 percent slopes, eroded

Component: Georgeville (100%)

The Georgeville component makes up 100 percent of the map unit. Slopes are 6 to 10 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: TrD2—Tirzah silt loam, 10 to 15 percent slopes, eroded

Component: Georgeville (100%)

The Georgeville component makes up 100 percent of the map unit. Slopes are 10 to 15 percent. This component is on interfluves on piedmonts. The parent material consists of clayey sericite schist. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Map Unit: W—Water

Component: Water (100%)

Generated brief soil descriptions are created for major soil components. The Water is a miscellaneous area.

Map Unit: WcB—Wickham sandy loam, 2 to 6 percent slopes

Component: Wickham (100%)

The Wickham component makes up 100 percent of the map unit. Slopes are 2 to 6 percent. This component is on stream terraces on piedmonts. The parent material consists of loamy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Map Unit: WcC2-Wickham sandy loam, 2 to 10 percent slopes, eroded

Component: Wickham (100%)

The Wickham component makes up 100 percent of the map unit. Slopes are 2 to 10 percent. This component is on stream terraces on piedmonts. The parent material consists of loamy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: WcE3—Wickham sandy loam, 10 to 25 percent slopes, severely eroded

Component: Pacolet, severely eroded (100%)

The Pacolet, severely eroded component makes up 100 percent of the map unit. Slopes are 10 to 25 percent. This component is on interfluves on piedmonts. The parent material consists of clayey granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Map Unit: WkD—Wilkes sandy loam, 6 to 15 percent slopes

Component: Wilkes (100%)

The Wilkes component makes up 100 percent of the map unit. Slopes are 6 to 15 percent. This component is on interfluves on piedmonts. The parent material consists of clayey intermediate and mafic igneous rocks. Depth to a root restrictive layer, bedrock, paralithic, is 10 to 20 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is very low. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Map Unit: WkD2—Wilkes sandy loam, 6 to 15 percent slopes, eroded

Component: Wilkes (100%)

The Wilkes component makes up 100 percent of the map unit. Slopes are 6 to 15 percent. This component is on interfluves on piedmonts. The parent material consists of clayey intermediate and mafic igneous rocks. Depth to a root restrictive layer, bedrock, paralithic, is 10 to 20 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is very low. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Map Unit: WkE2—Wilkes sandy loam, 15 to 25 percent slopes, eroded

Component: Wilkes (100%)

The Wilkes component makes up 100 percent of the map unit. Slopes are 15 to 25 percent. This component is on interfluves on piedmonts. The parent material consists of clayey intermediate and mafic igneous rocks. Depth to a root restrictive layer, bedrock, paralithic, is 10 to 20 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is very low. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 7e. This soil does not meet hydric criteria.

Map Unit: WkF—Wilkes sandy loam, 15 to 35 percent slopes

Component: Wilkes (100%)

The Wilkes component makes up 100 percent of the map unit. Slopes are 15 to 35 percent. This component is on interfluves on piedmonts. The parent material consists of clayey intermediate and mafic igneous rocks. Depth to a root restrictive layer, bedrock, paralithic, is 10 to 20 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is very low. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 7e. This soil does not meet hydric criteria.

Map Unit: WoB—Worsham sandy loam, 0 to 6 percent slopes

Component: Cartecay (55%)

The Cartecay component makes up 55 percent of the map unit. Slopes are 0 to 6 percent. This component is on flood plains on piedmonts. The parent material consists of loamy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is somewhat poorly drained. Water movement in the most restrictive layer is high. Available water to a depth of 60 inches (or restricted depth) is low. Shrink-swell potential is low. This soil is occasionally flooded. It is not ponded. A seasonal zone of water saturation is at 12 inches during January, February, March, April. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 3w. This soil does not meet hydric criteria.

Component: Toccoa (45%)

The Toccoa component makes up 45 percent of the map unit. Slopes are 0 to 6 percent. This component is on flood plains on piedmonts. The parent material consists of loamy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is rarely flooded. It is not ponded. A seasonal zone of water saturation is at 45 inches during January, February, March, April, December. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 2w. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 8 percent.

Cleveland County, North Carolina

Map Unit: ChA—Chewacla loam, 0 to 2 percent slopes, frequently flooded

Component: Chewacla, frequently flooded (80%)

The Chewacla, frequently flooded component makes up 80 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on southern piedmonts. The parent material consists of alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is somewhat poorly drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is moderate. This soil is frequently flooded. It is not ponded. A seasonal zone of water saturation is at 10 inches during January, February, March, December. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 4w. This soil does not meet hydric criteria.

Component: Toccoa, frequently flooded (15%)

Generated brief soil descriptions are created for major components. The Toccoa soil is a minor component.

Component: Wehadkee, ponded (5%)

Generated brief soil descriptions are created for major components. The Wehadkee soil is a minor component.

Map Unit: GrD-Grover gravelly sandy loam, 15 to 30 percent slopes, rocky

Component: Grover, rocky (90%)

The Grover, rocky component makes up 90 percent of the map unit. Slopes are 15 to 30 percent. This component is on hillslopes on ridges, uplands. The parent material consists of residuum weathered from mica schist and/or other micaceous metamorphic rock. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Component: Rock outcrop (1%)

Rock outcrop is a miscellaneous area. It consists of bare hard bedrock, mainly unweathered igneous and metamorphic rock. Land capability classification is 8s.

Map Unit: HeB—Helena-Worsham complex 1 to 6 percent slopes

Component: Helena (65%)

The Helena component makes up 65 percent of the map unit. Slopes are 1 to 6 percent. This component is on depressions, uplands. The parent material consists of saprolite derived from granite and gneiss and/or schist. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches is moderate. Shrink-swell potential is high. This soil is not flooded. It is not ponded. A seasonal zone of water saturation is at 24 inches during January, February, March, April, December. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Component: Worsham, drained (25%)

The Worsham, drained component makes up 25 percent of the map unit. Slopes are 0 to 3 percent. This component is on depressions, uplands. The parent material consists of alluvium and/or colluvium over saprolite derived from granite and gneiss. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is poorly drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. A seasonal zone of water saturation is at 6 inches during January, December. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 3w. This soil meets hydric criteria.

Map Unit: HhB—Hulett gravelly sandy loam, 2 to 8 percent slopes

Component: Hulett (90%)

The Hulett component makes up 90 percent of the map unit. Slopes are 2 to 8 percent. This component is on interfluves, uplands. The parent material consists of residuum weathered from mica schist and/or other micaceous metamorphic rock. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Map Unit: HtC—Hulett gravelly sandy loam, 8 to 15 percent slopes, stony

Component: Hulett, stony (90%)

The Hulett, stony component makes up 90 percent of the map unit. Slopes are 8 to 15 percent. This component is on hillslopes on ridges, uplands. The parent material consists of residuum weathered from mica schist and/or other micaceous metamorphic rock. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: HuC—Hulett-Saw complex, 4 to 15 percent slopes, very rocky

Component: Hulett, very rocky (70%)

The Hulett, very rocky component makes up 70 percent of the map unit. Slopes are 4 to 15 percent. This component is on hillslopes on ridges, uplands. The parent material consists of residuum weathered from mica schist and/or other micaceous metamorphic rock. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Component: Saw, very rocky (15%)

The Saw, very rocky component makes up 15 percent of the map unit. Slopes are 4 to 15 percent. This component is on hillslopes on ridges, uplands. The parent material consists of saprolite derived from granite and/or gneiss. Depth to a root restrictive layer, bedrock, lithic, is 20 to 40 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is very low. Available water to a depth of 60 inches is low. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Component: Rock outcrop (5%)

Rock outcrop is a miscellaneous area. It consists of bare hard bedrock, mainly unweathered igneous and metamorphic rock. Land capability classification is 8s.

Map Unit: HwB—Hulett-Urban land complex, 2 to 8 percent slopes

Component: Hulett (75%)

The Hulett component makes up 75 percent of the map unit. Slopes are 2 to 8 percent. This component is on interfluves, uplands. The parent material consists of residuum weathered from mica schist and/or other micaceous metamorphic rock. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Component: Urban land (25%)

Generated brief soil descriptions are created for major soil components. The Urban land is a miscellaneous area.

Map Unit: MaB2—Madison gravelly sandy clay loam, 2 to 8 percent slopes, moderately eroded

Component: Madison, moderately eroded (85%)

The Madison, moderately eroded component makes up 85 percent of the map unit. Slopes are 2 to 8 percent. This component is on interfluves, uplands. The parent material consists of residuum weathered from mica schist and/or other micaceous metamorphic rock. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Map Unit: MbB2—Madison-Bethlehem complex, 2 to 8 percent slopes, stony, moderately eroded

Component: Madison, moderately eroded (70%)

The Madison, moderately eroded component makes up 70 percent of the map unit. Slopes are 2 to 8 percent. This component is on interfluves, uplands. The parent material consists of residuum weathered from mica schist and/or other micaceous metamorphic rock. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Component: Bethlehem, moderately eroded (30%)

The Bethlehem, moderately eroded component makes up 30 percent of the map unit. Slopes are 2 to 8 percent. This component is on interfluves, uplands. The parent material consists of residuum weathered from metamorphic rock and/or schist. Depth to a root restrictive layer, bedrock, lithic, is 40 to 96 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is very low. Available water to a depth of 60 inches is low. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Map Unit: McC2—Madison-Bethlehem complex, 8 to 15 percent slopes, very stony, moderately eroded

Component: Madison, very stony (60%)

The Madison, very stony component makes up 60 percent of the map unit. Slopes are 8 to 15 percent. This component is on hillslopes on ridges, uplands. The parent material consists of residuum weathered from mica schist and/or other micaceous metamorphic rock. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 6s. This soil does not meet hydric criteria.

Component: Bethlehem, very stony (35%)

The Bethlehem, very stony component makes up 35 percent of the map unit. Slopes are 8 to 15 percent. This component is on hillslopes on ridges, uplands. The parent material consists of residuum weathered from metamorphic rock and/or schist. Depth to a root restrictive layer, bedrock, paralithic, is 20 to 40 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is very low. Available water to a depth of 60 inches is low. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 6s. This soil does not meet hydric criteria.

Map Unit: TaD—Tatum-Montonia complex, 15 to 30 percent slopes

Component: Tatum (50%)

The Tatum component makes up 50 percent of the map unit. Slopes are 15 to 30 percent. This component is on interfluves, uplands. The parent material consists of residuum weathered from schist and/or other metamorphic rock. Depth to a root restrictive layer, bedrock, lithic, is 60 to 80 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is very low. Available water to a depth of 60 inches is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Component: Montonia (45%)

The Montonia component makes up 45 percent of the map unit. Slopes are 15 to 30 percent. This component is on interfluves, uplands. The parent material consists of residuum weathered from schist and/or other metamorphic rock. Depth to a root restrictive layer, bedrock, paralithic, is 20 to 40 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is very low. Available water to a depth of 60 inches is low. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 6e. This soil does not meet hydric criteria.

Map Unit: UuB2—Uwharrie silty clay loam, 2 to 8 percent slopes, moderately eroded

Component: Uwharrie, moderately eroded (85%)

The Uwharrie, moderately eroded component makes up 85 percent of the map unit. Slopes are 2 to 8 percent. This component is on uplands, interfluves. The parent material consists of residuum weathered from metavolcanics and/or argillite. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches is high. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Map Unit: UwC2—Uwharrie-Tatum complex, 8 to 15 percent slopes, moderately eroded

Component: Uwharrie, moderately eroded (65%)

The Uwharrie, moderately eroded component makes up 65 percent of the map unit. Slopes are 8 to 15 percent. This component is on hillslopes on ridges, uplands. The parent material consists of residuum weathered from metavolcanics and/or argillite. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches is high. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Component: Tatum, moderately eroded (30%)

The Tatum, moderately eroded component makes up 30 percent of the map unit. Slopes are 8 to 15 percent. This component is on hillslopes on ridges, uplands. The parent material consists of residuum weathered from metavolcanics and/or argillite. Depth to a root restrictive layer, bedrock, paralithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is very low. Available water to a depth of 60 inches is moderate. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Map Unit: W-Water

Component: Water (100%)

Generated brief soil descriptions are created for major soil components. The Water is a miscellaneous area.

Data Source Information

,	Cherokee County, South Carolina Version 12, Sep 29, 2015
,	Cleveland County, North Carolina Version 18, Sep 13, 2015

4. Stormwater Analysis

The hydrologic and hydraulic analyses have been completed according to SCDOT's *Requirements for Hydraulic Design Studies*, dated May 26, 2009. Specific design standards and analysis techniques are described below.

Pre Versus Post Construction Analysis:

Drainage areas for the project were delineated using field surveys, U.S. Geological Survey's topographic quadrangles, and StreamStats. Pre and post discharges for the project's watersheds were calculated using either the Rational method, SCS method, or Regression method. The method used depended upon the size of the drainage area specified by SCDOT's *Requirements for Hydraulic Design Studies*, dated May 26, 2009. The rational method was used for drainage areas up to 100 acres, the SCS method was used for drainage areas between 100 acres – 640 acres, and the regression method was used for drainage areas greater than 640 acres. Rainfall intensities are from the SCDOT regional intensity curves and the time of concentrations were determined using the Soil Conservation Services' TR-55 methodology. The minimum time of concentration used was 5 minutes. Lastly, WIN – TR 55 was used for pre/post analyses requiring SCS methods; while equations and methods specified in the USGS SIR 2009-5156 and SIR 2014-5030 were used when regression analysis was warranted.

Cross-Line Analysis:

Cross-lines were analyzed according to the SCDOT's *Requirements for Hydraulic Design Studies*, dated May 26, 2009. Design storms used for analyses were determined based on the roadway classification. All existing cross-lines along I-85 were analyzed for the 50-year design storms. Frontage road cross-lines were analyzed for 25-year design storms. All cross-lines were analyzed for performance during 100-year design storms. The Federal Highway Administration's HY-8 program was used to determine headwater elevations for existing cross-lines to evaluate their performance. Additionally, GEOPAK Drainage was used to analyze existing cross-line drainage systems.

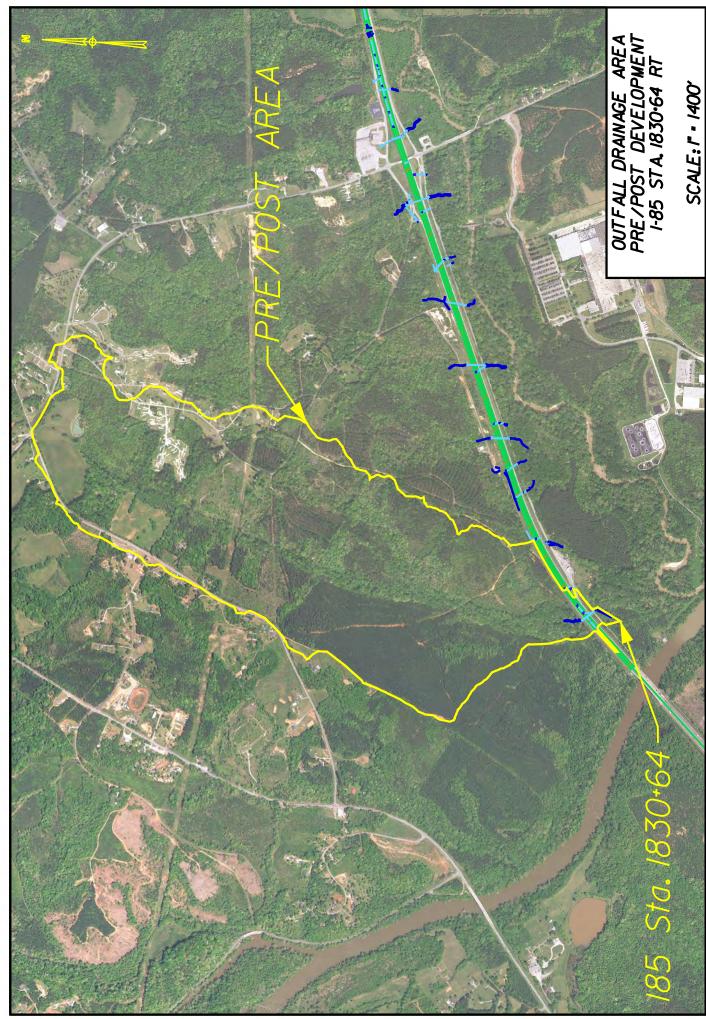
The stormwater management analyses are provided in this section.

4.1 Pre Versus Post Construction Outfall Analysis

Analyses were performed on fifty outfalls to determine the potential impact construction may have on the surrounding areas. Pre versus post construction conditions were compared to evaluate the change in runoff. The ultimate receiving bodies for these outfalls include Buffalo Creek, Bee Branch, Jumping Branch, and Mill Creek. Pre and post discharges were calculated using either the Rational method, SCS method, or Regression method. The method used depended upon the size of the drainage area per SCDOT's *Requirements for Hydraulic Design Studies*, dated May 26, 2009. The hydrologic analyses indicated that the increase in discharge at each outfall is negligible relative to the overall watershed. Peak roadway discharge will generally occur well in advance of the overall watershed peak, further reducing impacts to the overall watershed. Detention will unnecessarily add cost to the project, increase long term maintenance costs, and is not recommended to control the negligible changes in discharge. The watershed hydrologic analyses are provided in this section. A summary of the 10-year pre and post outfall discharges are shown in *Table 4.1*.

Table 4.1 – Outfall Pre and Post Discharges

	Outfall Outfall		Nearest Receiving	_	Di	scharge (cfs)
Route	Channel	Outfall Side	Waterbody	Area (Acres)	10 - Yea	ar Return	Interval
	Station	Side	(RWB)	(Acres)	Pre	Post	Change
l - 85	1830 + 64	RT	Unnamed tributary to Buffalo Creek	462.04	328	328	0
I - 85	1837 + 90	RT	Buffalo Creek	4.52	21	23	2
I - 85	1845 + 09	RT	Buffalo Creek	12.36	12	13	1
I - 85	1855 + 23	RT	Buffalo Creek	9.89	9	9	0
l - 85	1859 + 21	RT	Buffalo Creek	7.12	10	11	1
l - 85	1862 + 53	RT	Buffalo Creek	57.41	42	42	0
I - 85	1864 + 95	RT	Buffalo Creek	3.17	11	13	2
I - 85	1873 + 82	RT	Buffalo Creek	71.73	80	83	3
I - 85	1883 + 42	RT	Buffalo Creek	10.11	8	8	0
I - 85	1891 + 07	RT	Buffalo Creek	4.04	6	6	0
l - 85	1899 + 76	RT	Unnamed tributary to Buffalo Creek	324.82	313	313	0
l - 85	1903 + 38	RT	Buffalo Creek	2.39	9	11	2
I - 85	1910 + 64	RT	Buffalo Creek	96.13	78	82	4
I - 85	1916 + 80	RT	Unnamed tributary to Buffalo Creek	58.54	57	56	-1
I - 85	1924 + 57	CL	Buffalo Creek	1.60	9	10	1
I - 85	1945 + 43	LT	Unnamed tributary to Buffalo Creek	955.00	509	509	0
I - 85	1969 + 52	LT	Unnamed tributary to Buffalo Creek	1.25	3	4	1
I - 85	1973 + 22	LT	Unnamed tributary to Buffalo Creek	2.30	5	6	1
l - 85	1975 + 08	LT	Unnamed tributary to Buffalo Creek	23.68	56	61	5


Outfall			Nearest Receiving		Discharge (cfs)			
Route	Channel	Outfall Side	Waterbody	Area	10 - Ye	ar Return	Interval	
	Station	Side	(RWB)	(Acres)	Pre	Post	Change	
I - 85	1997 + 27	LT	Unnamed tributary to Buffalo Creek	8.00	18	20	2	
I - 85	2005 + 18	LT	Unnamed tributary to Buffalo Creek	7.15	17	19	2	
I - 85	2015 + 32	LT	Unnamed tributary to Buffalo Creek	80.09	99	103	4	
I - 85	2017 + 21	LT	Unnamed tributary to Buffalo Creek	50.42	59	64	5	
I - 85	2028 + 67	LT	Unnamed tributary to Buffalo Creek	26.76	54	54	0	
I - 85	2032 + 83	LT	Unnamed tributary to Buffalo Creek	97.93	175	183	8	
I - 85	2038 + 46	LT	Unnamed tributary to Buffalo Creek	59.15	95	98	3	
I - 85	2040 + 24	LT	Unnamed tributary to Buffalo Creek	26.84	37	38	1	
l - 85	2064 + 90	LT	Unnamed tributary to Bee Branch	96.19	128	132	4	
l - 85	2076 + 44	LT	Unnamed tributary to Bee Branch	102.14	117	124	7	
l - 85	2081 + 60	LT	Unnamed tributary to Bee Branch	60.42	95	98	3	
I - 85	2098 + 61	LT	Unnamed tributary to Bee Branch	23.23	42	42	0	
I - 85	2114 + 87	LT	Unnamed tributary to Bee Branch	239.96	246	260	14	
l - 85	2124 + 49	LT	Unnamed tributary to Bee Branch	5.70	14	13	-1	
l - 85	2129 + 64	LT	Unnamed tributary to Bee Branch	13.58	28	32	4	
l - 85	2141 + 13	LT	Bee Branch	87.98	128	136	8	
l - 85	2143 + 72	LT	Bee Branch	40.92	78	82	4	
l - 85	2149 + 61	LT	Unnamed tributary to Bee Branch	22.71	57	55	-2	
l - 85	2153 + 84	LT	Unnamed tributary to Bee Branch	41.18	91	91	0	
l - 85	2165 + 54	LT	Unnamed tributary to Bee Branch	27.89	40	45	5	

	Outfall		Nearest Receiving	_	Di	Discharge (cfs)				
Route	Channel	Outfall Side	Waterbody	Area (Acres)	10 - Yea	ar Return	Interval			
	Station	Side	(RWB)	(Acres)	Pre	Post	Change			
I - 85	2170 + 46	LT	Unnamed tributary to Bee Branch	21.89	19	22	3			
I - 85	2173 + 17	LT	Unnamed tributary to Bee Branch	15.37	24	27	3			
I - 85	2204 + 63	RT	Unnamed tributary to Jumping Branch	33.31	34	37	3			
I - 85	2218 + 74	RT	Unnamed tributary to Jumping Branch	42.10	51	55	4			
I - 85	2223 + 02	RT	Unnamed tributary to Jumping Branch	49.60	62	66	4			
I - 85	2241 + 54	RT	Mill Creek	7.68	10	11	1			
I - 85	2246 + 42	RT	Mill Creek	2.65	4	5	1			
I - 85	2249 + 11	RT	Mill Creek	23.35	80	77	-3			
l - 85	2252 + 39	RT	Mill Creek	43.22	94	95	1			
l - 85	2257 + 89	RT	Mill Creek	72.79	130	137	7			
l - 85	2268 + 63	RT	Mill Creek	24.74	25	25	0			

OUTFALL 1830+64 RT

This outfall receives runoff from offsite areas as well as roadway discharge from Sta. 1827+50 to Sta. 1839+00, which ultimately feeds into Buffalo Creek. The drainage area is approximately 462 acres and is mostly wooded with minimal development. Roadway runoff is routed to the outfall through multiple existing storm sewer systems; while offsite runoff is routed under I-85 through an existing 8' x 8' R.C. box culvert and then into a 96" CMP pipe. Discharge from this outfall is released into a heavily wooded area and is then conveyed to an unnamed tributary that feeds into Buffalo Creek. There will be no change in discharge from pre to post development conditions for the 10-year design storm. Therefore, the proposed I-85 improvements will have no adverse downstream impact.

		SCS	Analysis					
HSG	Land Use	Acres	CN					
В	Impervious	3.51	98.00					
В	Streets and roads: Paved open ditches	13.75	89.00		Area W	eighted C	N	
В	Streets and roads: Dirt	5.95	82.00			57		
В	Residential: 1/3 acre	10.35	72.00					
В	Pasture, grassland, or range: Good	54.25	61.00					
В	Woods:Good	348.95	55.00					
А	Pasture, grassland, or range: Good	1.79	39.00					
А	Woods:Good	23.49	30.00					
		462.04		1				
				1				
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	.73	J				
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [h
Sheet	Woods:dense underbrush	7.38%	100				[:00]	0.3
Shallow		7 000/						
Concentrated Shallow	Unpaved	7.38%	1472					0.0
Concentrated								
Channel 1		1.53%	7849	0.04	18	13.7295	5.512184	0.3
Channel 2								
otal			9421				3.1483	0.8
			1					1
	Drainage Area (acres)	462.04		Curve	e Number	5	57	
					Concentration			

WinTR-55 Current Data Description

--- Identification Data ---

User: CECS Date: 12/13/2016 Project: I-85 Improvement Proj DB Prep Units: English SubTitle: OUTFALL 1830+64 RT (PRE) Areal Units: Acres State: South Carolina County: Cherokee_NOAA_B Filename: S:\Proj\2014\6114 I-85 mm 96-106\Design\Project PIN Number\Drainage\Calculations\OUTFALL\Q50 AN

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
1830+64 RT		Outlet	462.04	57	0.833

Total area: 462.04 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.73	4.68	5.44	6.49	7.35	8.24	3.1

Storm Data Source:Cherokee_NRainfall Distribution Type:Type NO_BDimensionless Unit Hydrograph:<standard>

Cherokee_NOAA_B County, SC (NRCS) Type NO_B <standard>

I-85 Improvement Proj DB Prep OUTFALL 1830+64 RT (PRE) Cherokee_NOAA_B County, South Carolina

Watershed Peak Table

Sub-Area or Reach Identifier	10-Yr	k Flow by 25-Yr (cfs)	50-Yr	Return Period 100-Yr (cfs)	_
SUBAREAS 1830+64 RT	328.49	510.18	673.02	852.33	
REACHES					

OUTLET 328.49 510.18 673.02 852.33

CECS

12/13/2016 9:45:36 AM

		SCS /	Analysis					
HSG	Land Use	Acres	CN					
В	Impervious	3.85	98.00					
В	Streets and roads: Paved open ditches	13.75	89.00		Area W	eighted C	N	
В	Streets and roads: Dirt	5.95	82.00			57		
В	Residential: 1/3 acre	10.35	72.00					
В	Pasture,grassland,or range: Good	54.24	61.00					
В	Woods:Good	348.95	55.00					
А	Pasture, grassland, or range: Good	1.46	39.00					
А	Woods:Good	23.49	30.00					
		462.04		J				
		462.04		_	_	_	_	l
	County (NOAA-14)	2-vear 24 Ho	our rainfall [in]	1				
	Cherokee		5.73					
	cherokee			J				
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr
Sheet	Woods:dense underbrush	7.38%	100	0.8				0.34
Shallow Concentrated	Unpaved	7.38%	1472					0.09
Shallow		,	1772					0.01
Concentrated								
Channel 1		1.53%	7849	0.04	18	13.7295	5.512184	0.39
Channel 2								
otal			9421				3.1483	0.83
	Drainage Area	462.04						
	(acres)	462.04		Curve	e Number		57	
			1	Time of C	Concentration			
							50	

WinTR-55 Current Data Description

--- Identification Data ---

User: CECS Date: 12/13/2016 Project: I-85 Improvement Proj DB Prep Units: English SubTitle: OUTFALL 1830+64 RT (POST) Areal Units: Acres State: South Carolina County: Cherokee_NOAA_B Filename: S:\Proj\2014\6114 I-85 mm 96-106\Design\Project PIN Number\Drainage\Calculations\OUTFALL\Q50 AN

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
1830+64 RT		Outlet	462.04	57	0.833

Total area: 462.04 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.73	4.68	5.44	6.49	7.35	8.24	3.1

Storm Data Source:Cherokee_NRainfall Distribution Type:Type NO_BDimensionless Unit Hydrograph:<standard>

Cherokee_NOAA_B County, SC (NRCS) Type NO_B <standard>

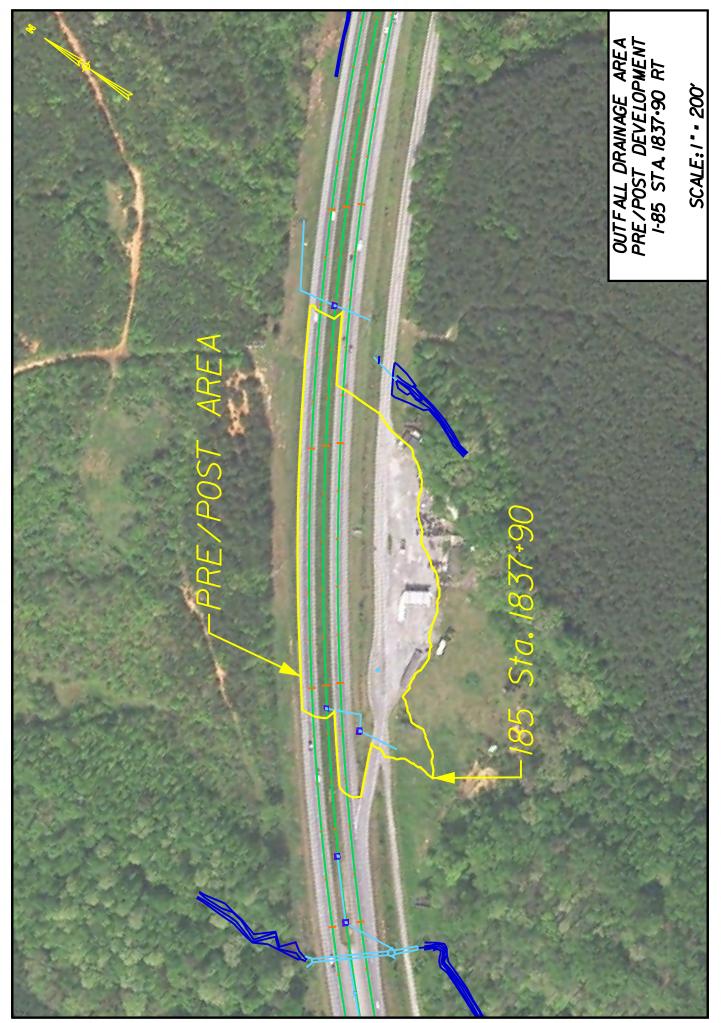
12/13/2016 9:40:32 AM

I-85 Improvement Proj DB Prep OUTFALL 1830+64 RT (POST) Cherokee_NOAA_B County, South Carolina

Watershed Peak Table

Sub-Area or Reach Identifier	Pea 10-Yr (cfs)	25-Yr	50-Yr	Return Period 100-Yr (cfs)	
SUBAREAS 1830+64 RT	328.49	510.18	673.02	852.33	
REACHES					

OUTLET 328.49 510.18 673.02 852.33


CECS

12/13/2016 9:40:33 AM

OUTFALL 1837+90 RT

This outfall primarily receives roadway discharge from Sta. 1839+00 to Sta. 1848+00. The drainage area is approximately 4.5 acres and encompasses only paved and grassed areas. Roadway discharge is routed under I-85 to the outfall via an existing storm sewer system. Runoff from this outfall is released into a heavily wooded area and is then conveyed to Buffalo Creek. The proposed I-85 improvements will increase imperviousness due to an increase in median pavement. As a result, there will be a negligible increase in discharge of 2 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no downstream impact and detention is not recommended.

		Rat	tional Analysis			
Land Slope	Land Use	Acres	С			
Rolling, 2%-10%	Pavements & Roofs	2.83	0.90	1		
Rolling, 2%-10%	Side Slopes, Turf	1.69	0.30		Area	Weighted C
-						0.68
				1		
				-		
				1		
				1		
	L	4.52		4		
				_		
	County (NOAA-14)		our rainfall [in]			
	Cherokee	3	.73			
			Gaffney			
	Time of Concent	ration	5			
	(minutes)		5			
		C _f	С	l [in/hr]	AREA (ac)	CFS
	Q ₁₀	1	0.68	6.770	4.52	21
	Q ₂₅	1.1	0.68	7.845	4.52	26
	Q ₅₀	1.2 1.25	0.68	8.698 9.546	4.52 4.52	32 36
	Q ₁₀₀					

		Rat	tional Analysis			
	-			r —	_	
Land Slope	Land Use	Acres	С			
Rolling, 2%-10%	Pavements & Roofs	3.43	0.90			
Rolling, 2%-10%	Side Slopes, Turf	1.09	0.30		Area	Weighted C
						0.76
				1		
				1		
				1		
				-		
				1		
				1		
				1		
		4.52		1		
				_		
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]			
	Cherokee	3	.73			
		_		_	_	
			Gaffney			
	Time of Concent	tration	-			
	(minutes)		5			
		C _f	С	I [in/hr]	AREA (ac)	CFS
	Q ₁₀	1	0.76	6.770	4.52	23
	Q ₂₅	1.1	0.76	7.845	4.52	29
	Q ₅₀	1.2	0.76	8.698	4.52	36
	Q ₁₀₀	1.25	0.76	9.546	4.52	41

OUTFALL 1845+09 RT

This outfall receives runoff from offsite areas as well as roadway discharge from Sta. 1848+00 to Sta. 1852+00. The drainage area is approximately 12 acres and includes roadway pavement, grassed medians, and wooded areas. Offsite and roadway runoff is routed under I-85 to the outfall via an existing storm sewer system. Discharge from this outfall is released into a heavily wooded area and is then conveyed to Buffalo Creek. The I-85 improvements will increase imperviousness due to the proposed median paving. As a result, there will be a negligible increase in discharge of 1 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		Rat	ional Analysis					
	-							r
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.85	0.90					
Rolling, 2%-10%	Unpaved Road, Clay Soils	0.27	0.53		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	1.94	0.30			0.23		
Rolling, 2%-10%	Woodland & Forest	9.30	0.15					
		12.36						
	_							
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3.	.73					
_			_) (ala aitu	
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	5.66%	100	0.8			[:0/0]	0.38
Shallow								
Concentrated	Unpaved	5.66%	869					0.06
Shallow Concentrated								
Channel 1								
Channel 2								
Total			969				0.6070	0.44
	7	L						
			Gaffney					
			Ganney					
	Time of Concentr	ation	27					
	(minutes)		27					
	-							
		C _f	C	I [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.23	4.222	12.36		12	
	Q ₂₅	1.1	0.23	4.821	12.36		15	
	Q ₅₀	1.2	0.23	5.287	12.36	-	18	

0.23

5.741

12.36

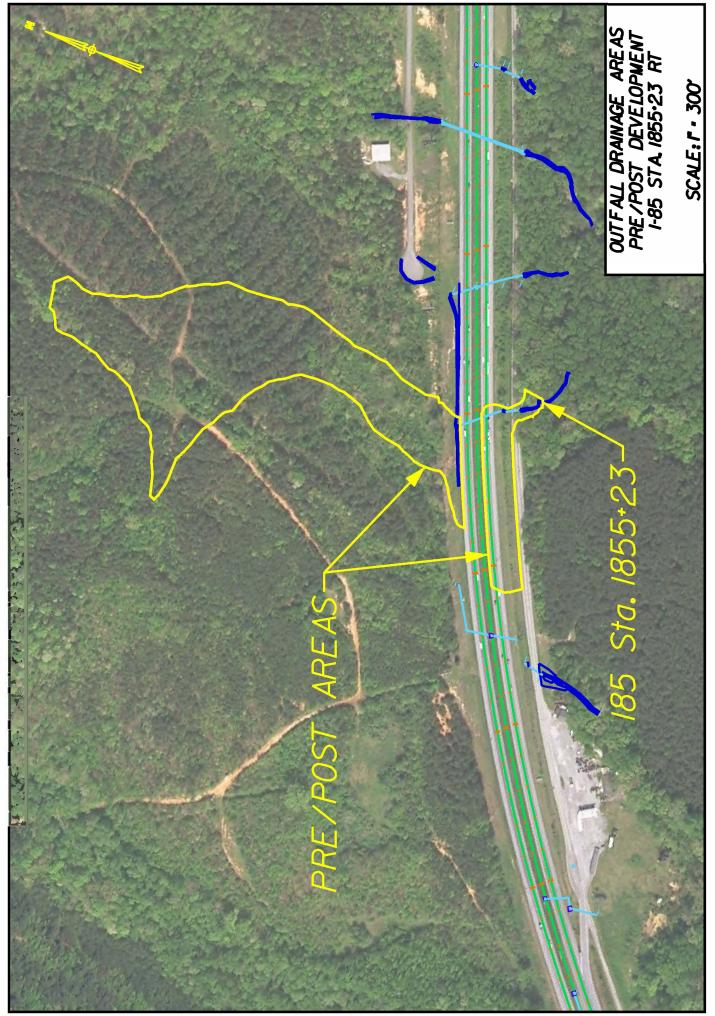
21

		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	1.15	0.90					
Rolling, 2%-10%	Unpaved Road, Clay Soils	0.27	0.53		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	1.64	0.30			0.25		
Rolling, 2%-10%	Woodland & Forest	9.30	0.15					
	l	12.36						
		2 year 24 Hz	our rainfall [in]	1				
	County (NOAA-14) Cherokee	-	.73					
	Cherokee		.75					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	5.66%	100	0.8				0.381
Shallow								
Concentrated Shallow	Unpaved	5.66%	869					0.063
Concentrated								
Channel 1								
Channel 2								
Total			969				0.6070	0.443
						_		1
			Gaffney		-			
	Time of Concentr	ration	27					
	(minutes)							
		C _f	С	L [ip/br]	AREA (ac)		:FS	
	Q ₁₀	C _f	0.25	I [in/hr] 4.222	12.36		.rs 13	
	Q ₁₀ Q ₂₅	1.1	0.25	4.821	12.30		16	
	Q ₂₅	1.2	0.25	5.287	12.36		19	
	50							

0.25

5.741

12.36


22

OUTFALL 1855+23 RT

This outfall receives runoff from offsite areas as well as roadway discharge from Sta. 1849+50 to Sta. 1855+00. The drainage area is approximately 10 acres and includes roadway pavement, grassed medians, and wooded areas. Offsite and roadway runoff is routed under I-85 to the outfall via an existing storm sewer system. Discharge from this outfall is released into a heavily wooded area and is then conveyed to Buffalo Creek. There will be no change in discharge from pre to post development conditions for the 10-year design storm. Therefore, the proposed I-85 improvements will have no adverse downstream impact.

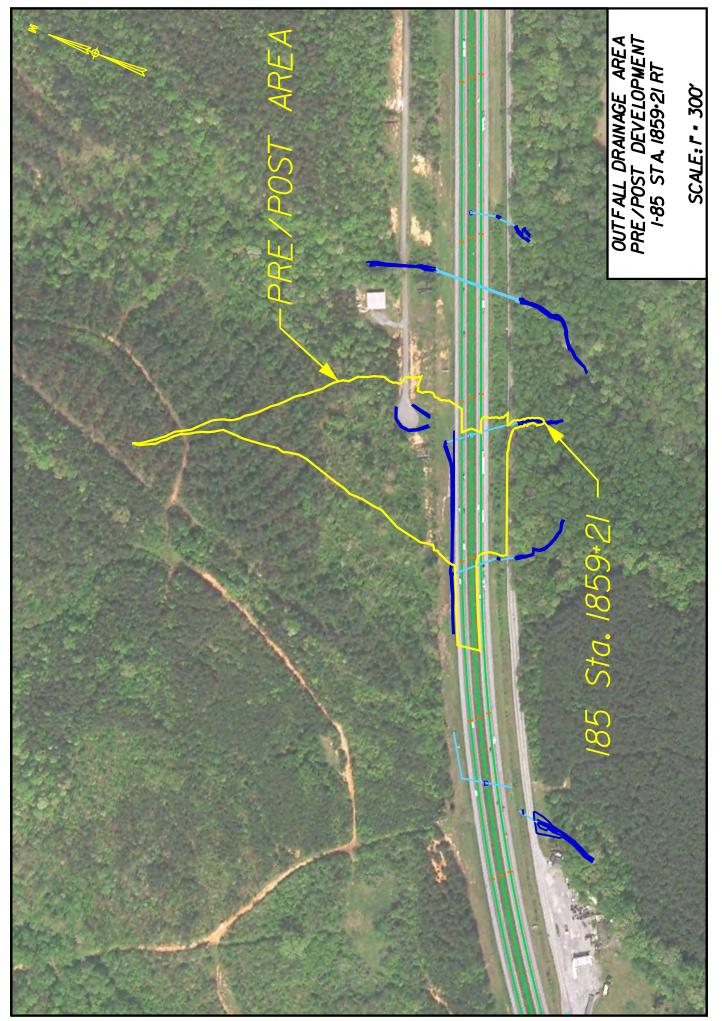
		Rat	ional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.52	0.90					
Rolling, 2%-10%	Unpaved Road, Clay Soils	0.21	0.53		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	1.70	0.30			0.22		
Rolling, 2%-10%	Woodland & Forest	7.46	0.15					
	l	9.89				_		
	County (NOAA-14)	2 year 24 Ho	ur rainfall [in]	1				
	Cherokee		.73					
		-						
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	6.28%	100	0.8				0.36
Shallow Concentrated	Unpaved	6.28%	1666					0.10
Shallow	Unpaved	0.28%	1556					0.10
Concentrated								
Channel 1								
Channel 2								
Total]	L	1656				0.9745	0.47
			0.11	_	_	_		
			Gaffney					
	Time of Concentr	ration	29					
	(minutes)							
		6	-				256	
		C _f 1	C 0.22	I [in/hr] 4.082	AREA (ac) 9.89		:FS 9	
	Q ₁₀ Q ₂₅	1.1	0.22	4.082	9.89		9 L1	
	Q ₂₅	1.1	0.22	5.105	9.89		L4	
	-450			0.100	0.00			

5.541

9.89

15

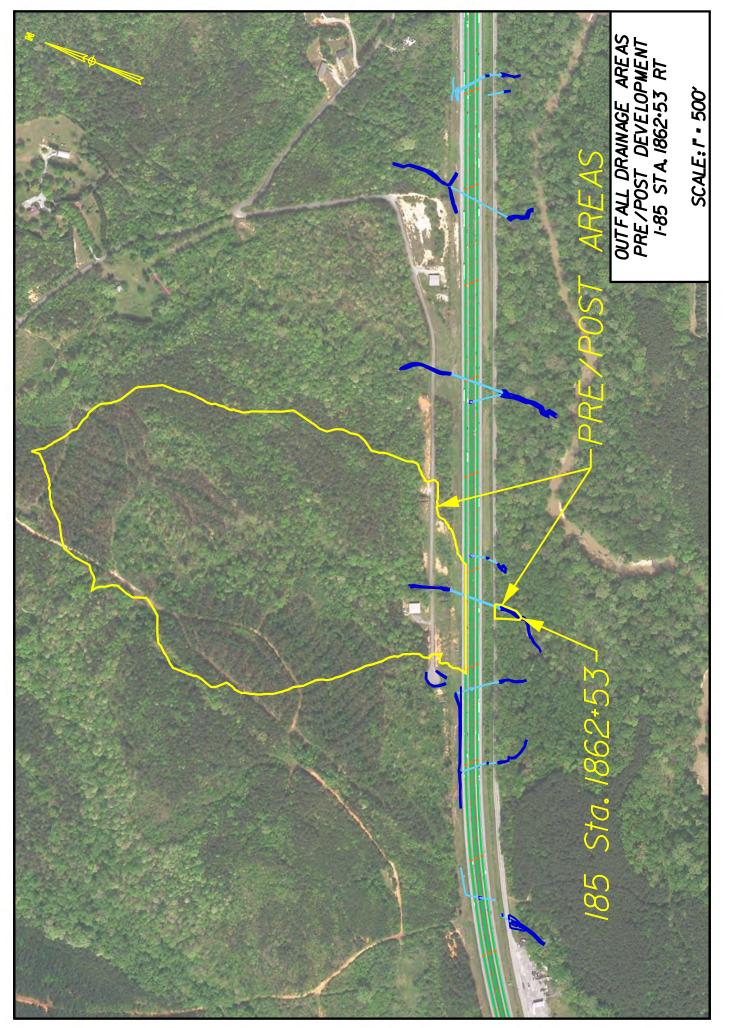
0.22


		Rat	tional Analysis					
	1							
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.51	0.90					
Rolling, 2%-10%	Unpaved Road, Clay Soils	0.21	0.53		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	1.71	0.30			0.22		
Rolling, 2%-10%	Woodland & Forest	7.46	0.15					
		9.89		l				
	L							
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	.73					
	-						T	
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	6.28%	100	0.8				0.36
Shallow								
Concentrated Shallow	Unpaved	6.28%	1556					0.10
Concentrated								
Channel 1								
Channel 2								
Total			1656				0.9745	0.47
	-							
		_	Gaffney	_	_	_	_	
	Time of Concentr	ation						
	(minutes)		29					
	(
		C _f	С	l [in/hr]	AREA (ac)	C	CFS	
	Q ₁₀	1	0.22	4.082	9.89		9	
	Q ₂₅	1.1	0.22	4.658	9.89		11	
	Q ₅₀	1.2	0.22	5.105	9.89	1	13	
	Q ₁₀₀	1.25	0.22	5.541	9.89	1	15	

OUTFALL 1859+21 RT

This outfall receives runoff from offsite areas as well as roadway discharge from Sta. 1852+00 to Sta. 1859+00. The drainage area is approximately 7 acres and includes roadway pavement, grassed medians, and wooded areas. Offsite and roadway runoff is routed under I-85 to the outfall via an existing storm sewer system. Discharge from this outfall is released into a heavily wooded area and is then conveyed to Buffalo Creek. The I-85 improvements will increase imperviousness due to the proposed increase in median pavement. As a result, there will be a negligible increase in discharge of 1 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		Rat	tional Analysis					
	-							
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	1.10	0.90					
Rolling, 2%-10%	Side Slopes, Turf	1.79	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Woodland & Forest	4.23	0.15			0.30		
0,								
	l							
		7.12						
	l	7.12	_	_	_	_		l
	County (NOAA-14)	2-voar 2/1 Ho	our rainfall [in]					
	Cherokee	-	.73					
	Cherokee		.75					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	8.68%	100	0.8				0.321
Shallow								
Concentrated	Unpaved	8.68%	571					0.033
Shallow Concentrated								
Channel 1								
Channel 2								
Total			671				0.5261	0.354
	-			l				
						-		
			Gaffney					
	Time of Concentr	ation	22					
	(minutes)							
		C _f	С	l [in/hr]	AREA (ac)	C	:FS	
	Q ₁₀	1	0.30	4.618	7.12		LO	
	Q ₁₀	1.1	0.30	5.284	7.12		13	
	-20							
	Q ₅₀	1.2	0.30	5.804	7.12	1	15	


		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	1.59	0.90					
Rolling, 2%-10%	Side Slopes, Turf	1.30	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Woodland & Forest	4.23	0.15			0.34		
0,								
		7 1 2		J				
	l	7.12						
	County (NOAA-14)	2 year 24 He	our rainfall [in]	1				
	Cherokee		.73					
	Cherokee	3	.73	J				
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	8.68%	100	0.8				0.321
Shallow								
Concentrated	Unpaved	8.68%	571					0.033
Shallow Concentrated								
Channel 1								
Channel 2								
Total			671			1	0.5261	0.354
Total	1	L	071	J			0.3201	0.554
			Gaffney					
	There all Concerns							
	Time of Concentr	ation	22					
	Time of Concentr (minutes)	ation	22					
				l [in/br]	AREA (ac)		ΈS	
	(minutes)	C _f	C	l [in/hr]	AREA (ac)		:FS	
	(minutes)	C _f 1	C 0.34	4.618	7.12	1	11	
	(minutes)	C _f	C					

OUTFALL 1862+53 RT

This outfall is approximately 57 acres and primarily receives offsite discharge from a heavily wooded area with minimal pavement and grass. Offsite runoff is routed under I-85 to the outfall via an existing 4' x 6' R.C. box culvert. Discharge from this outfall is released into a heavily wooded area and is then conveyed to Buffalo Creek. There will be no change in discharge from pre to post development conditions for the 10-year design storm. Therefore, the proposed I-85 improvements will have no adverse downstream impact.

		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.74	0.90	1				
Rolling, 2%-10%	Unpaved Road, Clay Soils	0.61	0.53		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	3.03	0.30			0.18		
Rolling, 2%-10%	Unimproved Areas	1.41	0.20					
Hilly, Over 10%	Woodland & Forest	8.02	0.20					
Rolling, 2%-10%	Woodland & Forest	43.60	0.15					
				-				
				-				
				-				
				-				
				1				
		57.41		2				
	County (NOAA-14)	2	un nainfall [in]	1				
	Cherokee	-	our rainfall [in] .73	1				
	Cherokee		.75	1				
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	8.21%	100	0.8				0.328
Shallow		0.2404						0.000
Concentrated Shallow	Unpaved	8.21%	1434					0.086
Concentrated								
Channel 1		3.88%	1011	0.045	11.5	18.178	4.80901	0.058
Channel 2								
Total			2545				1.4960	0.473
		_	_	_	_			
			Gaffney					
	Time of Concentr (minutes)	ration	29					
					1			

	C _f	С	I [in/hr]	AREA (ac)	CFS
Q ₁₀	1	0.18	4.082	57.41	42
Q ₂₅	1.1	0.18	4.658	57.41	53
Q ₅₀	1.2	0.18	5.105	57.41	63
Q ₁₀₀	1.25	0.18	5.541	57.41	72
		-			

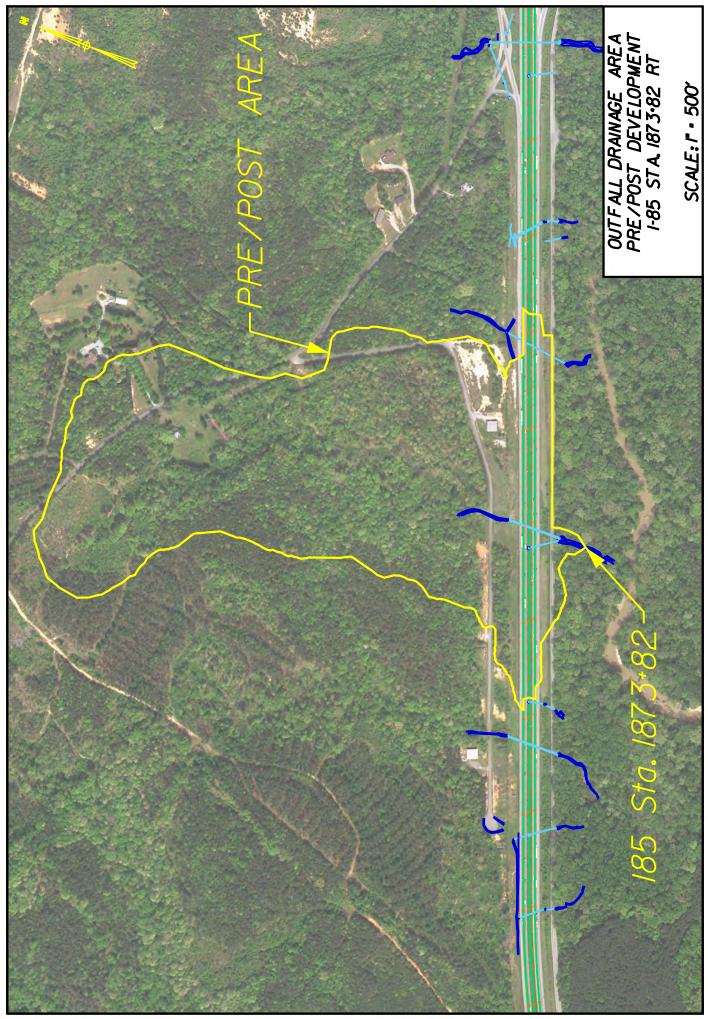
		Rat	tional Analysis					
			···· / ··					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.75	0.90					
Rolling, 2%-10%	Unpaved Road, Clay Soils	0.61	0.53		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	3.02	0.30			0.18		
Rolling, 2%-10%	Unimproved Areas	1.41	0.20					
Hilly, Over 10%	Woodland & Forest	8.02	0.20					
Rolling, 2%-10%	Woodland & Forest	43.60	0.15					
		57.41		J				
		57.41						
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]]				
	Cherokee	3	.73					
				1	•		1	
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	8.21%	100	0.8				0.32
Shallow								
Concentrated Shallow	Unpaved	8.21%	1434					0.08
Concentrated								
Channel 1		3.88%	1011	0.045	11.5	18.178	4.80901	0.05
Channel 2		/ -						
Total			2545				1.4960	0.47
	-							
			Gaffney					
	Time of Concent	ration						
	(minutes)		29					
		C _f	С	I [in/hr]	AREA (ac)	C	:FS	
		Ct	L		ANLA (at)	L C		

	C _f	C	I [in/hr]	AREA (ac)	CFS
Q ₁₀	1	0.18	4.082	57.41	42
Q ₂₅	1.1	0.18	4.658	57.41	53
Q ₅₀	1.2	0.18	5.105	57.41	63
Q ₁₀₀	1.25	0.18	5.541	57.41	72

OUTFALL 1864+95 RT

This outfall primarily receives roadway discharge from Sta. 1859+00 to Sta. 1866+00. The drainage area is approximately 3 acres, and encompasses mostly paved and grassed areas. Roadway discharge is routed under I-85 to the outfall via an existing storm sewer system. Runoff from this outfall is released into a heavily wooded area and is then conveyed to Buffalo Creek. The I-85 improvements will increase imperviousness due to the proposed increase in median pavement. As a result, there will be a negligible increase in discharge of 2 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		Ra	ational Analysis			
Land Slope	Land Use	Acres	С			
Rolling, 2%-10%	Pavements & Roofs	1.16	0.90			
Rolling, 2%-10%	Side Slopes, Turf	1.88	0.30		Area	Weighted C
Hilly, Over 10%	Woodland & Forest	0.13	0.20			0.52
<i>,,</i>						
			Ī			
		3.17		•		
	-			1		
	County (NOAA-14)		our rainfall [in]			
	Cherokee	3	3.73			
			Gaffney			
	Time of Concent	tration	5			
	(minutes)		5			
		C _f	С	I [in/hr]	AREA (ac)	CFS
	Q ₁₀	1	0.52	6.770	3.17	11
		1.1	0.52	7.845	3.17	14
	Q ₂₅					
	Q ₂₅ Q ₅₀ Q ₁₀₀	1.2 1.25	0.52	8.698 9.546	3.17 3.17	17 19


		Ra	tional Analysis						
Land Slope	Land Use	Acres	С						
Rolling, 2%-10%	Pavements & Roofs	1.65	0.90						
Rolling, 2%-10%	Side Slopes, Turf	1.39	0.30		Area	Weighted C			
Hilly, Over 10%	Woodland & Forest	0.13	0.20			0.61			
		3.17							
	County (NOAA-14)	2-vear 24 H	2-year 24 Hour rainfall [in]						
	Cherokee		3.73						
			-	1					
			Gaffney						
	Time of Concent	ration				_			
	(minutes)		5						
		C _f	С	I [in/hr]	AREA (ac)	CFS			
	Q ₁₀	1	0.61	6.770	3.17	13			
	Q ₂₅	1.1	0.61	7.845	3.17	17			
	Q ₅₀	1.2	0.61	8.698	3.17	20			
	Q ₁₀₀	1.25	0.61	9.546	3.17	23			

OUTFALL 1873+82 RT

This outfall receives runoff from offsite areas as well as roadway discharge from Sta. 1866+00 to Sta. 1886+00. The drainage area is approximately 72 acres and is mostly wooded with minimal development. Roadway runoff is routed to the outfall through an existing storm sewer system; while offsite runoff is routed under I-85 via an existing 4' x 6' R.C. box culvert. Discharge from this outfall is released into a heavily wooded area and is then conveyed to Buffalo Creek. The I-85 improvements will increase imperviousness due to the proposed median paving. As a result, there will be a negligible increase in discharge of 3 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		Rat	tional Analysis						
								_	
Land Slope	Land Use	Acres	С						
Rolling, 2%-10%	Pavements & Roofs	5.47	0.90						
Rolling, 2%-10%	Earth shoulders	1.09	0.50		Area	Weighte	d C		
Rolling, 2%-10%	Side Slopes, Turf	8.75	0.30			0.27			
Rolling, 2%-10%	Grass Shoulders	4.03	0.25			-			
Hilly, Over 10%	Woodland & Forest	52.39	0.20						
		71.73		J					
		/1./5	_	_	_	_	_		
	County (NOAA-14)	2-vear 24 Ho	our rainfall [in]	1					
	Cherokee		.73						
				1					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]	
Sheet	Woods:dense underbrus	8.04%	100	0.8				0.33	
Shallow									
Concentrated Shallow	Unpaved	8.04%	1864					0.11	
Concentrated									
Channel 1		2.50%	711	0.04	24	16.301	7.62365	0.02	
Channel 2									
Total			2675				1.5816	0.47	
	-	L		1					
	Gaffney								
	Time of Concentration								
	(minutes)	29							
		C _f	С	I [in/hr]	AREA (ac)	C	FS		
	Q ₁₀	1	0.27	4.082	71.73	8	30		
		1 1	0.27	1 659	71 72	1	00		

0.27

0.27

0.27

1 1.1

1.2

1.25

4.658

5.105

5.541

71.73

71.73

71.73

100

120 136

Q₂₅ **Q**₅₀

		Rat	ional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	6.89	0.90					
Rolling, 2%-10%	Earth shoulders	1.09	0.50		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	7.33	0.30			0.28		
Rolling, 2%-10%	Grass Shoulders	4.03	0.25					
Hilly, Over 10%	Woodland & Forest	52.39	0.20					
		71.73		1				
	L	/1./5						
	County (NOAA-14)	2-year 24 Ho	ur rainfall [in]					
	Cherokee	3.	73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	8.04%	100	0.8				0.332
Shallow								
Concentrated Shallow	Unpaved	8.04%	1864					0.113
Concentrated								
Channel 1		2.50%	711	0.04	24	16.301	7.62365	0.020
Channel 2								
Total			2675				1.5816	0.470
	_	Ľ						
	_							_
	Gaffney							
	Time of Concentration							
	(minutes)							
		C _f	С	I [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.28	4.082	71.73		33 05	

0.28

0.28

1.1

1.2

1.25

71.73

71.73

71.73

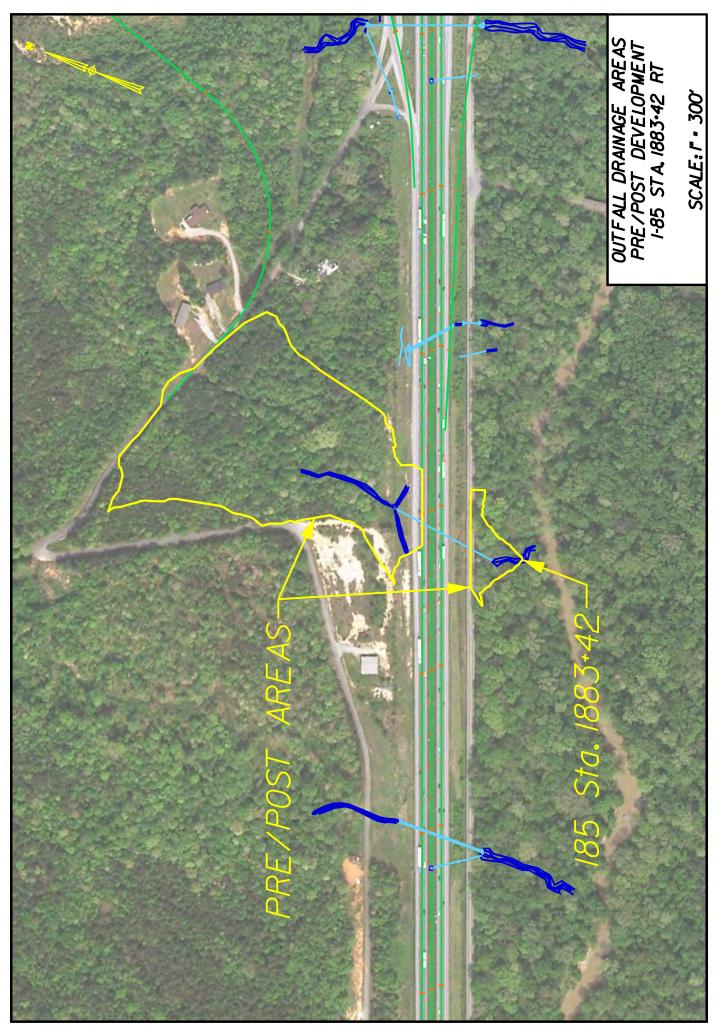
4.658

5.105

5.541

105

125 141



Q₂₅ **Q**₅₀

OUTFALL 1883+42 RT

This outfall is approximately 10 acres and primarily receives offsite discharge from a heavily wooded area with minimal pavement and grass. Offsite runoff is routed under I-85 to the outfall via an existing 30" R.C. pipe. Discharge from this outfall is released into a heavily wooded area and is then conveyed to Buffalo Creek. There will be no change in discharge from pre to post development conditions for the 10-year design storm. Therefore, the proposed I-85 improvements will have no adverse downstream impact.

		Rat	ional Analysis					
	-							
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.36	0.90					
Rolling, 2%-10%	Side Slopes, Turf	0.74	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Woodland & Forest	9.01	0.15			0.19		
0.								
		10.11		1				
	L							
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3.	.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	7.84%	100	0.8				0.33
Shallow								
Concentrated Shallow	Unpaved	7.84%	613					0.03
Concentrated								
Channel 1		5.24%	326	0.04	10.5	14.335	6.92618	0.01
Channel 2								
Total			1039				0.7498	0.38
	-	-						
	Gaffney							
	Time of Concentr	ation						
	(minutes)							
		C _f	С	I [in/hr]	AREA (ac)	C	CFS	
	Q ₁₀	1	0.19	4.451	10.11		8	
	Q ₂₅	1.1	0.19	5.089	10.11		11	
		1 2	0.10	5 505	10.11		12	

1.25

0.19

0.19

5.585

6.069

10.11

10.11

13

14

Q₅₀

		Rat	ional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.36	0.90					
Rolling, 2%-10%	Side Slopes, Turf	0.80	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Woodland & Forest	8.95	0.15			0.19		
		10.11						
	County (NOAA-14)		our rainfall [in]					
	Cherokee	3	.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	7.84%	100	0.8				0.334
Shallow								
Concentrated Shallow	Unpaved	7.84%	613					0.038
Concentrated								
Channel 1		5.24%	326	0.04	10.5	14.335	6.92618	0.01
Channel 2								
Total			1039				0.7498	0.38
	Gaffney							
	Time of Concentr							
	(minutes) 24							
		C _f	C	I [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.19	4.451	10.11		8	
	Q ₂₅	1.1	0.19	5.089	10.11	1	l1	

1.25

0.19

0.19

5.585

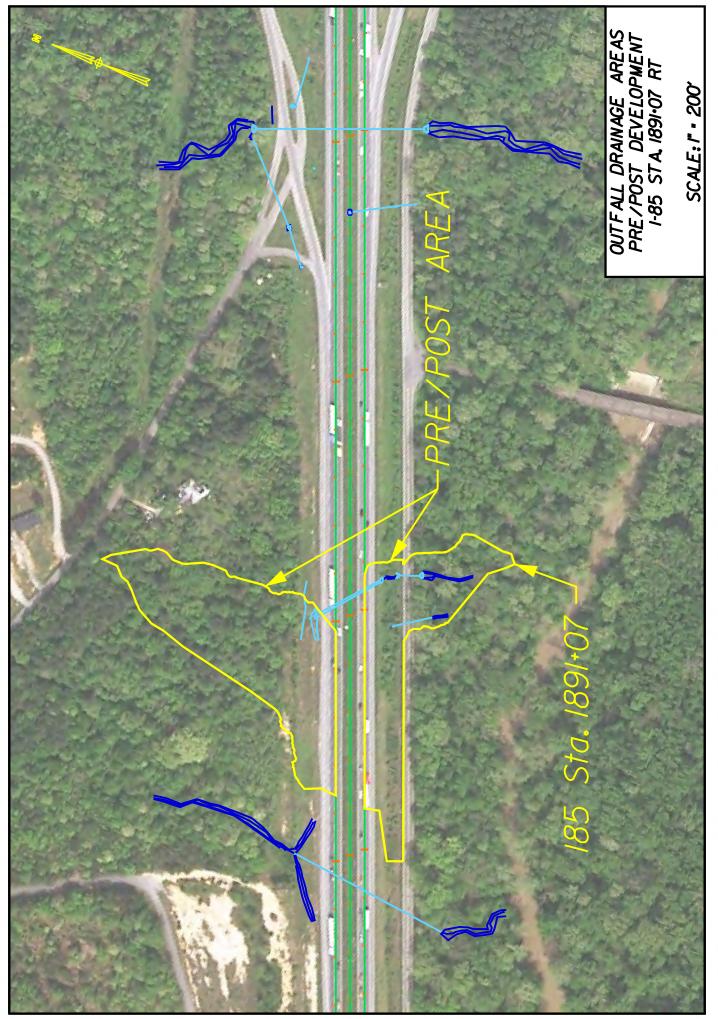
6.069

10.11

10.11

13

14



Q₅₀

OUTFALL 1891+07 RT

This outfall receives runoff from offsite areas as well as roadway discharge from Sta. 1886+00 to Sta. 1891+00. The drainage area is approximately 4 acres and includes roadway pavement, grassed medians, and wooded areas. Roadway runoff is routed to the outfall through an existing storm sewer system; while offsite runoff is routed under I-85 via an existing 4' x 6' R.C. box culvert. Discharge from this outfall is released into a heavily wooded area and is then conveyed to Buffalo Creek. There will be no change in discharge from pre to post development conditions for the 10-year design storm. Therefore, the proposed I-85 improvements will have no adverse downstream impact.

		Rat	ional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.58	0.90					
Rolling, 2%-10%	Side Slopes, Turf	1.30	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Woodland & Forest	2.16	0.15			0.31		
		4.04						
	L							
	County (NOAA-14)	2-year 24 Ho	ur rainfall [in]					
	Cherokee		73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	7.15%	100	0.8				0.34
Shallow								
Concentrated Shallow	Unpaved	7.15%	201					0.01
Concentrated								
Channel 1		17.39%	150	0.045	22.5	16.195	17.1903	0.00
Channel 2								
Total			451				0.3460	0.36
	-	-						
	Gaffney Time of Concentration							
	(minutes)	22						
		C _f	С	I [in/hr]	AREA (ac)	C	FS	
		1	0.04	1 (10			-	
	Q ₁₀	1	0.31	4.618	4.04		6 7	

Q₅₀

Q₁₀₀

1.2

1.25

0.31

0.31

5.804

6.311

4.04

4.04

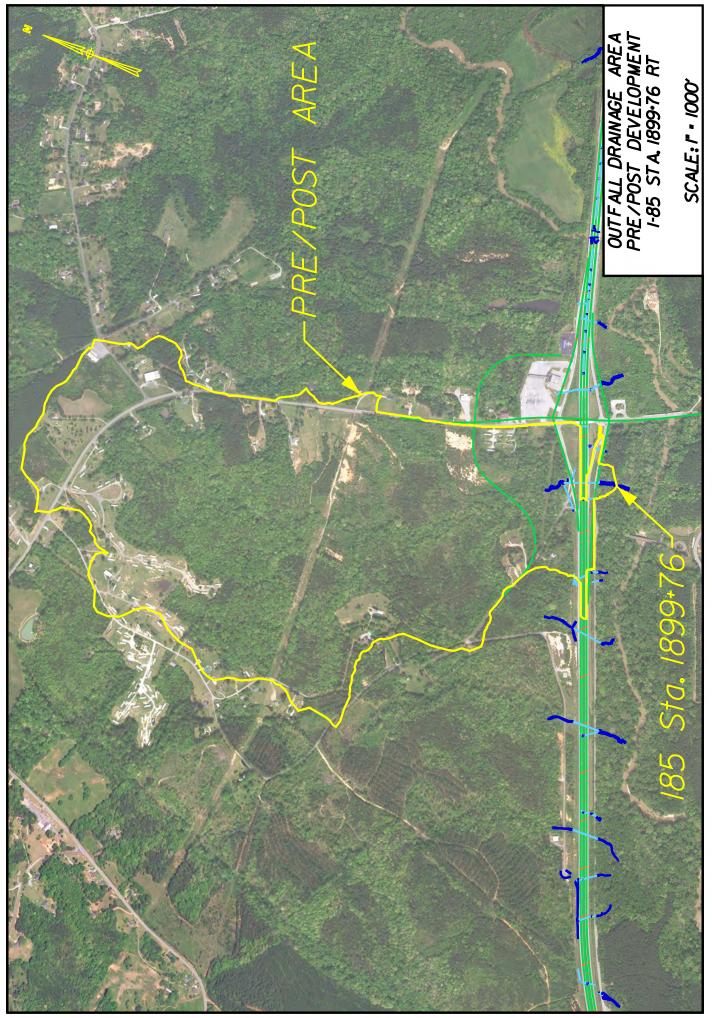
9 10

		Rat	ional Analysis					
	-							
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.63	0.90					
Rolling, 2%-10%	Side Slopes, Turf	1.25	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Woodland & Forest	2.16	0.15			0.31		
		4.04						
		_		1				
	County (NOAA-14)		our rainfall [in]					
	Cherokee	3	.73	J				
				Manning's			Velocity	
Flow Type	Surface	Slope	Length [ft]	n	Area [ft^2]	WP [ft]	[ft/s]	Time [hr]
Sheet	Woods:dense underbrus	7.15%	100	0.8				0.34
Shallow		- 4						0.04
Concentrated Shallow	Unpaved	7.15%	201					0.01
Concentrated								
Channel 1		17.39%	150	0.045	22.5	16.195	17.1903	0.00
Channel 2								
Total			451				0.3460	0.36
								I
	Gaffney							
	Time of Concentration 22							
	(minutes)							
		C	C C	l [in /h=1			:FS	
	Q ₁₀	C _f 1	C 0.31	I [in/hr] 4.618	AREA (ac) 4.04		.FS 6	
	Q ₁₀ Q ₂₅	1.1	0.31	5.284	4.04		7	
	Q ₂₅	1.1	0.31	5.804	4.04		9	
	~50	1.2	0.51	5.00-				

0.31

Q₁₀₀

10


4.04

6.311

OUTFALL 1899+76 RT

This outfall receives runoff from offsite areas as well as cumulative discharge from the proposed Exit 100 interchange realignment and the I-85 mainline improvements from Sta. 1886+00 to Sta. 1898+50. The drainage area is approximately 325 acres and is mostly wooded with some development. Roadway runoff is routed to the outfall through an existing storm sewer system; while offsite runoff is routed under I-85 via an existing 7' x 7' R.C. box culvert. Discharge from this outfall is released into an undeveloped area, and is then conveyed to an unnamed tributary that feeds into Buffalo Creek. There will be no change in discharge from pre to post development conditions for the 10-year design storm. Therefore, the proposed I-85 improvements will have no adverse downstream impact.

		SCS /	Analysis					
HSG	Land Use	Acres	CN					
В	Impervious	11.87	98.00					
В	Fallow: Bare Soil	4.81	86.00		Area W	/eighted C	N	
В	Residential: 1 acre	31.89	68.00			59		
В	Pasture,grassland,or range: Good	22.46	61.00					
В	Meadow	22.62	58.00					
В	Woods:Good	227.01	55.00					
А	Pasture, grassland, or range: Good	0.88	39.00					
А	Woods:Good	3.28	30.00					
		324.82		l				
		524.62		_	_	_		
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]	1				
	Cherokee		8.73					
				1				
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [h
Sheet	Woods:dense underbrush	6.92%	100	0.8				0.3
Shallow Concentrated	Unpaved	6.92%	1226					0.0
Shallow		0.5270	1220					0.0
Concentrated								
Channel 1		2.88%	3675	0.045	9.45	8.9069	5.849718	0.1
Channel 2								
otal			5001				2.2919	0.6
	-			•				
	Drainage Area							
	(acres)	324.82		Curve	e Number	5	59	
			1	Time of C	Concentration			

WinTR-55 Current Data Description

--- Identification Data ---

User: CECS Date: 12/13/2016 Project: I-85 Improvement Proj DB Prep Units: English SubTitle: OUTFALL 1899+76 RT (PRE) Areal Units: Acres State: South Carolina County: Cherokee_NOAA_B Filename: S:\Proj\2014\6114 I-85 mm 96-106\Design\Project PIN Number\Drainage\Calculations\OUTFALL\Q50 AN

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
1899+76 RT		Outlet	324.82	59	0.617
10000000		040100	521102	0,5	0.01/

Total area: 324.82 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	l-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.73	4.68	5.44	6.49	7.35	8.24	3.1

Storm Data Source:Cherokee_NRainfall Distribution Type:Type NO_BDimensionless Unit Hydrograph:<standard>

Cherokee_NOAA_B County, SC (NRCS) Type NO_B <standard>

I-85 Improvement Proj DB Prep OUTFALL 1899+76 RT (PRE) Cherokee_NOAA_B County, South Carolina

Watershed Peak Table

Sub-Area or Reach Identifier	Pea 10-Yr (cfs)	25-Yr	Rainfall 50-Yr (cfs)	Return Period 100-Yr (cfs)	
SUBAREAS 1899+76 RT	312.81	473.14	615.13	768.88	
REACHES					

OUTLET 312.81 473.14 615.13 768.88

CECS

12/13/2016 9:47:32 AM

		SCS	Analysis					
HSG	Land Use	Acres	CN					
В	Impervious	13.16	98.00					
В	Fallow: Bare Soil	4.54	86.00		Area W	eighted C	N	
В	Residential: 1 acre	31.86	68.00			59		
В	Pasture,grassland,or range: Good	27.59	61.00					
В	Meadow	22.57	58.00					
В	Woods:Good	220.84	55.00					
А	Pasture,grassland,or range: Good	1.44	39.00					
А	Woods:Good	2.82	30.00					
		-						
		224.82		J				
		324.82		_	_	_	_	l
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]	1				
	Cherokee		5.73					
	cherokee			J				
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr
Sheet	Woods:dense underbrush	6.92%	100	0.8				0.35
Shallow Concentrated	Unpaved	6.92%	1226					0.08
Shallow		0.5270	1220					0.08
Concentrated								
Channel 1		2.88%	3675	0.045	9.45	8.9069	5.849718	0.17
Channel 2								
otal			5001				2.2919	0.60
	Drainage Area							
	(acres)	324.82		Curve	e Number		59	
			J	Time of C	Concentration			
							37	

WinTR-55 Current Data Description

--- Identification Data ---

User: CECS Date: 12/13/2016 Project: I-85 Improvement Proj DB Prep Units: English SubTitle: OUTFALL 1899+76 RT (POST) Areal Units: Acres State: South Carolina County: Cherokee_NOAA_B Filename: S:\Proj\2014\6114 I-85 mm 96-106\Design\Project PIN Number\Drainage\Calculations\OUTFALL\Q50 AN

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
1899+76 RT		Outlet	324.82	59	0.617

Total area: 324.82 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	l-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.73	4.68	5.44	6.49	7.35	8.24	3.1

Storm Data Source:Cherokee_NRainfall Distribution Type:Type NO_BDimensionless Unit Hydrograph:<standard>

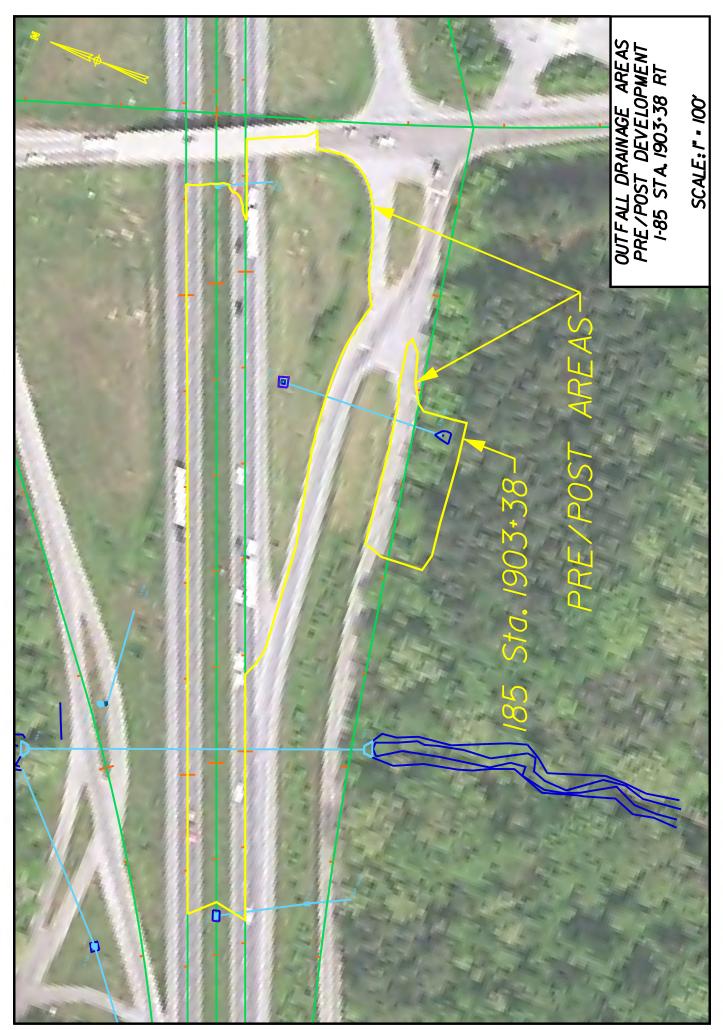
Cherokee_NOAA_B County, SC (NRCS) Type NO_B <standard>

I-85 Improvement Proj DB Prep OUTFALL 1899+76 RT (POST) Cherokee_NOAA_B County, South Carolina

Watershed Peak Table

Sub-Area or Reach Identifier	Pea 10-Yr (cfs)	25-Yr	Rainfall 50-Yr (cfs)	Return Period 100-Yr (cfs)	
SUBAREAS 1899+76 RT	312.81	473.14	615.13	768.88	
REACHES					

OUTLET 312.81 473.14 615.13 768.88

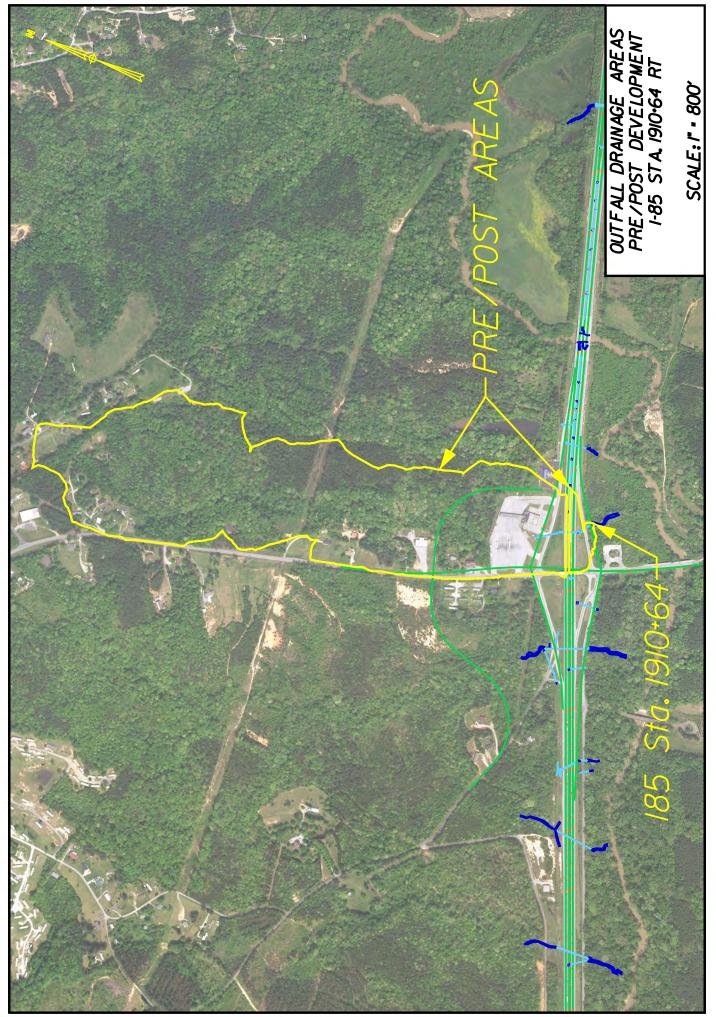

CECS

12/13/2016 9:46:27 AM

OUTFALL 1903+38 RT

This outfall primarily receives runoff from the Exit 100 interchange and the I-85 mainline from Sta. 1898+50 to Sta. 1906+00. The drainage area is approximately 2 acres and includes roadway pavement, grassed medians, and minimal offsite woodlands. Roadway discharge is routed under I-85 to the outfall via an existing storm sewer system. Runoff from this outfall is released into a heavily wooded area and is then conveyed to Buffalo Creek. The I-85 improvements will increase imperviousness due to the proposed median paving and Exit 100 interchange realignment. As a result, there will be a negligible increase in discharge of 2 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		Ra	tional Analysis			
				-		
Land Slope	Land Use	Acres	С			
Rolling, 2%-10%	Pavements & Roofs	0.94	0.90			
Rolling, 2%-10%	Side Slopes, Turf	1.41	0.30		Area	Weighted C
Rolling, 2%-10%	Woodland & Forest	0.04	0.15			0.53
	L			4		
				J		
		2.39				
	County (NOAA-14)	2-vear 24 H	our rainfall [in]	1		
	Cherokee		8.73	1		
			Gaffney			
	Time of Concent	ration	5			
	(minutes)		5			
		C _f	С	I [in/hr]	AREA (ac)	CFS
	Q ₁₀	1	0.53	6.770	2.39	9
	Q ₂₅	1.1	0.53	7.845	2.39	11
	Q ₅₀	1.2 1.25	0.53 0.53	8.698 9.546	2.39 2.39	13 15
	Q ₁₀₀	1.25	0.55	9.340	2.39	12


		Ra	tional Analysis			
Land Slope	Land Use	Acres	С			
Rolling, 2%-10%	Pavements & Roofs	1.43	0.90	1		
Rolling, 2%-10%	Side Slopes, Turf	0.96	0.30		Area	Weighted C
	· · ·					0.66
				1		
				1		
				1		
				1		
				1		
				-		
				-		
		2.39		1		
				_		
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]			
	Cherokee	3	.73			
			Gaffney			
	Time of Concent	ration				
	(minutes)		5			
		C _f	С	I [in/hr]	AREA (ac)	CFS
	Q ₁₀	1	0.66	6.770	2.39	11
	Q ₂₅	1.1	0.66	7.845	2.39	14
	Q ₅₀	1.2	0.66	8.698	2.39	16
	Q ₁₀₀	1.25	0.66	9.546	2.39	19

OUTFALL 1910+64 RT

The outfall's contributing drainage area is approximately 96 acres and receives runoff from offsite areas as well as cumulative discharge from the proposed Exit 100 interchange realignment and mainline improvements from Sta. 1906+00 to Sta. 1913+00. The drainage area is mostly wooded with limited rural development, and has an existing roadside truck stop near the interstate. Offsite and roadway runoff is routed under I-85 to the outfall via a system of 4' x 6' R.C. box culverts. Discharge from this outfall is released into a heavily wooded area and is then conveyed to Buffalo Creek. The I-85 improvements will increase imperviousness due to the proposed median paving along the mainline and the reconfiguration of the Exit 100 Interchange. As a result, there will be a negligible increase in discharge of 4 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		Rat	ional Analysis					
								,
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	8.78	0.90					
Rolling, 2%-10%	Gravel Pavements	0.50	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Meadows & Pasture Lanc	3.10	0.30			0.24		
Rolling, 2%-10%	Side Slopes, Turf	6.55	0.30					
Rolling, 2%-10%	Grass Shoulders	3.02	0.25					
Rolling, 2%-10%	Unimproved Areas	0.58	0.20					
Rolling, 2%-10%	Woodland & Forest	73.60	0.15					
	L	96.13		_				
	L	30.13	_	_	_			
				1				
	County (NOAA-14)		ur rainfall [in]					
	Cherokee	3.	73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	4.91%	100	0.8			[!() 0]	0.40
Shallow								
Concentrated Shallow	Unpaved	4.91%	3481					0.27
Concentrated								
Channel 1								
Channel 2								
Channel 2 Total			3581				1.4764	0.67
			3581				1.4764	0.67
			3581				1.4764	0.67
			3581 Gaffney				1.4764	0.67
	Time of Concentr	ation	Gaffney				1.4764	0.67
	Time of Concentr (minutes)	ation					1.4764	0.67
			Gaffney 41	l fin/brl	AREA (ac)			0.67
	(minutes)	ration	Gaffney 41 C	I [in/hr] 3.403	AREA (ac) 96.13		1.4764 FS 78	0.67
		C _f	Gaffney 41	I [in/hr] 3.403 3.872	AREA (ac) 96.13 96.13	7	FS	0.67

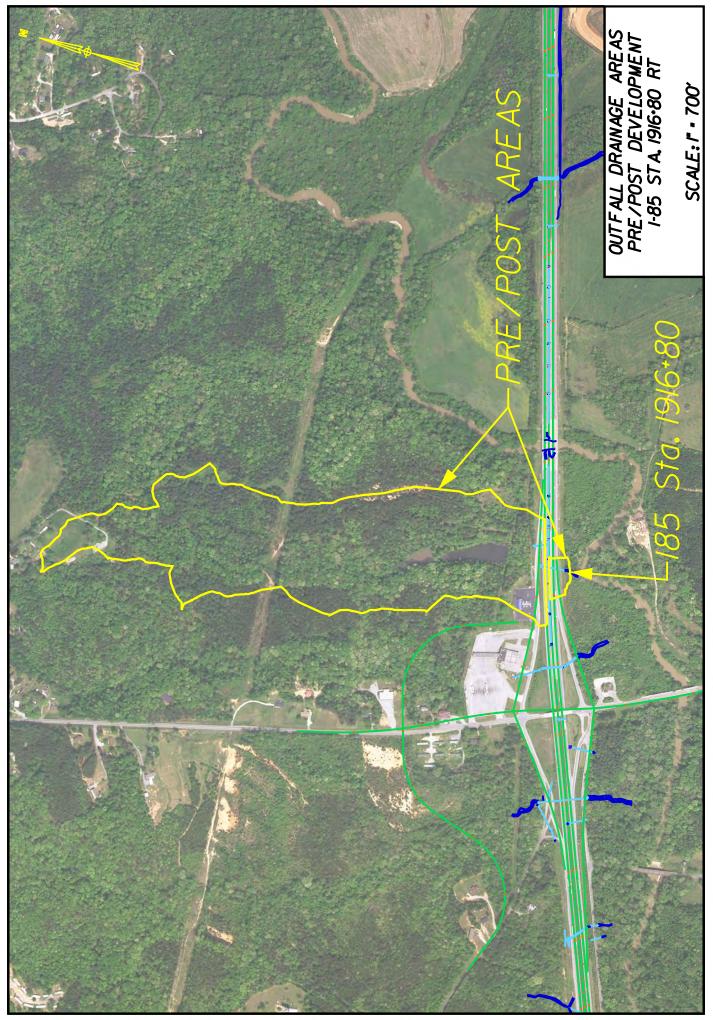
0.24

1.25

4.584

96.13

Q₁₀₀


		Rat	ional Analysis					
			_		_	-		ľ
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	9.42	0.90					
Rolling, 2%-10%	Gravel Pavements	0.44	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Meadows & Pasture Land	3.10	0.30			0.25		
Rolling, 2%-10%	Side Slopes, Turf	12.13	0.30					
Rolling, 2%-10%	Grass Shoulders	2.26	0.25					
Rolling, 2%-10%	Unimproved Areas	0.58	0.20					
Rolling, 2%-10%	Woodland & Forest	68.20	0.15					
		96.13						
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr
Sheet	Woods:dense underbrus	4.91%	100	0.8				0.40
Shallow								
Concentrated Shallow	Unpaved	4.91%	3481					0.2
Concentrated								
Channel 1								
Channel 2								
Total			3581				1.4764	0.6
	-							
			Gaffney					
	Time of Concentr	ation	41					
	(minutes)		41					
		C _f	С	l [in/hr]	AREA (ac)	C	:FS	
	Q ₁₀	1	0.25	3.403	96.13		32	
	Q ₂₅	1.1	0.25	3.872	96.13		03	
	Q ₅₀	1.2	0.25	4.234	96.13		23	
					96.13	1		

OUTFALL 1916+80 RT

This outfall receives runoff from offsite areas, the Exit 100 interchange, and the I-85 mainline from Sta. 1913+00 to Sta. 1921+00. The drainage area is approximately 59 acres, is mostly wooded, and includes an existing 0.9-acre impoundment. Offsite and roadway runoff is routed under I-85 to the outfall via an existing storm sewer system. Discharge from this outfall is released into a heavily wooded area and is then conveyed to an unnamed tributary that feeds into Buffalo Creek. The proposed Exit 100 interchange realignment will reduce imperviousness within the drainage area. As a result, there will be a decrease in discharge of 1 cfs from pre to post development conditions for the 10-year design storm. Therefore, the proposed I-85 improvements will have no adverse downstream impact.

		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	3.64	0.90					
Rolling, 2%-10%	Side Slopes, Turf	2.16	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Grass Shoulders	2.22	0.25			0.25		
Hilly, Over 10%	Woodland & Forest	50.52	0.20					
		58.54						
				1				
	County (NOAA-14)		our rainfall [in]					
	Cherokee	3	.73					
Flow Type	Surface	Slope	Length [ft]	Manning's	Area [ft^2]	WP [ft]	Velocity	Time [hr]
				n			[ft/s]	
Sheet Shallow	Woods:dense underbrus	5.38%	100	0.8				0.38
Concentrated	Unpaved	5.38%	1869					0.13
Shallow								
Concentrated								
Channel 1								
Channel 2								
Total		L	1969				1.0375	0.52
	[_		1
			Gaffney					
	Time of Concent	ration	32					
	(minutes)		52					
		C						
		C _f	C 0.25	I [in/hr]	AREA (ac) 58.54		57	
	Q ₁₀	1.1	0.25	3.888 4.433	58.54		71	
	Q ₂₅ Q ₅₀	1.1	0.25	4.433	58.54		35	
	4 50	1.2	0.25	4.055	50.54	-		

1.25

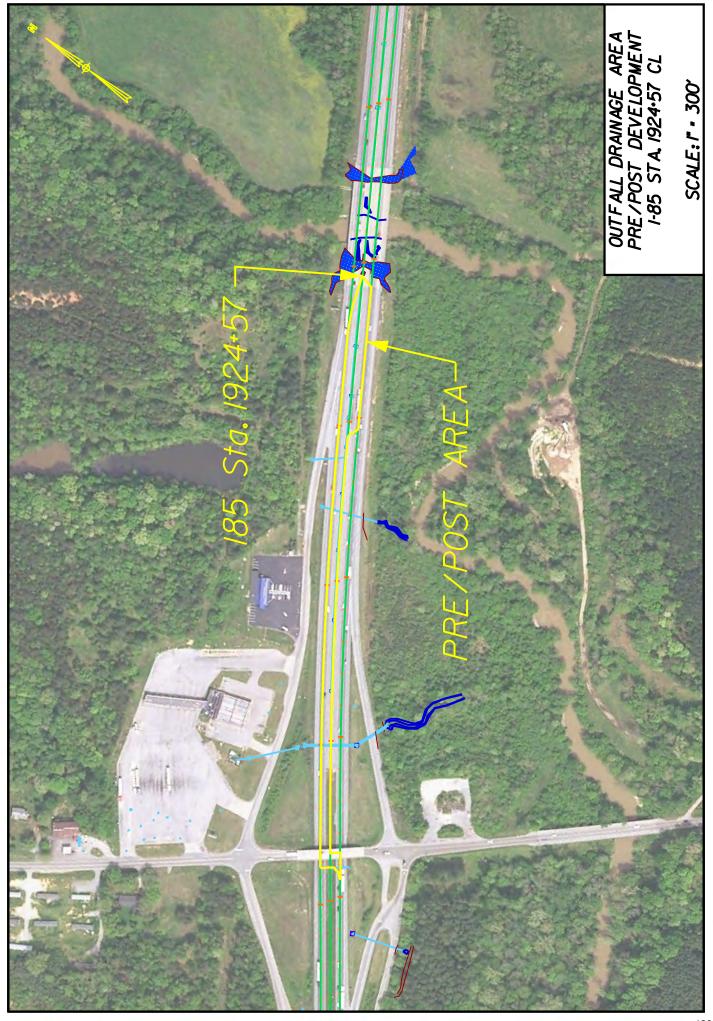
0.25

58.54

5.266

96

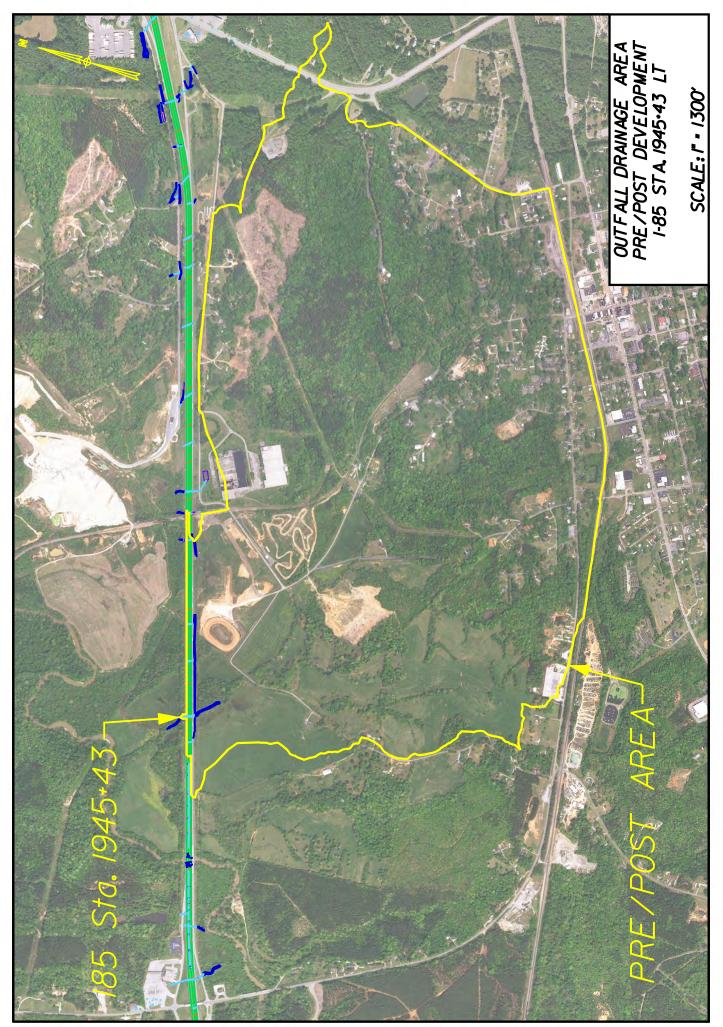
Q₁₀₀


		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	3.44	0.90					
Rolling, 2%-10%	Side Slopes, Turf	2.45	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Grass Shoulders	2.22	0.25			0.25		
Hilly, Over 10%	Woodland & Forest	50.43	0.20					
		58.54		l				
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	.73					
							1	
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	5.38%	100	0.8				0.388
Shallow								
Concentrated Shallow	Unpaved	5.38%	1869					0.139
Concentrated								
Channel 1								
Channel 2								
Total			1969				1.0375	0.527
	_							
			Gaffney					
	Time of Concent	ration	22					
	(minutes)		32					
		C _f	С	I [in/hr]	AREA (ac)		:FS	
	Q ₁₀	1	0.25	3.888	58.54		56	
	Q ₂₅	1.1	0.25	4.433	58.54		71	
	Q ₅₀	1.2	0.25	4.855	58.54		34	
	Q ₁₀₀	1.25	0.25	5.266	58.54		95	1

OUTFALL 1924+57 CL

This outfall primarily receives roadway discharge from Sta. 1906+00 to Sta. 1924+50. The drainage area is approximately 2 acres and is mostly roadway pavement. Roadway runoff is routed under I-85 to the outfall via an existing storm sewer system that discharges directly into Buffalo Creek. The I-85 improvements will increase imperviousness due to the proposed median paving. As a result, there will be a negligible increase in discharge of 1 cfs from pre to post development conditions for the 10-year design storm. The slight increase of runoff will have no adverse downstream impact and detention is not recommended.

		Ra	tional Analysis			
	1			1		
Land Slope	Land Use	Acres	С			
Rolling, 2%-10%	Pavements & Roofs	1.48	0.90			
Rolling, 2%-10%	Side Slopes, Turf	0.12	0.30		Area	Weighted C
-						0.86
		1.60				
				1		
	County (NOAA-14)		our rainfall [in]			
	Cherokee	3	.73	J		
		_		_	_	
			Gaffney			
	Time of Concent	ration				
	(minutes)		5			
	. ,					
		C _f	С	I [in/hr]	AREA (ac)	CFS
	Q ₁₀	1	0.86	6.770	1.60	9
	Q ₂₅	1.1	0.86	7.845	1.60	12
	Q ₅₀	1.2	0.86	8.698	1.60	14
	Q ₁₀₀	1.25	0.86	9.546	1.60	16


		Ra	tional Analysis			
Land Slope	Land Use	Acres	С			
Rolling, 2%-10%	Pavements & Roofs	1.60	0.90	1		
, , , , , , , , , , , , , , , , , , ,					Area	Weighted C
						0.90
				-		
				1		
				4		
				1		
				-		
				1		
		1.60		1		
	County (NOAA-14)	2-year 24 H	our rainfall [in]]		
	Cherokee	3	3.73]		
	F					
			Gaffney			
	Time of Concent		5			
	(minutes)		,			
		C _f	C	I [in/hr]	AREA (ac)	CFS
	Q ₁₀	1	0.90	6.770	1.60	10
	Q ₂₅	1.1 1.2	0.90 0.90	7.845	1.60	12
		1.2	0.90	8.698	1.60	15
	Q ₅₀ Q ₁₀₀	1.25	0.90	9.546	1.60	17

OUTFALL 1945+43 LT

This outfall receives runoff from offsite areas as well as roadway discharge from Sta. 1940+00 to Sta. 1973+00. The drainage area is approximately 1.5 square-miles and is characterized by large wooded areas, open grassed fields, and urban developments in the Town of Blacksburg, South Carolina. Additionally, the area encompasses multiple unnamed tributaries that merge together before crossing under I-85. Offsite runoff is routed under I-85 to the outfall through an existing 12' x 10' R.C. box culvert; while roadway runoff is collected by multiple existing storm sewer systems and routed to the box culvert via roadside ditches. Discharge from this outfall is conveyed by an unnamed tributary, with undeveloped surroundings, that ultimately feeds into Buffalo Creek. There will be no change in discharge from pre to post development conditions for the 10-year design storm. Therefore, the proposed I-85 improvements will have no adverse downstream impact.

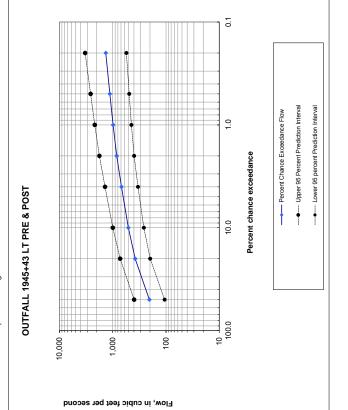
REGRESSION ANALYSIS

This spreadsheet computes the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent chance exceedance flows for an ungaged site in Georgia, South Carolina, and North Carolina. The spreasheet also includes the 95-percent prediction intervals, the minus and plus standard error of prediction intervals, and the average standard error of prediction. To use the spreadsheet, enter requested information in the yellow cells below.

OUTFALL 1945+43 LT PRE & POST Enter a site-description name:

	Ţ	Ţ				
Enter the explanatory variables:	Drainage area, in square miles	Percent of basin in Hydrologic Region 1	Percent of basin in Hydrologic Region 2	Percent of basin in Hydrologic Region 3	Percent of basin in Hydrologic Region 4	Percent of basin in Hydrologic Region 5

ntages


ber regior

0 0 0 0 0

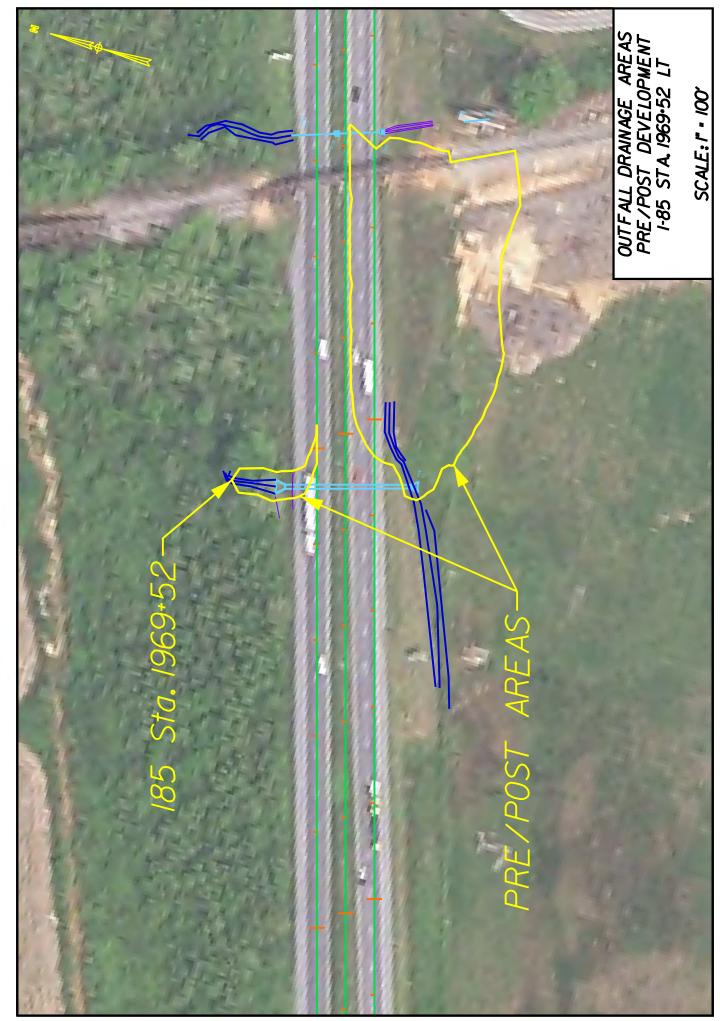
Applicable range of draingage area is 1 to 9,000 square miles. Hydrologic Region 1 corresponds to the USEPA Level III Blue Ridge and Valley and Pledmont ecoregions Hydrologic Region 2 corresponds to the USEPA Level III Blue Ridge accoregion Hydrologic Region 3 corresponds to the USEPA Level III secregion Hydrologic Region 4 corresponds to the USEPA Level III Southeastern, Middle Atlantic Coastal, and Southern Coastal Plain ecoregions Hydrologic Region 5 corresponds to the USEPA Level III SUPA Level IV Tifton Uplands ecoregions

Drainage area check DRAINAGE AREA WITHIN APPLICABLE LIMITS.

	Percent	Lower 95 percent	Upper 95 percent			
	chance	prediction	prediction			Average
	exceedance	interval flow,	interval flow,	-S _{P,i}	+S _{P,i}	S _{p,i}
Percent chance exceedance	flow, in ft ³ /s	in ft³/s	in ft³/s	(percent) (percent)		(percent)
20	205	106	396	-28.5	39.9	34.6
20	379	198	726	-28.2	39.3	34.1
10	509	260	966	-29.0	40.8	35.2
4	684	336	1,390	-30.5	43.8	37.6
0	839	396	1,780	-31.8	46.6	39.7
-	984	446	2,170	-33.2	49.7	42.0
0.5	1,130	491	2,600	-34.6	52.9	44.5
0.2	1,350	554	3,290	-36.5	57.5	47.9

UNITS	TOTAL AREA	IMPERVIOUS AREA	% IMPERVIOUS
SQ. METERS	3867664	258448	6.68%
SQ. MILES	1.49	0.10	6.68%

Note: Data derived from NLCD 2006 Impervious Surface, 30-meter resolution


UNITS	TOTAL AREA	IMPERVIOUS AREA	% IMPERVIOUS
SQ. METERS	3867664	267351	6.91%
SQ. MILES	1.49	0.10	6.91%

Note: Data derived from NLCD 2006 Impervious Surface, 30-meter resolution

OUTFALL 1969+52 LT

This outfall receives runoff from limited offsite areas as well as roadway discharge Sta. 1970+00 to Sta. 1973+00. The drainage area is approximately 1 acre and includes roadway pavement, grassed medians, railway, and a clay racetrack. Offsite and roadway runoff is routed under I-85 to the outfall via an existing 4' x 6' R.C. box culvert. Discharge from this outfall is released into a heavily wooded area and is then conveyed to an unnamed tributary that feeds into Buffalo Creek. The I-85 improvements will increase imperviousness due to the proposed median paving. As a result, there will be a negligible increase in discharge of 1 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.25	0.90					
Rolling, 2%-10%	Side Slopes, Earth	0.20	0.60		Area	Weighte	d C	
Rolling, 2%-10%	Gravel Pavements	0.04	0.55			0.48		
Rolling, 2%-10%	Side Slopes, Turf	0.76	0.30					
		1.25		1				
	_			_				
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	11.90%	100	0.41				0.16
Shallow		11.000/						0.04
Concentrated Shallow	Unpaved	11.90%	211					0.01
Concentrated								
Channel 1		10.82%	100	0.045	4.5	9.2221	6.75059	0.004
Channel 2								
Total			411				0.6331	0.18
								1
			Gaffney					
	Time of Concent	ration						
	(minutes)		11					
						-		
		C _f	С	I [in/hr]	AREA (ac)	C	FS	

Q₁₀

Q₂₅ **Q**₅₀

Q₁₀₀

1

1.1

1.2

1.25

0.48

0.48

0.48

0.48

1.25

1.25

1.25

1.25

5.815

6.699

7.395

8.080

3

4

		Rat	ional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.36	0.90					
Rolling, 2%-10%	Side Slopes, Earth	0.20	0.60		Area	Weighte	d C	
Rolling, 2%-10%	Gravel Pavements	0.04	0.55			0.53		
Rolling, 2%-10%	Side Slopes, Turf	0.65	0.30					
		1.25		•				
		1		,				
	County (NOAA-14)	-	our rainfall [in]					
	Cherokee	3.	.73	J				
				Manning's			Velocity	
Flow Type	Surface	Slope	Length [ft]	n	Area [ft^2]	WP [ft]	[ft/s]	Time [hr]
Sheet	Grass:bermudagrass	11.90%	100	0.41				0.166
Shallow								
Concentrated Shallow	Unpaved	11.90%	211					0.011
Concentrated								
Channel 1		10.82%	100	0.045	4.5	9.2221	6.75059	0.004
Channel 2								
Total			411				0.6331	0.180
	_	_						
								I
			Gaffney					
	Time of Concent	ration						
	(minutes)		11					
		C _f	С	I [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.53	5.815	1.25		4	
		4.4	0 5 2	6 600	4.25			

0.53

0.53

0.53

1.1

1.2

1.25

Q₂₅ **Q**₅₀

Q₁₀₀

5

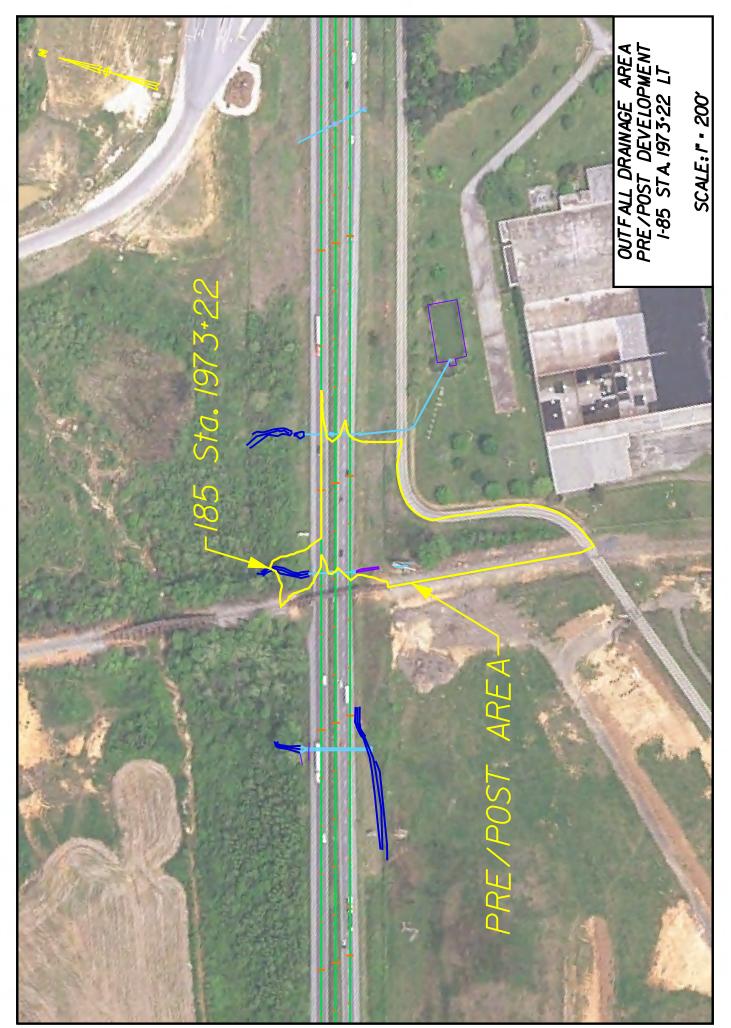
6 7

1.25

1.25

1.25

6.699


7.395

8.080

OUTFALL 1973+22 LT

This outfall receives runoff from limited offsite areas as well as roadway discharge from Sta. 1973+00 to Sta. 1976+00. The drainage area is approximately 2 acres and includes roadway pavement, grassed medians, railway, and minimal offsite woodlands. Offsite and roadway runoff is routed under I-85 to the outfall via an existing storm sewer system. Discharge from this outfall is released into a heavily wooded area and is then conveyed to an unnamed tributary that feeds into Buffalo Creek. The I-85 improvements will increase imperviousness due to the proposed median paving. As a result, there will be a negligible increase in discharge of 1 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		Rat	ional Analysis					
_					_			r
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.50	0.90					
Rolling, 2%-10%	Gravel Pavements	0.22	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	1.18	0.30			0.44		
Rolling, 2%-10%	Unimproved Areas	0.40	0.20					
	L							
		2.30						
		2.30	_	_	_	-		
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3.	.73					
	1							
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	4.59%	100	0.41				0.24
Shallow Concentrated	Unpaved	4.59%	344					0.02
Shallow		4.59%	544					0.02
Concentrated								
Channel 1		32.51%	49	0.045	4	6.4721	13.698	0.00
Channel 2								
Total		L	493				0.5051	0.27
			Gaffney					
	Time of Concent	ration						
	(minutes)		17					
			6	1 [: //]		-	FC.	
		C _f	C 0.44	I [in/hr] 5.095	AREA (ac) 2.30		FS 5	
	Q ₁₀	1.1	0.44		2.30		5 6	
	Q ₂₅	1.1	0.44	5.845	2.30		0	

1.2

1.25

6.432

7.007

2.30

2.30

0.44

0.44

Q₅₀

Q₁₀₀

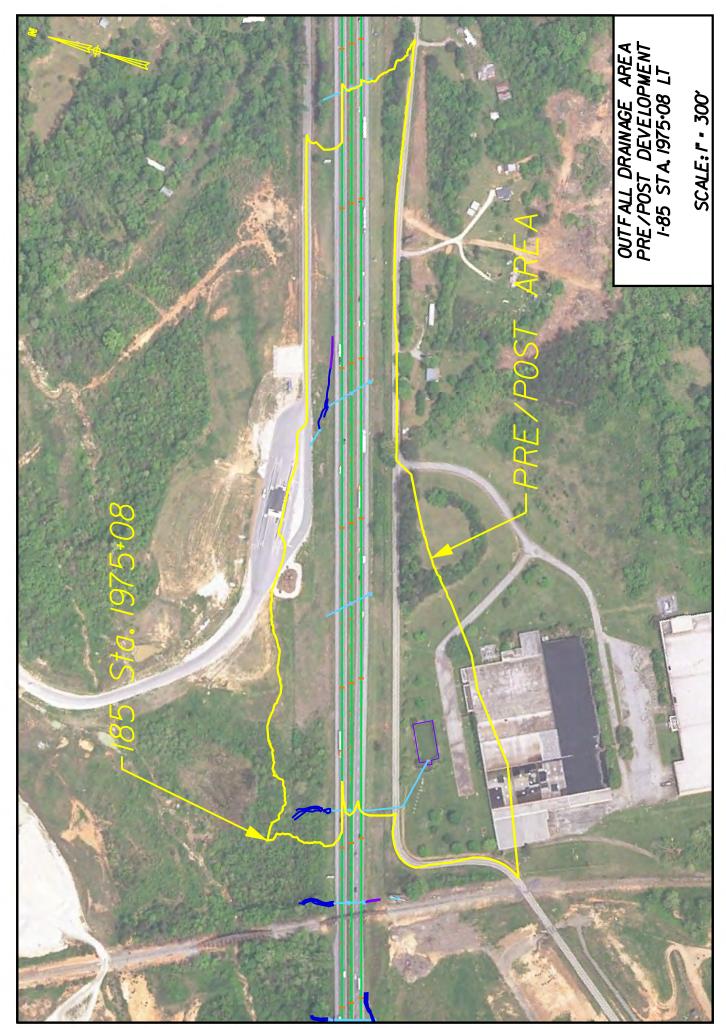
8

		Rat	ional Analysis					
		I . I			_	-	_	1
Land Slope	Land Use	Acres	C					
Rolling, 2%-10%	Pavements & Roofs	0.71	0.90		<u> </u>		1.0	
Rolling, 2%-10%	Gravel Pavements	0.22	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	0.97	0.30			0.49		
Rolling, 2%-10%	Unimproved Areas	0.40	0.20					
		2.30		•				
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]	1				
	Cherokee	3.	.73]				
_			_	Manning's			Velocity	
Flow Type	Surface	Slope	Length [ft]	n	Area [ft^2]	WP [ft]	[ft/s]	Time [hr]
Sheet	Grass:bermudagrass	4.59%	100	0.41				0.24
Shallow Concentrated	Unpaved	4.59%	344					0.02
Shallow		4.59%	544					0.02
Concentrated								
Channel 1		32.51%	49	0.045	4	6.4721	13.698	0.00
Channel 2								
Total]	L	493				0.5051	0.27
			Gaffney					
	Time of Concentration							
	(minutes)		17					
		C _f	С	I [in/hr]	AREA (ac)	C	:FS	
	Q ₁₀	1	0.49	5.095	2.30		6	
	Q ₂₅	1.1	0.49	5.845	2.30		7	
	Q ₅₀	1.2	0.49	6.432	2.30		9	
			0.40				10	

0.49

7.007

2.30



Q₁₀₀

OUTFALL 1975+08 LT

This outfall receives runoff from offsite areas as well as roadway discharge from Sta. 1976+00 to Sta. 1998+50. The drainage area is approximately 24 acres and is characterized by an existing 0.2-acre impoundment, pavement, grassed medians, and wooded areas. Offsite and roadway runoff is routed under I-85 to the outfall by multiple existing storm sewer systems. Discharge from this outfall is released into a heavily wooded area and is then conveyed to an unnamed tributary that feeds into Buffalo Creek. The I-85 improvements will increase imperviousness due to the proposed median paving. As a result, there will be a negligible increase in discharge of 5 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		Rat	ional Analysis					
	-							
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	6.88	0.90					
Rolling, 2%-10%	Gravel Pavements	0.07	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	15.12	0.30			0.47		
Rolling, 2%-10%	Unimproved Areas	0.30	0.20					
Rolling, 2%-10%	Woodland & Forest	1.31	0.15					
	1	23.68						
	County (NOAA-14)	2-year 24 Ho	ur rainfall [in]					
	Cherokee	3.	73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	5.49%	100	0.41				0.22
Shallow								
Concentrated Shallow	Unpaved	5.49%	762					0.05
Concentrated								
Channel 1								
Channel 1								
Channel 1 Channel 2								
			862				0.8501	0.28
Channel 2			862				0.8501	0.28
Channel 2			862 Gaffney				0.8501	0.28
Channel 2	Time of Concent	ration					0.8501	0.28
Channel 2	Time of Concent (minutes)	ration	Gaffney				0.8501	0.28
Channel 2			Gaffney	[in/hr]	AREA (ac)		0.8501	0.28
Channel 2		ration	Gaffney 17	[in/hr] 5.095	AREA (ac) 23.68			0.282

Q₅₀

Q₁₀₀

1.2

1.25

0.47

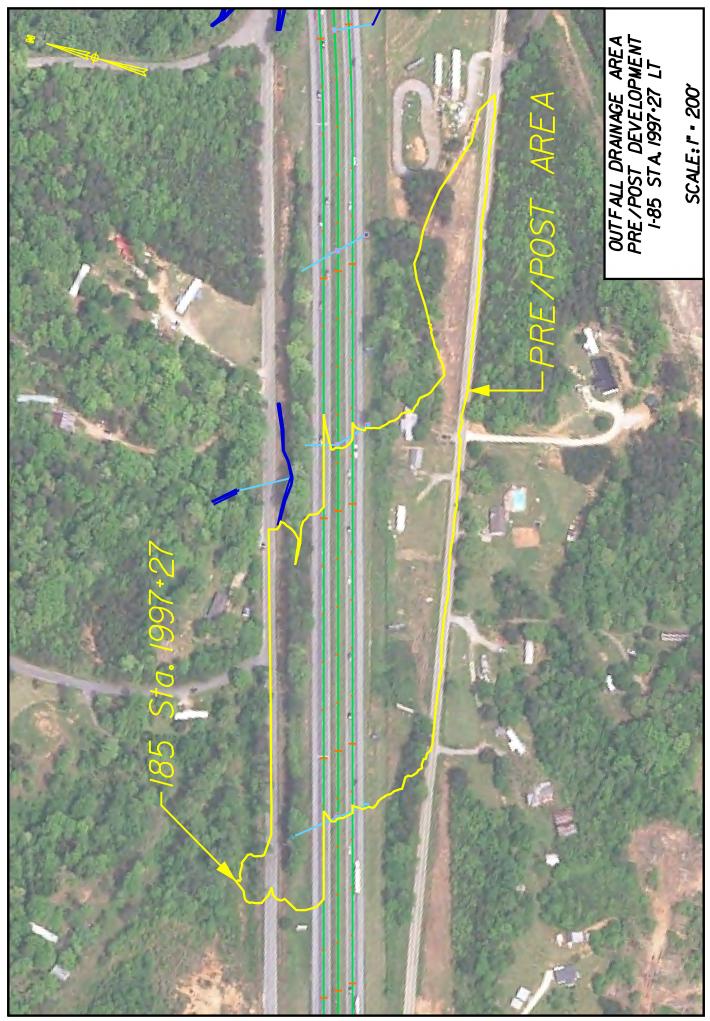
0.47

6.432

7.007

23.68

23.68


		Rat	tional Analysis					
	-							
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	8.49	0.90					
Rolling, 2%-10%	Gravel Pavements	0.07	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	13.51	0.30			0.51		
Rolling, 2%-10%	Unimproved Areas	0.30	0.20					
Rolling, 2%-10%	Woodland & Forest	1.31	0.15					
		23.68		l				
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]	1				
	Cherokee		.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	5.49%	100	0.41				0.226
Shallow								
Concentrated Shallow	Unpaved	5.49%	762					0.056
Concentrated								
Channel 1								
Channel 2								
Total			862				0.8501	0.282
	_							
	_							
			Gaffney					
	Time of Concent	ration	45					
	(minutes)		17					
		C _f	С	I [in/hr]	AREA (ac)	C	FS	
	Q ₁₀	1	0.51	5.095	23.68		51	
	Q ₂₅	1.1	0.51	5.845	23.68		77	
	Q ₅₀	1.2	0.51	6.432	23.68		93	
	Q ₁₀₀	1.25	0.51	7.007	23.68	1	05	

OUTFALL 1997+27 LT

This outfall receives runoff from minimal offsite areas as well as roadway discharge from Sta. 1998+50 to Sta. 2006+50. The drainage area is approximately 8 acres and consists of roadway pavement, grassed medians, sparse residential tracts, and wooded areas. Offsite and roadway runoff is routed under I-85 to the outfall via an existing storm sewer system. Discharge from this outfall is released into a heavily wooded area and is then conveyed to an unnamed tributary that feeds into Buffalo Creek. The I-85 improvements will increase imperviousness due to the proposed median paving. As a result, there will be a negligible increase in discharge of 2 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		Rat	ional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	2.04	0.90					
Rolling, 2%-10%	Side Slopes, Turf	5.92	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Woodland & Forest	0.04	0.15			0.45		
0,								
		8.00		J				
	County (NOAA-14)	2-year 24 Ho	ur rainfall [in]					
	Cherokee	3.	.73					
					1			
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	5.49%	100	0.41				0.22
Shallow								
Concentrated Shallow	Unpaved	5.49%	689					0.05
Concentrated								
Channel 1		3.10%	142	0.045	18	18.49	5.72504	0.00
Channel 2								
Total			931				0.9132	0.28
	-	-						
			Gaffney					
	Time of Concent	ration						
	(minutes)		17					
		C _f	С	I [in/hr]	AREA (ac)	C	FS	
	Q ₁₀	1	0.45	5.095	8.00		L8	
		1 1	0.45	E 045	0.00			

0.45

0.45

1.1

1.2

1.25

8.00

8.00

8.00

5.845

6.432

7.007

23

28

32

Q₂₅ **Q**₅₀

		Rat	ional Analysis					
								r
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	2.58	0.90					
Rolling, 2%-10%	Side Slopes, Turf	5.38	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Woodland & Forest	0.04	0.15			0.49		
		8.00						
		8.00	_	_	_	_	_	
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	-	.73					
					-	-	-	
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	5.49%	100	0.41				0.22
Shallow Concentrated	Unpaved	5.49%	689					0.05
Shallow		5.49%	009					0.03
Concentrated								
Channel 1		3.10%	142	0.045	18	18.49	5.72504	0.00
Channel 2								
Total	J	L	931				0.9132	0.28
		_		_	_	_		
			Gaffney					
	Time of Concent	ration	17					
	(minutes)		17					
		C _f	C	l [in/hr]	AREA (ac)		CFS	
	Q ₁₀	1	0.49	5.095	8.00		20	
	Q ₂₅	1.1	0.49	5.845	8.00	2	25	

Q₅₀

Q₁₀₀

1.2

1.25

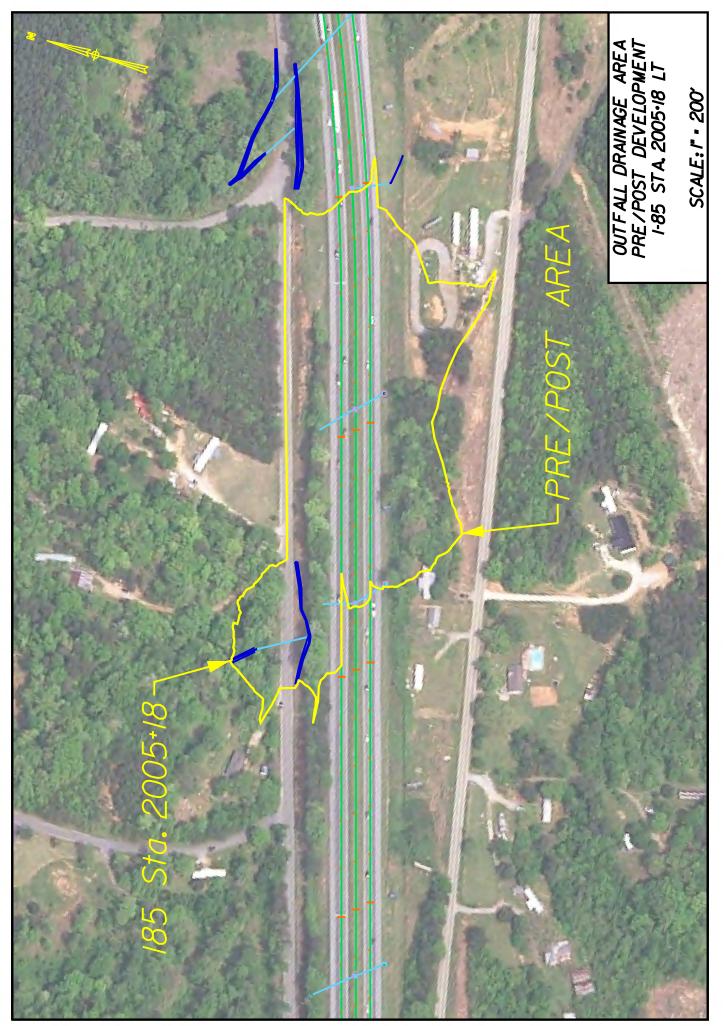
0.49

0.49

6.432

7.007

8.00


8.00

30

OUTFALL 2005+18 LT

This outfall receives runoff from limited offsite areas as well as roadway discharge from Sta. 2006+50 to Sta. 2015+00. The drainage area is approximately 7 acres and includes roadway pavement, grassed medians, and wooded areas. Offsite and roadway runoff is routed under I-85 via existing parallel storm sewer systems along the mainline. Water from these systems is carried to the outlet point by an existing storm sewer system under the Frontage Road. Discharge from this outfall is released into a heavily wooded area and is then conveyed to an unnamed tributary that feeds into Buffalo Creek. The I-85 improvements will increase imperviousness due to the proposed median paving and Exit 102 interchange realignment. As a result, there will be a negligible increase in discharge of 2 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		Rat	ional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	2.03	0.90					
Rolling, 2%-10%	Side Slopes, Turf	3.64	0.30		Area	Weighte	d C	
Hilly, Over 10%	Woodland & Forest	1.48	0.20			0.45		
		7.15						
	County (NOAA-14)	2-year 24 Ho	ur rainfall [in]					
	Cherokee	3.	73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	16.43%	100	0.8			[9 9]	0.24
Shallow								
Concentrated Shallow	Unpaved	16.43%	65					0.00
Concentrated								
Channel 1		3.10%	81	0.045	5.5	11.194	3.62924	0.00
Channel 2								
Total			246				0.2653	0.25
			Gaffney					
	Time of Concent	ration	16					
	(minutes)		10					
		C _f	C	I [in/hr]	AREA (ac)		FS L 7	
	Q ₁₀	1	0.45	5.203	7.15	-	.,	
	Q ₂₅	1.1	0.45	5.972	7.15		21	

Q₅₀

Q₁₀₀

1.2

1.25

0.45

0.45

6.575

7.166

7.15

7.15

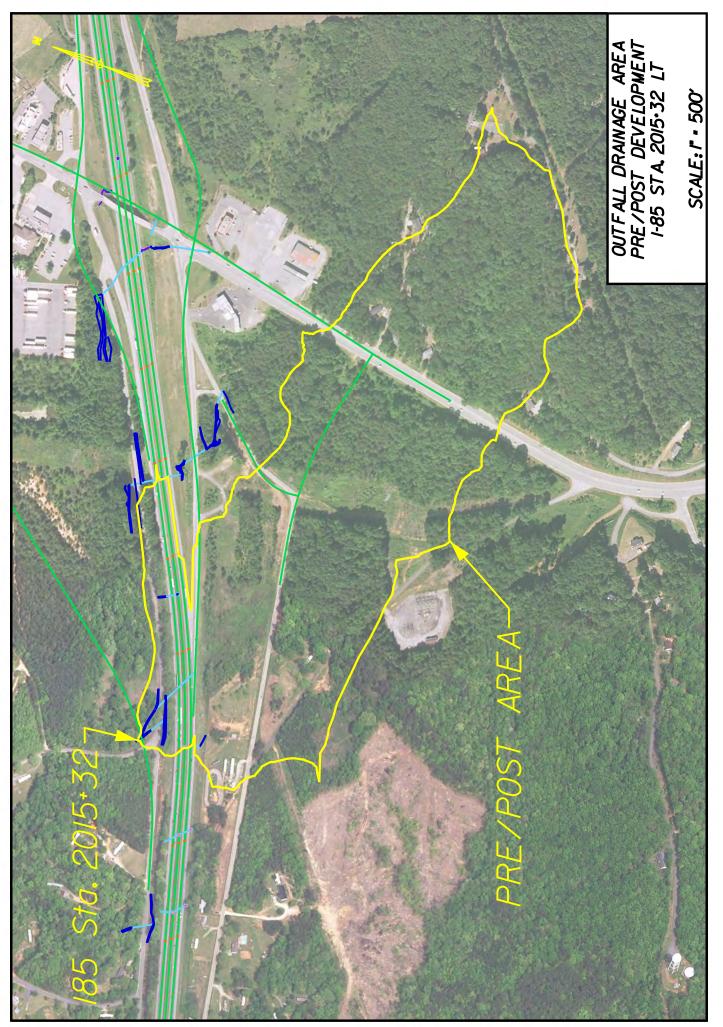
25

		Rat	ional Analysis					
		. [_	_	-	_	
Land Slope	Land Use	Acres	C					
Rolling, 2%-10%	Pavements & Roofs	2.62	0.90					
Rolling, 2%-10%	Side Slopes, Turf	3.05	0.30		Area	Weighte	d C	
Hilly, Over 10%	Woodland & Forest	1.48	0.20			0.50		
	L	7.15		_	_	_	_	
	County (NOAA-14)	2-vear 24 Ho	ur rainfall [in]	1				
	Cherokee		.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	16.43%	100	0.8				0.24
Shallow								
Concentrated Shallow	Unpaved	16.43%	65					0.00
Concentrated								
Channel 1		3.10%	81	0.045	5.5	11.194	3.62924	0.00
Channel 2								
Total			246				0.2653	0.25
		_		_	_	_		
			Gaffney					
	Time of Concentr	ation	16					
	(minutes)		16					
	-							
		C _f	C	I [in/hr]	AREA (ac)		CFS	
	Q ₁₀	1	0.50	5.203	7.15		19	
	Q ₂₅	1.1	0.50	5.972	7.15		23	
	Q ₅₀	1.2	0.50	6.575	7.15	4	28	

0.50

Q₁₀₀

32


7.15

7.166

OUTFALL 2015+32 LT

This outfall receives runoff from offsite areas, the Exit 102 interchange, and the I-85 mainline from Sta. 2015+00 to Sta. 2029+00. The drainage area is approximately 80 acres and includes roadway pavement, grassed medians, unimproved areas, sparse residential tracts, and large wooded areas. Offsite and roadway runoff is routed under I-85 to the outfall via multiple existing storm sewer systems. Discharge from this outfall is released into a heavily wooded area and is then conveyed to an unnamed tributary that feeds into Buffalo Creek. The I-85 improvements will increase imperviousness due to the proposed median paving and Exit 102 interchange realignment. As a result, there will be a negligible increase in discharge of 4 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

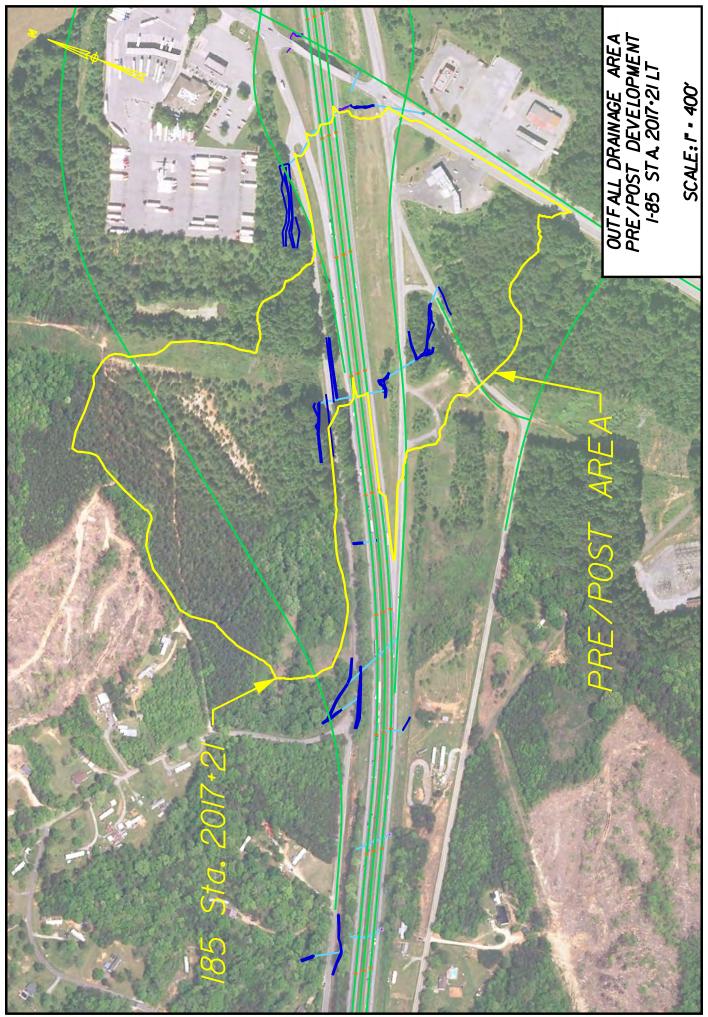
		Rat	ional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	7.33	0.90	1				
Rolling, 2%-10%	Earth shoulders	0.19	0.50		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	17.24	0.30			0.28		
Rolling, 2%-10%	Unimproved Areas	7.91	0.20					
Hilly, Over 10%	Woodland & Forest	43.78	0.20					
Rolling, 2%-10%	Woodland & Forest	3.64	0.15	1				
		80.09						
				1				
	County (NOAA-14)		our rainfall [in]					
	Cherokee	3	.73	ļ				
EL T 	C. C.	cl		Manning's	A		Velocity	
Flow Type	Surface	Slope	Length [ft]	n	Area [ft^2]	WP [ft]	[ft/s]	Time [hr]
Sheet	Woods:dense underbrus	6.15%	100	0.8				0.368
Shallow Concentrated	Linneyard	C 1F0/	624					0.044
Shallow	Unpaved	6.15%	634					0.044
Concentrated								
Channel 1								
Channel 2								
Total			734				0.4946	0.412
		_	_					
			Gaffney					
	Time of Concentration 25							
	(minutes)							
		C _f	С	l [in/hr]	AREA (ac)	0	FS	
	Q ₁₀	1	0.28	4.372	80.09		99	
	Q ₂₅	1.1	0.28	4.996	80.09		25	
	Q ₅₀	1.2	0.28	5.482	80.09		50	

0.28

80.09

5.956

169


		Rat	ional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	8.27	0.90					
Rolling, 2%-10%	Earth shoulders	0.19	0.50		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	18.73	0.30			0.29		
Rolling, 2%-10%	Unimproved Areas	7.49	0.20					
Hilly, Over 10%	Woodland & Forest	41.83	0.20					
Rolling, 2%-10%	Woodland & Forest	3.58	0.15					
101116, 270 1070	Woodland & Forest							
	├ ────┤							
	l	80.09						
				I				
	County (NOAA-14)		our rainfall [in]					
	Cherokee	3.	.73					
	1			Manning's			Velocity	_
Flow Type	Surface	Slope	Length [ft]	n	Area [ft^2]	WP [ft]	[ft/s]	Time [hr]
Sheet	Woods:dense underbrus	6.15%	100	0.8				0.368
Shallow								
Concentrated	Unpaved	6.15%	634					0.044
Shallow								
Concentrated Channel 1								
Channel I								
Channel D								
Channel 2			72.4				0.4046	0.447
Channel 2 Total			734				0.4946	0.412
			734				0.4946	0.41
			734				0.4946	0.41
			734 Gaffney				0.4946	0.411
		ation					0.4946	0.412
	Time of Concentr (minutes)	ation					0.4946	0.412
	Time of Concentr (minutes)	ation	Gaffney				0.4946	0.412
			Gaffney 25		AREA (ac)			0.412
	(minutes)	C _f	Gaffney 25 C	[in/hr]	AREA (ac) 80.09		FS	0.412
	(minutes)	C _f 1	Gaffney 25 C 0.29	1 [in/hr] 4.372	80.09	1	FS 03	0.411
	(minutes)	C _f	Gaffney 25 C	[in/hr]		1	FS	0.412

OUTFALL 2017+21 LT

This outfall receives cumulative discharge from Outfall 2028+67 LT, the Exit 102 Interchange, and limited offsite areas. The analysis point is offsite in order to capture the sheet flow impacts to the approximately 50-acre drainage area which includes roadway pavement, grassed medians, and large wooded areas. Offsite and roadway runoff is routed under I-85 to the outfall via a series of existing storm sewer systems. Discharge from this outfall is released to heavily wooded surroundings, and is then conveyed to an unnamed tributary that feeds into Buffalo Creek. The I-85 improvements will increase imperviousness due to the proposed median paving along the mainline and the reconfiguration of the Exit 102 Interchange. As a result, there will be a negligible increase in discharge of 5 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

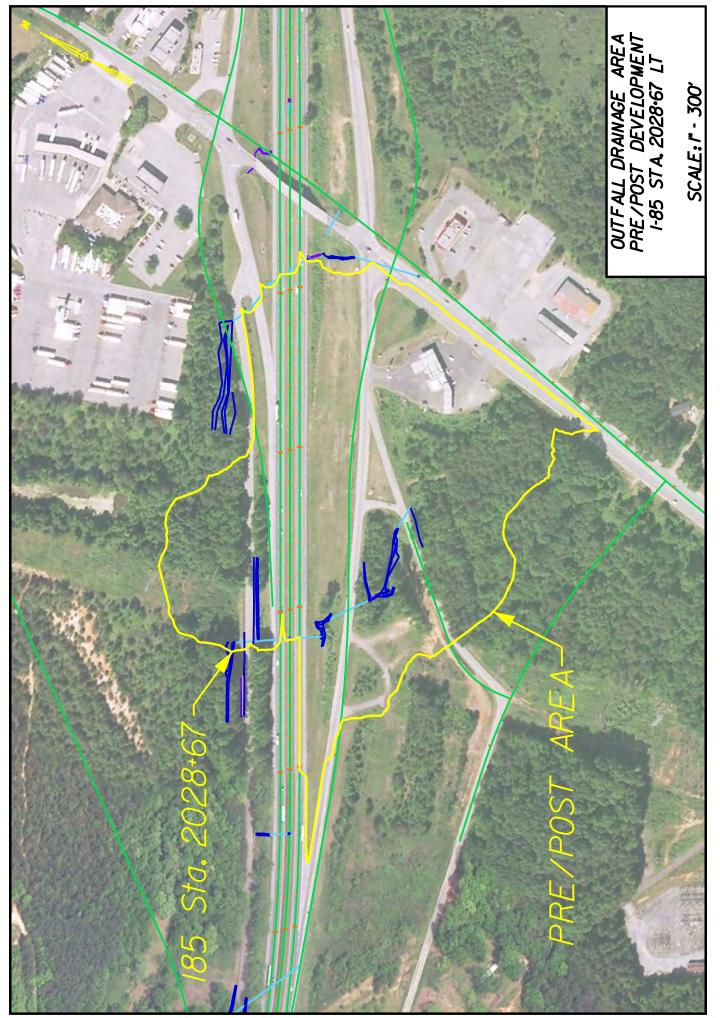
		Rat	ional Analysis					
		. 1				-	-	1
Land Slope	Land Use	Acres	C					
Rolling, 2%-10%	Pavements & Roofs	6.41	0.90		A 100	Maighto		
Rolling, 2%-10%	Earth shoulders	0.83	0.50		Area	Weighte	ac	
Rolling, 2%-10%	Side Slopes, Turf	14.52	0.30			0.31		
Hilly, Over 10%	Woodland & Forest	18.59	0.20					
Rolling, 2%-10%	Woodland & Forest	10.07	0.15					
		50.42						
				1				
	County (NOAA-14)	•	ur rainfall [in]					
	Cherokee	3.	73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	3.09%	100	0.8				0.48
Shallow Concentrated	Unpaved	3.09%	755					0.07
Shallow Concentrated								
Channel 1								
Channel 2								
Total			855				0.4247	0.55
	-	L						
			Gaffney					
	Time of Concentr (minutes)	ation	34					
						-		
		C _f	C	I [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.31	3.769	50.42		59 74	
	Q ₂₅	1.1 1.2	0.31	4.295 4.702	50.42 50.42		74 39	
	Q ₅₀	1.2	0.51	4.702	30.42		<u></u>	

0.31

5.097

50.42

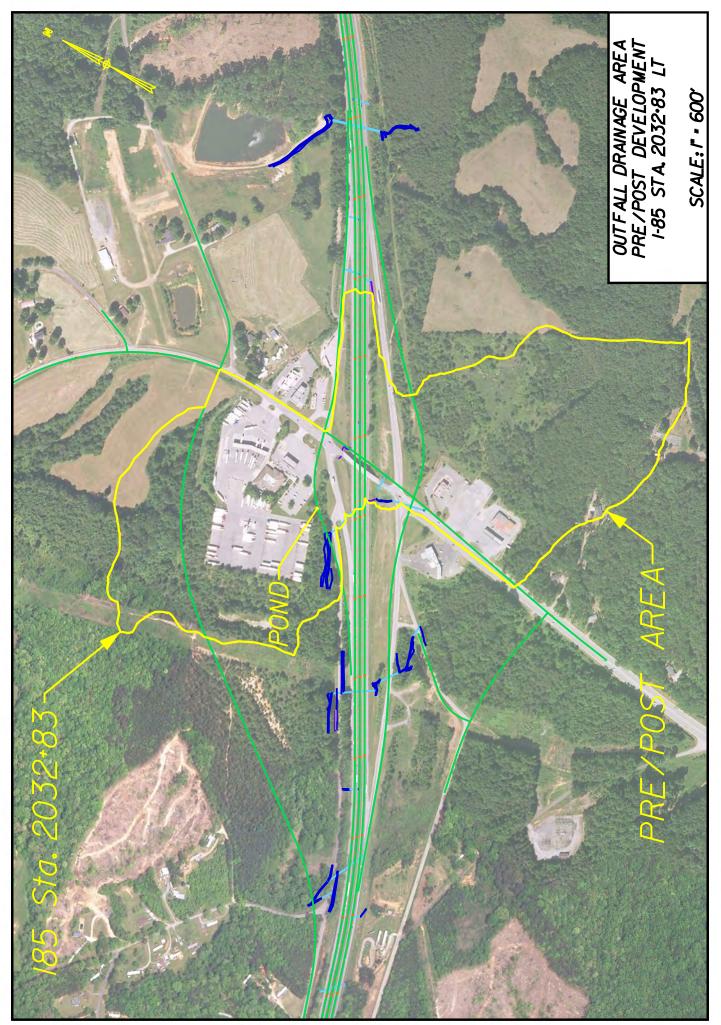
Q₁₀₀


		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	7.04	0.90					
Rolling, 2%-10%	Earth shoulders	0.83	0.50		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	19.60	0.30			0.33		
Hilly, Over 10%	Woodland & Forest	15.58	0.20					
Rolling, 2%-10%	Woodland & Forest	7.37	0.15					
		50.42						
	l	50.42		_	_	_		
	County (NOAA-14)	2-vear 24 Ho	our rainfall [in]					
	Cherokee		.73					
	<u> </u>							
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	3.09%	100	0.8				0.485
Shallow								
Concentrated Shallow	Unpaved	3.09%	755					0.074
Concentrated								
Channel 1								
Channel 2								
Total			855				0.4247	0.559
	-							
			Gaffney					
	Time of Concentr	ration	34					
	(minutes)		54					
		C _f	С	l [in/hr]	AREA (ac)		:FS	
	Q ₁₀	1	0.33	3.769	50.42		54	
	Q ₂₅	1.1	0.33	4.295	50.42		30	
	Q ₅₀	1.2	0.33	4.702	50.42		95	
	Q ₁₀₀	1.25	0.33	5.097	50.42	1	07	

OUTFALL 2028+67 LT

This outfall receives runoff from offsite areas, the Exit 102 interchange, and the I-85 mainline from Sta. 2029+00 to Sta. 2040+50. The drainage area is approximately 27 acres and is characterized by roadway pavement, grassed medians, and large wooded areas. Offsite and roadway runoff is routed under I-85 to the outfall via a series of existing storm sewer systems. Discharge from this outfall is released to heavily wooded surroundings, and is then conveyed to an unnamed tributary that feeds into Buffalo Creek. There will be no change in discharge from pre to post development conditions for the 10-year design storm. Therefore, the proposed I-85 improvements will have no adverse downstream impact.

		Rat	tional Analysis					
								,
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	6.37	0.90					
Rolling, 2%-10%	Side Slopes, Turf	12.96	0.30		Area	Weighte	d C	
Hilly, Over 10%	Woodland & Forest	7.43	0.20			0.42		
	l							
		26.76						
	L							
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]	1				
	Cherokee		.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	12.65%	100	0.8				0.27
Shallow								
Concentrated Shallow	Unpaved	12.65%	523					0.02
Concentrated								
Channel 1								
Channel 2								
Total			623				0.5743	0.30
	_							
		_	_		_	-	_	
			Gaffney					
	Time of Concentr	ration	19					
	(minutes)							
		C _f	С	l [in/hr]	AREA (ac)	(:FS	
	Q ₁₀	1	0.42	4.893	26.76		54	
	Q ₂₅	1.1	0.42	5.607	26.76	(59	
	Q ₅₀	1.2	0.42	6.165	26.76	8	32	


		Rat	tional Analysis					
						_	_	
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	6.13	0.90					
Rolling, 2%-10%	Side Slopes, Turf	13.84	0.30		Area	Weighte	d C	
Hilly, Over 10%	Woodland & Forest	6.79	0.20			0.41		
		26.76						
	L. L							ł
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	12.65%	100	0.8				0.27
Shallow								
Concentrated Shallow	Unpaved	12.65%	523					0.02
Concentrated								
Channel 1								
Channel 2								
Total			623				0.5743	0.30
	-							
			Gaffney					
	Time of Concentr	ation						
	(minutes) 19							
		C _f	С	I [in/hr]	AREA (ac)	C	:FS	
	Q ₁₀	1	0.41	4.893	26.76		54	
	Q ₂₅	1.1	0.41	5.607	26.76	(68	
	Q ₅₀	1.2	0.41	6.165	26.76	8	82	
	Q ₁₀₀	1.25	0.41	6.711	26.76		93	

OUTFALL 2032+83 LT

This outfall receives cumulative discharge from Outfall 2038+46 LT, the Exit 102 Interchange, and limited offsite areas. The analysis point is offsite in order to capture the sheet flow impacts to the approximately 98-acre drainage area which includes roadway pavement, grassed medians, some commercial development, and large wooded areas. Offsite and roadway runoff is routed under I-85 to the outfall via a series of existing storm sewer systems. Discharge from this outfall is released into a heavily wooded area and is then conveyed to an unnamed tributary that feeds into Buffalo Creek. The proposed interchange design impacts an existing offsite detention pond. The pond will need to be reestablished unless the potential additional increase in discharge, resulting from the pond's removal, can be addressed with the proposed interchange improvements. The I-85 improvements will increase imperviousness due to the proposed median paving along the mainline and the reconfiguration of the Exit 102 Interchange. As a result, there will be a negligible increase in discharge of 8 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and additional detention is not recommended.

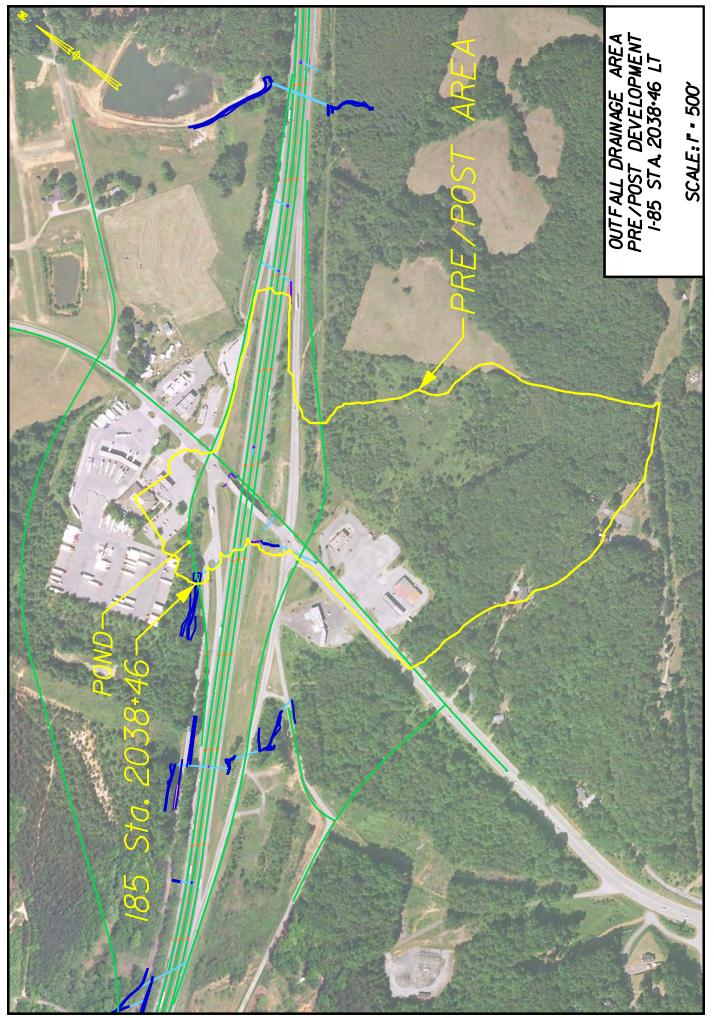
		Rat	ional Analysis					
								r
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	24.09	0.90					
Rolling, 2%-10%	Side Slopes, Turf	11.59	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Meadows & Pasture Land	2.76	0.30			0.39		
Hilly, Over 10%	Woodland & Forest	59.49	0.20					
		97.93						
	_							
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3.	.73					
_			_		-			
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	8.58%	100	0.8			[:0/0]	0.32
Shallow								
Concentrated	Unpaved	8.58%	699					0.04
Shallow Concentrated								
Channel 1								
Channel 2								
Total			799				0.6108	0.36
	_	L						
			Gaffney					
			Ganney					
	Time of Concentration 22							
	(minutes)							
		6						
		C _f	C 0.39	I [in/hr]	AREA (ac)		CFS . 75	
	Q ₁₀	1.1	0.39	4.618 5.284	97.93 97.93		20	
	Q ₂₅	1.1	0.39	5.284	97.93		.20	
	Q ₅₀	1.2	0.59	5.804	57.95	2		

6.311

97.93

299

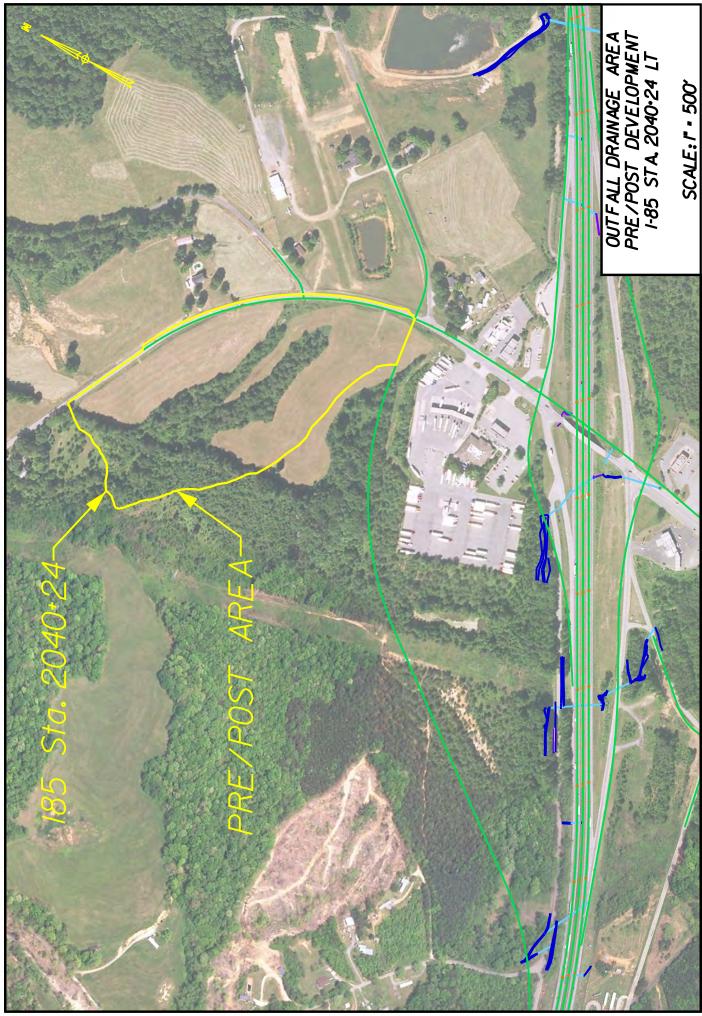
0.39


		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	25.63	0.90					
Rolling, 2%-10%	Side Slopes, Turf	19.04	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Meadows & Pasture Land	1.76	0.30			0.40		
Hilly, Over 10%	Woodland & Forest	51.50	0.20					
		97.93						
	County (NOAA-14)		our rainfall [in]					
	Cherokee	3	.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	8.58%	100	0.8				0.322
Shallow								
Concentrated Shallow	Unpaved	8.58%	699					0.041
Concentrated								
Channel 1								
Channel 2								
Total			799				0.6108	0.363
	_							
				_	_		_	
			Gaffney					
	Time of Concentr	ation	22					
	(minutes)							
		C _f	C	I [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.40	4.618	97.93		83	
	Q ₂₅	1.1 1.2	0.40	5.284 5.804	97.93 97.93		30 76	
	Q ₅₀	1.2	0.40	5.804 6.311	97.93		12	
	Q ₁₀₀	1.25	0.40	0.311	57.55	_		l l

OUTFALL 2038+46 LT

This outfall receives runoff from offsite areas, the Exit 102 interchange, and the I-85 mainline from Sta. 2040+50 to Sta. 2054+00. The drainage area is approximately 59 acres and is characterized by roadway pavement, grassed medians, commercial development, and large wooded areas. Offsite and roadway runoff is routed under I-85 to the outfall via a series of existing storm sewer systems. Discharge from this outfall is released into a heavily wooded area and is then conveyed to an unnamed tributary that feeds into Buffalo Creek. The proposed interchange design impacts an existing offsite detention pond. The pond will need to be reestablished unless the potential additional increase in discharge, resulting from the pond's removal, can be addressed with the proposed interchange improvements. The I-85 improvements will increase imperviousness due to the proposed median paving along the mainline and the reconfiguration of the Exit 102 Interchange. As a result, there will be a negligible increase in discharge of 3 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and additional detention is not recommended.

		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	11.05	0.90					
Rolling, 2%-10%	Side Slopes, Turf	10.18	0.30		Area	Weighte	d C	
Hilly, Over 10%	Woodland & Forest	37.92	0.20			0.35		
<i>,,</i>								
		F0.4F						
	l	59.15						
	County (NOAA-14)	2 year 24 He	our rainfall [in]					
	Cherokee	-	.73					
	Cherokee	J	.75					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	8.58%	100	0.8				0.322
Shallow								
Concentrated Shallow	Unpaved	8.58%	699					0.041
Concentrated								
Channel 1								
Channel 2								
Total			799				0.6108	0.363
	7							
			Gaffney					
	Time of Concentration 22							
	(minutes)							
		C _f	С	I [in/hr]	AREA (ac)	0	:FS	
	Q ₁₀	2 _f	0.35	4.618	59.15		95	
	Q ₁₀ Q ₂₅	1.1	0.35	5.284	59.15		20	
	Q ₅₀	1.2	0.35	5.804	59.15	1	43	


		Rat	ional Analysis					
_	1				_			
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	11.66	0.90					
Rolling, 2%-10%	Side Slopes, Turf	11.89	0.30		Area	Weighte	d C	
Hilly, Over 10%	Woodland & Forest	35.60	0.20			0.36		
		59.15						
				I				
	County (NOAA-14)	-	our rainfall [in]					
	Cherokee	3	.73					
_			_	Manual in alla	-) (ala situ	_
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	8.58%	100	0.8			[10/5]	0.322
Shallow	woods.dense underbrusi	8.3676	100	0.8				0.322
Concentrated	Unpaved	8.58%	699					0.042
Shallow								
Concentrated								
Channel 1								
Channel 2								
Total		l	799				0.6108	0.363
			Gaffney					
	Time of Concerts							
	Time of Concentration 22 (minutes)							
	(minutes)							
		C	С	L [in/hr]	AREA (ac)		CFS	
	0	C _f 1	0.36	I [in/hr] 4.618	59.15		98	
	Q ₁₀	1.1	0.36	5.284	59.15		.23	
	Q ₂₅	1.1	0.36	5.804	59.15		.25 .48	
	Q ₅₀	1.2	0.36	6.311	59.15		.40	
	Q ₁₀₀	1.25	0.30	0.311	59.15	1		

OUTFALL 2040+24 LT

This outfall receives runoff from Rock Springs Road and limited offsite areas. Offsite and roadway runoff sheet flows from Rock Springs Road to the outfall. The analysis point is offsite in order to capture the sheet flow impacts to the approximately 27-acre drainage area which includes roadway pavement, grassed fields, and wooded areas. Discharge from this outfall is released into a heavily wooded area and is then conveyed to an unnamed tributary that feeds into Buffalo Creek. The proposed widening of Rock Springs Road occurring with the Exit 102 interchange improvements will increase imperviousness. As a result, there will be a negligible increase in discharge of 1 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

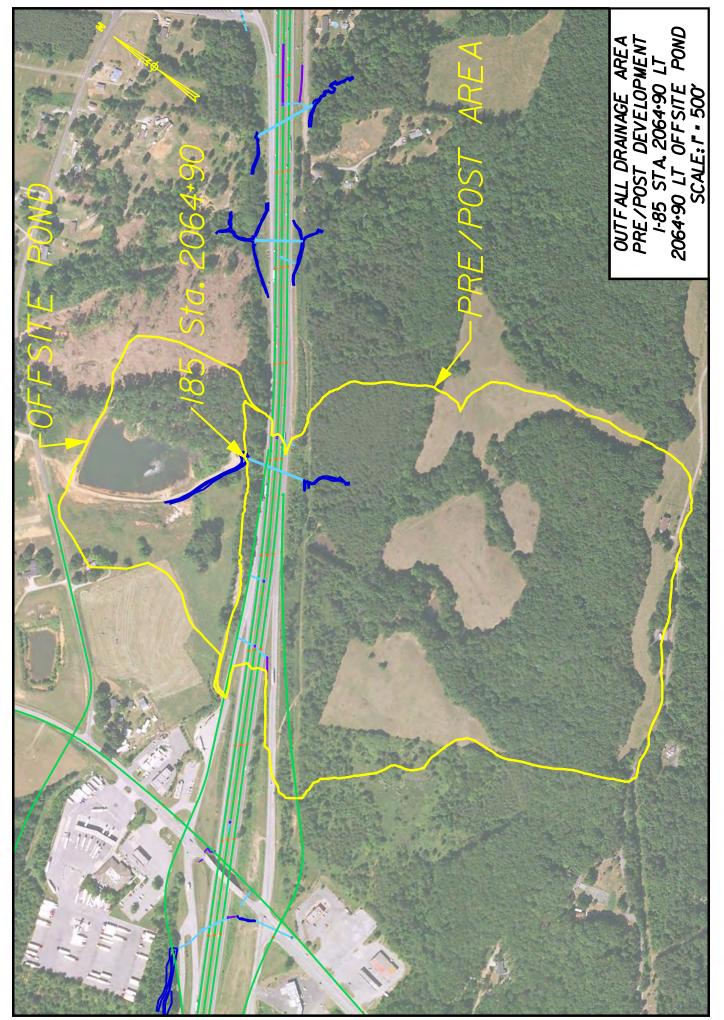
		Rat	ional Analysis					
				-				
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	1.27	0.90					
Rolling, 2%-10%	Side Slopes, Turf	0.67	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Meadows & Pasture Land	14.51	0.30			0.29		
Hilly, Over 10%	Woodland & Forest	10.39	0.20					
		26.84						
	County (NOAA 14)	2 year 24 Ho	ur rainfall [in]	1				
	County (NOAA-14) Cherokee	-	73					
	enerokee	5.						
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	4.64%	100	0.41				0.24
Shallow Concentrated	Linney and	4 6 40/	1070					0.10
Shallow	Unpaved	4.64%	1278					0.10
Concentrated								
Channel 1								
Channel 2								
Total]	L	1378				1.1144	0.34
		_	Gaffney			-	-	1
			Ganney					
	Time of Concentration 21							
	(minutes)							
		C _f	С	I [in/hr]	AREA (ac)	C	:FS	
	Q ₁₀	1 C _f	0.29	4.706	26.84		37	
	Q ₂₅	1.1	0.29	5.388	26.84		16	
	Q ₅₀	1.2	0.29	5.919	26.84		55	
					1			

0.29

6.439

26.84

63


		Rat	tional Analysis					
	-							
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	1.77	0.90					
Rolling, 2%-10%	Side Slopes, Turf	2.24	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Meadows & Pasture Land	12.46	0.30			0.30		
Hilly, Over 10%	Woodland & Forest	10.37	0.20					
		26.84		l				
	L							
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	.73					
							1	
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	4.64%	100	0.41				0.241
Shallow								
Concentrated Shallow	Unpaved	4.64%	1278					0.102
Concentrated								
Channel 1								
Channel 2								
Total			1378				1.1144	0.343
	-							
			Gaffney					
	Time of Concentr	ation	24					
	(minutes)		21					
		C _f	С	l [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.30	4.706	26.84		38	
	Q ₂₅	1.1	0.30	5.388	26.84		48	
	Q ₅₀	1.2	0.30	5.919	26.84		57	
	Q ₁₀₀	1.25	0.30	6.439	26.84	(55	

OUTFALL 2064+90 LT

This outfall receives runoff from offsite areas, the Exit 102 interchange, and the I-85 mainline from Sta. 2054+00 to Sta. 2066+00. The drainage area is approximately 96 acres and is characterized by an existing 0.4-acre impoundment, roadway pavement, grassed medians, large grassed fields, and dense wooded areas. Roadway runoff is routed to the outfall through multiple existing storm sewer systems; while offsite runoff is routed under I-85 through an existing 4' x 6' R.C. box culvert. Discharge from this outfall flows into an existing offsite pond before reaching an unnamed tributary that feeds into Bee Branch. The I-85 improvements will increase imperviousness due to the proposed median paving. As a result, there will be a negligible increase in discharge of 4 cfs from pre to post development conditions for the 10-year design storm. Additional hydrologic analysis found no change in discharge from pre to post development conditions. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	4.15	0.90					
Rolling, 2%-10%	Side Slopes, Turf	8.68	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Meadows & Pasture Land	7.50	0.30			0.28		
Hilly, Over 10%	Meadows & Pasture Land	19.86	0.35					
Hilly, Over 10%	Woodland & Forest	56.00	0.20					
		96.19		1				
		<u> </u>						
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	.73					
	r							
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	18.93%	100				[[[]]]	0.23
Shallow		10.5576	100	0.8				0.25
Concentrated	Unpaved	18.93%	1485					0.05
Shallow								
Concentrated Channel 1		F 720/	1200	0.04	27	10.070	11.2206	0.02
Channel 2		5.72%	1268	0.04	27	19.078	11.2286	0.03
Total			2853				2.4382	0.32
TOLAI	J	L	2855	J			2.4302	0.52
			Gaffney					
	Time of Concentration							
	(minutes)		20					
		C _f	С	I [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.28	4.798	96.19		28	
	-		0.20	5 40 5	06.40		C 2	

0.28

0.28

0.28

1.1

1.2

1.25

96.19

96.19

96.19

5.495

6.040

6.572

162

194

220

Q₂₅ **Q**₅₀

Q₁₀₀

		Rat	ional Analysis					
								r
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	5.31	0.90					
Rolling, 2%-10%	Side Slopes, Turf	8.06	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Meadows & Pasture Land	7.50	0.30			0.29		
Hilly, Over 10%	Meadows & Pasture Land	19.86	0.35					
Hilly, Over 10%	Woodland & Forest	55.46	0.20					
	l	96.19						
	County (NOAA-14)	2 year 24 He	our rainfall [in]	1				
	Cherokee		.73					
				1				
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	18.93%	100	0.8				0.235
Shallow								
Concentrated Shallow	Unpaved	18.93%	1485					0.059
Concentrated								
Channel 1		5.72%	1268	0.04	27	19.078	11.2286	0.031
Channel 2								
Total			2853				2.4382	0.325
	_	-		-				
								I
			Gaffney					
	Time of Concentr	ration	20					
	(minutes)		20					
						-	250	
		C _f	C	I [in/hr]	AREA (ac)		FS 22	
	Q ₁₀	1	0.29	4.798	96.19		32 66	
	Q ₂₅	1.1	0.29	5.495	96.19		66 00	

Q₅₀

Q₁₀₀

1.2

1.25

0.29

0.29

6.040

6.572

96.19

96.19

199

226

		SCS /	Analysis					
HSG	Land Use	Acres	CN					
В	Impervious	6.91	98.00					
В	Pasture,grassland,or range: Good	35.21	61.00		Area W	eighted C	Ν	
В	Woods:Good	63.87	55.00			60		
В	Open Space: Fair Condition	3.56	68.00					
В	Open Space: Good Condition	10.43	61.00					
				l				
]				
		119.98		-				
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	.73	J				
		-		Manning's			Velocity	
Flow Type	Surface	Slope	Length [ft]	n	Area [ft^2]	WP [ft]	[ft/s]	Time [hr]
Sheet	Woods:dense underbrush	18.93%	100	0.8				0.235
Shallow Concentrated	Unpaved	18.93%	1485					0.059
Shallow		10.5570	1403					0.000
Concentrated								
Channel 1		5.72%	1268	0.04	27	19.0775	11.22863	0.031
Channel 2		2.80%	286	0.04	9.75	19.6431	3.905576	0.020
Total			3139				2.5246	0.345
		-	1		_			I
	Drainage Area	119.98		Curve Number 60		50		
	(acres)							
				Time of Concentration 21				
				(m	inutes)			

--- Identification Data ---

User:DRHDate:5/12/2017Project:6114Units:EnglishSubTitle:2064+90 Pond Outfall PreAreal Units:AcresState:South CarolinaAcresCounty:Cherokee NOAA-14Filename:S:\Proj\2014\6114 I-85 mm 96-106\Design\Project PIN Number\Drainage\Calculations\OUTFALL\206

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
Outfall		Outlet	119.98	60	0.350

Total area: 119.98 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.73	4.68	5.44	6.49	7.35	8.24	3.1

Storm Data Source: Cherokee NOAA-14 County, SC (NRCS) Rainfall Distribution Type: Type II Dimensionless Unit Hydrograph: <standard>

WinTR-55,	Version	1	.00.10	С
-----------	---------	---	--------	---

Page 1

6114 2064+90 Pond Outfall Pre Cherokee NOAA-14 County, South Carolina

Watershed Peak Table

Sub-Area or Reach Identifier	Pea 10-Yr (cfs)	k Flow by 25-Yr (cfs)	50-Yr	Return Period 100-Yr (cfs)	
SUBAREAS Outfall	187.60	279.48	361.32	447.86	
REACHES					
OUTLET	187.60	279.48	361.32	447.86	

		SCS /	Analysis					
HSG	Land Use	Acres	CN					
В	Impervious	7.89	98.00					
В	Pasture,grassland,or range: Good	34.95	61.00		Area W	eighted C	N	
В	Woods:Good	63.33	55.00			60		
В	Open Space: Good Condition	10.25	61.00					
В	Open Space: Fair Condition	3.56	68.00					
		119.98		l				
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	.73					
		_						
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [h
Sheet	Woods:dense underbrush	18.93%	100	0.8				0.2
Shallow Concentrated	Unpaved	18.93%	1485					0.0
Shallow Concentrated								
Channel 1		5.72%	1268	0.04	27	19.0775	11.22863	0.0
Channel 2		2.80%	286	0.04	9.75	19.6431	3.905576	0.0
ital			3139				2.5246	0.3
			1	r	_			I
	Drainage Area (acres)	119.98		Curve Number 60 Time of Concentration (minutes) 21		50		

--- Identification Data ---

User: DRH Date: 5/12/2017 Project: 6114 Units: English SubTitle: 2064+90 Pond Outfall Post Areal Units: Acres State: South Carolina County: Cherokee NOAA-14 Filename: S:\Proj\2014\6114 I-85 mm 96-106\Design\Project PIN Number\Drainage\Calculations\OUTFALL\206

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
Outfall		Outlet	119.98	60	0.350

Total area: 119.98 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

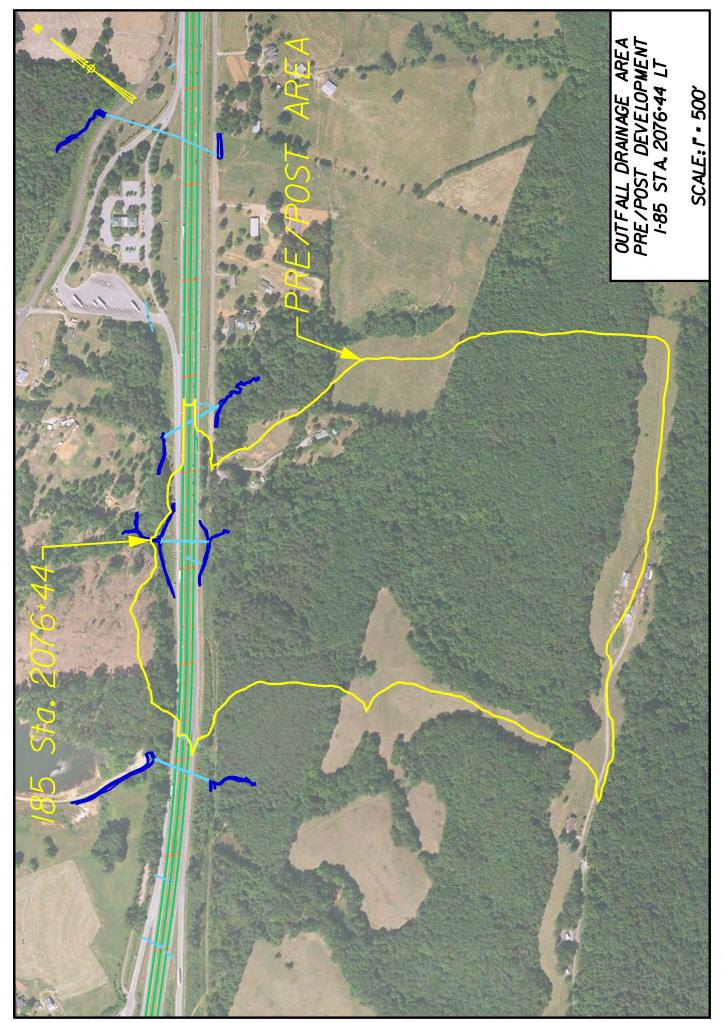
2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	l-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.73	4.68	5.44	6.49	7.35	8.24	3.1

Storm Data Source:Cherokee NOAA-14 County, SC (NRCS)Rainfall Distribution Type:Type IIDimensionless Unit Hydrograph:<standard>

WinTR-55, Version	1	.00.1	10
-------------------	---	-------	----

6114 2064+90 Pond Outfall Post Cherokee NOAA-14 County, South Carolina

Watershed Peak Table


Sub-Area or Reach Identifier	Pea 10-Yr (cfs)	k Flow by 25-Yr (cfs)	Rainfall 50-Yr (cfs)	Return Period 100-Yr (cfs)	
SUBAREAS Outfall	187.60	279.48	361.32	447.86	
REACHES					
OUTLET	187.60	279.48	361.32	447.86	

DRH

OUTFALL 2076+44 LT

This outfall receives runoff from offsite areas as well as roadway discharge from Sta. 2066+00 to Sta. 2083+50. The drainage area is approximately 102 acres and is comprised of roadway pavement, grassed medians and fields, sparse residential tracts, and dense wooded areas. Offsite runoff is routed under I-85 to the outfall via an existing 4' x 6' R.C. box culvert; while roadway runoff is collected by an existing storm sewer system and routed to the entrance of the box culvert via roadside ditches. Discharge from this outfall is conveyed by an unnamed tributary into Bee Branch. The I-85 improvements will increase imperviousness due to the proposed median paving. As a result, there will be a negligible increase in discharge of 7 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		SCS	Analysis					
HSG	Land Use	Acres	CN					
В	Impervious	3.08	98.00					
В	Pasture, grassland, or range: Good	24.65	61.00		Area W	eighted C	N	
В	Woods:Good	74.41	55.00			58		
		_						
		102.14						
		_		1				
	County (NOAA-14)	-	our rainfall [in]					
	Cherokee	3	3.73	J				
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrush	17.41%	100	0.8				0.243
Shallow	Unnerred	17 410/	1451					0.000
Concentrated Shallow	Unpaved	17.41%	1451					0.060
Concentrated								
Channel 1		3.97%	1724	0.04	2.8	4.98249	5.054951	0.095
Channel 2								
Total			3275				2.2889	0.397
			1					
	Drainage Area	102.14		Curv	e Number		58	
	(acres)	102.14		Curr				
			•		Concentration		24	
				(m	inutes)			

--- Identification Data ---

User: CECS Date: 12/13/2016 Project: I-85 Improvement Proj DB Prep Units: English SubTitle: OUTFALL 2076+44 LT (PRE) Areal Units: Acres State: South Carolina County: Cherokee_NOAA_B Filename: S:\Proj\2014\6114 I-85 mm 96-106\Design\Project PIN Number\Drainage\Calculations\OUTFALL\Q50 AN

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
2076+44 LT		Outlet	102.14	58	0.400

Total area: 102.14 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.73	4.68	5.44	6.49	7.35	8.24	3.1

Storm Data Source:Cherokee_NRainfall Distribution Type:Type NO_BDimensionless Unit Hydrograph:<standard>

Cherokee_NOAA_B County, SC (NRCS) Type NO_B <standard>

I-85 Improvement Proj DB Prep OUTFALL 2076+44 LT (PRE) Cherokee_NOAA_B County, South Carolina

Watershed Peak Table

Sub-Area or Reach Identifier	10-Yr	ak Flow by 25-Yr (cfs)	50-Yr	Return Period 100-Yr (cfs)	
SUBAREAS 2076+44 LT	116.62	178.38	233.18	293.01	
REACHES					

OUTLET 116.62 178.38 233.18 293.01

CECS

12/13/2016 9:48:57 AM

		SCS /	Analysis					
HSG	Land Use	Acres	CN					
В	Impervious	4.15	98.00					
В	Pasture,grassland,or range: Good	23.58	61.00		Area W	eighted C	N	
В	Woods:Good	74.41	55.00			59		
		102.14						
		-						
	County (NOAA-14)		our rainfall [in]					
	Cherokee	3	8.73	J				
	T	-	-	Manning's			Velocity	
Flow Type	Surface	Slope	Length [ft]	n n	Area [ft^2]	WP [ft]	[ft/s]	Time [hr]
Sheet	Woods:dense underbrush	17.41%	100	0.8				0.243
Shallow	Unpaved	17.41%	1451					0.060
Concentrated Shallow	Unpaveu	17.41%	1451					0.000
Concentrated								
Channel 1		3.97%	1724	0.04	2.8	4.98249	5.054951	0.095
Channel 2								
Total			3275				2.2889	0.397
								1
	Drainage Area	102.14		Curv	e Number		59	
	(acres)	102.14		Curv			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
					Concentration		24	
				(m	inutes)			

--- Identification Data ---

User: CECS Date: 12/13/2016 Project: I-85 Improvement Proj DB Prep Units: English SubTitle: OUTFALL 2076+44 LT (POST) Areal Units: Acres State: South Carolina County: Cherokee_NOAA_B Filename: S:\Proj\2014\6114 I-85 mm 96-106\Design\Project PIN Number\Drainage\Calculations\OUTFALL\Q50 AN

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
2076+44 LT		Outlet	102.14	59	0.400

Total area: 102.14 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.73	4.68	5.44	6.49	7.35	8.24	3.1

Storm Data Source:Cherokee_NRainfall Distribution Type:Type NO_BDimensionless Unit Hydrograph:<standard>

Cherokee_NOAA_B County, SC (NRCS) Type NO_B <standard>

12/13/2016 9:48:11 AM

I-85 Improvement Proj DB Prep OUTFALL 2076+44 LT (POST) Cherokee_NOAA_B County, South Carolina

Watershed Peak Table

Sub-Area or Reach Identifier	Pea 10-Yr (cfs)	25-Yr	Rainfall 50-Yr (cfs)	Return Period 100-Yr (cfs)	
SUBAREAS 2076+44 LT	124.36	187.49	243.29	304.32	
REACHES					

OUTLET 124.36 187.49 243.29 304.32

CECS

12/13/2016 9:48:11 AM

OUTFALL 2081+60 LT

This outfall receives runoff from offsite areas as well as roadway discharge from Sta. 2083+50 to Sta. 2098+00. The drainage area is approximately 60 acres and includes roadway pavement, grassed medians and fields, sparse residential tracts, a rest stop area, and dense wooded areas. Offsite runoff is routed under I-85 to the outfall via an existing 4' x 4' R.C. box culvert; while roadway runoff is routed to the head of the box culvert via an existing storm sewer system. Discharge from this outfall is conveyed by an unnamed tributary into Bee Branch. The I-85 improvements will increase imperviousness due to the proposed median paving. As a result, there will be a negligible increase in discharge of 3 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		Rat	tional Analysis					
			,,					
Land Slope	Land Use	Acres	С					[
Rolling, 2%-10%	Pavements & Roofs	7.04	0.90					
Rolling, 2%-10%	Side Slopes, Turf	27.44	0.30		Area	Weighte	d C	
Hilly, Over 10%	Woodland & Forest	21.16	0.20			0.32		
Rolling, 2%-10%	Woodland & Forest	4.78	0.15					
		60.42		-				
				1				
	County (NOAA-14)		our rainfall [in]					
	Cherokee	3	.73	J				
				Manning's			Velocity	
Flow Type	Surface	Slope	Length [ft]	n	Area [ft^2]	WP [ft]	[ft/s]	Time [hr]
Sheet	Woods:dense underbrus	18.77%	100	0.8				0.23
Shallow								
Concentrated Shallow	Unpaved	18.77%	1145					0.04
Concentrated								
Channel 1		4.85%	1536	0.04	132.5	45.427	16.7428	0.02
Channel 2								
Total			2781				2.5190	0.30
			Gaffney					
	Time of Concent	ration						
	(minutes)		19					
		C _f	С	I [in/hr]	AREA (ac)	C	FS	
			0.00	4 000	60.40			

Q₁₀

Q₂₅

Q₅₀

Q₁₀₀

1

1.1

1.2

1.25

0.32

0.32

0.32

0.32

4.893

5.607

6.165

6.711

60.42

60.42

60.42

60.42

95

120

144

164

		Rat	ional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	8.05	0.90					
Rolling, 2%-10%	Side Slopes, Turf	26.43	0.30		Area	Weighte	d C	
Hilly, Over 10%	Woodland & Forest	21.16	0.20			0.33		
Rolling, 2%-10%	Woodland & Forest	4.78	0.15					
		60.42						
	County (NOAA-14)	2 year 24 He	our rainfall [in]	1				
	Cherokee		.73					
				1				
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	18.77%	100	0.8				0.236
Shallow								
Concentrated Shallow	Unpaved	18.77%	1145					0.046
Concentrated								
Channel 1		4.85%	1536	0.04	132.5	45.427	16.7428	0.025
Channel 2								
Total			2781				2.5190	0.307
				_	_	_		
			Gaffney					
	Time of Concent	ration	19					
	(minutes)		15					
	0	C _f 1	C	I [in/hr]	AREA (ac)		2FS 98	
	Q ₁₀	1	0.33	4.893	60.42		24	

Q₂₅

Q₅₀

Q₁₀₀

1.1

1.2

1.25

0.33

0.33

0.33

60.42

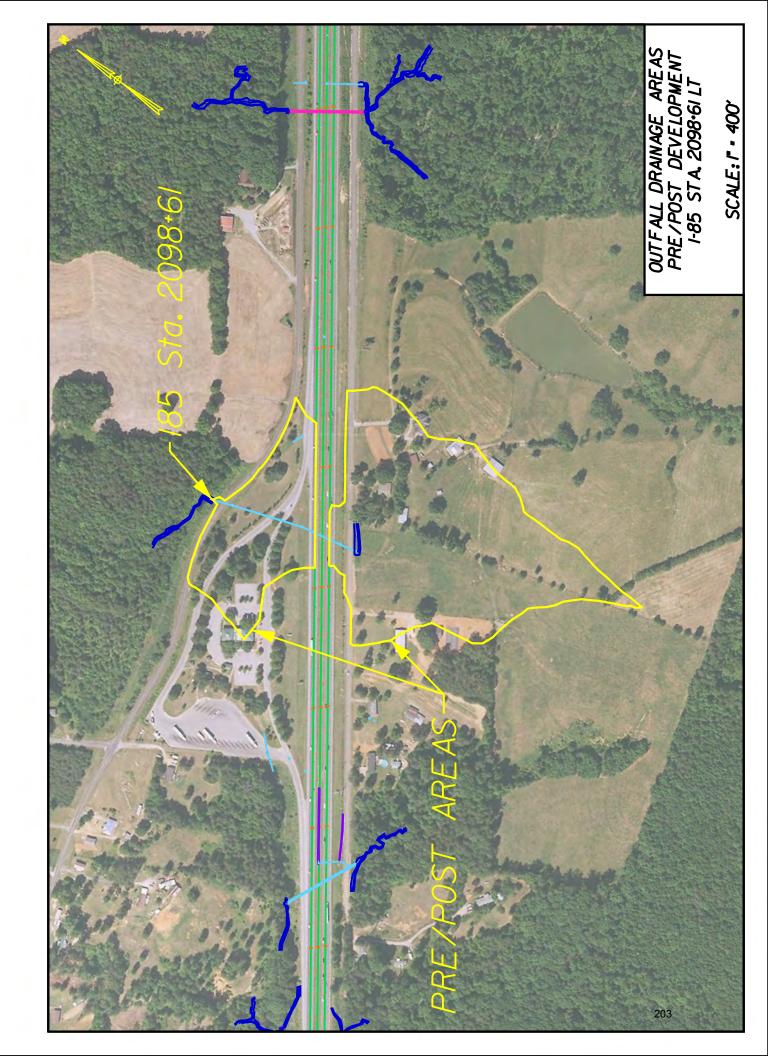
60.42

60.42

5.607

6.165

6.711

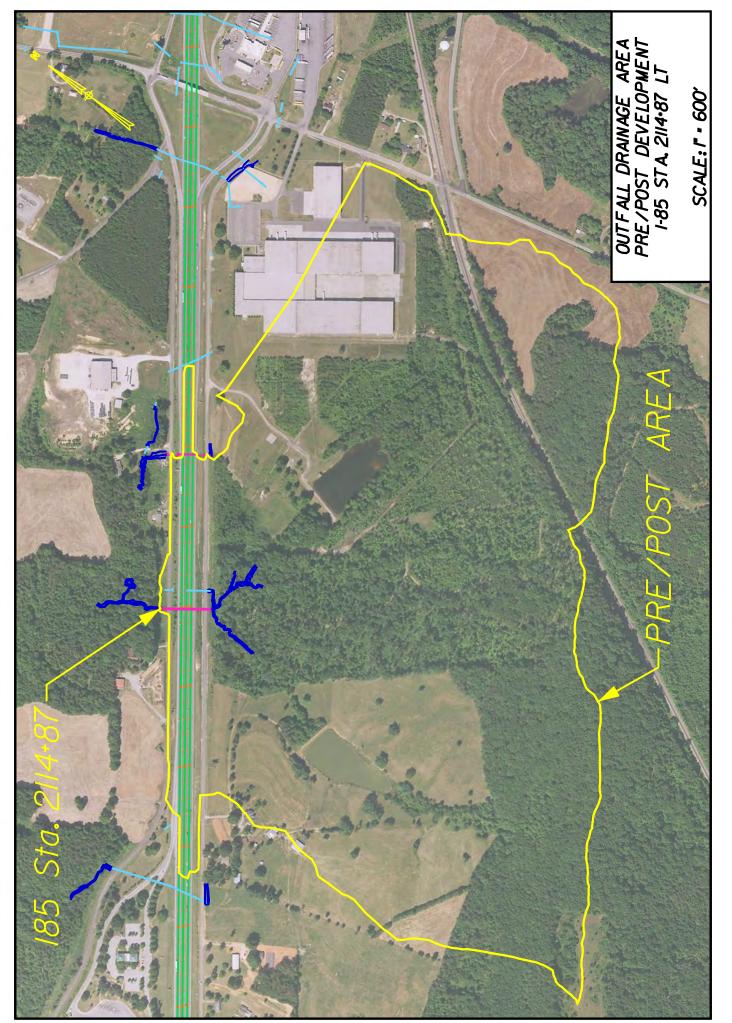

124

149 169

OUTFALL 2098+61 LT

This outfall receives runoff from offsite areas as well as roadway discharge from Sta. 2095+50 to Sta. 2098+00. The drainage area is approximately 23 acres and is comprised of roadway pavement, grassed medians and fields, sparse residential tracts, and a rest stop area. Discharge from this outfall is released into a heavily wooded area and is then conveyed to an unnamed tributary that feeds into Bee Branch. There will be no change in discharge from pre to post development conditions for the 10-year design storm. Therefore, the proposed I-85 improvements will have no adverse downstream impact.

		Ratio	nal Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	2.91	0.90					
Rolling, 2%-10%	Side Slopes, Turf	20.32	0.30		Area	Weighte	d C	
						0.38		
		23.23		l				
		23.23	_	_	_	_		l
	County (NOAA-14)	2-vear 24 Ho	our rainfall [in]	1				
	Cherokee		.73					
	Cherokee		., 5	J				
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	5.27%	100	0.41				0.22
Shallow								
Concentrated Shallow	Unpaved	5.27%	1212					0.09
Concentrated								
Channel 1								
Channel 2								
Total			1312				1.1377	0.32
	_							
			Gaffney					
	Time of Concentra	tion						
	(minutes)		20					
		C _f	С	l [in/hr]	AREA (ac)	C	:FS	
	-	1	0.38	4.798	23.23		42	
	Q ₁₀							
	Q ₁₀ Q ₂₅	1.1	0.38	5.495	23.23	-,	53	
	Q ₁₀ Q ₂₅ Q ₅₀		0.38 0.38	5.495 6.040	23.23 23.23		53 53	


		Ratio	onal Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	2.91	0.90					
Rolling, 2%-10%	Side Slopes, Turf	20.32	0.30		Area	Weighte	d C	
						0.38		
		23.23		-				
				1				
	County (NOAA-14)		our rainfall [in]					
	Cherokee	3	.73	J				
Flow Type	Surface	Slope	Length [ft]	Manning's	Area [ft^2]	WP [ft]	Velocity	Time [hr]
				n	/ cu [.t =]	[]	[ft/s]	
Sheet Shallow	Grass:bermudagrass	5.27%	100	0.41				0.229
Concentrated	Unpaved	5.27%	1212					0.091
Shallow								
Concentrated								
Channel 1								
Channel 2			1010				1 1 2 7 7	0.220
Total	J		1312	J			1.1377	0.320
			Gaffney					
			Cunney					
	Time of Concentra							
	(minutes) 20							
					AREA (ac)		CFS	
	Q ₁₀	C _f	C 0.38	I [in/hr] 4.798	23.23		42	
	Q ₁₀	1.1	0.38	5.495	23.23		53	
	Q ₅₀	1.2	0.38	6.040	23.23		63	
	Q ₁₀₀	1.25	0.38	6.572	23.23		72	

OUTFALL 2114+87 LT

This outfall receives runoff from offsite areas as well as roadway discharge from Sta. 2098+00 to Sta. 2130+00. The drainage area is approximately 240 acres and is characterized by roadway pavement, grassed medians and fields, commercial development, and dense wooded areas. Additionally, the area includes two 3-acre impoundments, which outfall into two separate, unnamed tributaries that merge together before crossing under I-85. Offsite runoff is routed under I-85 to the outfall via an existing 6' x 6' R.C. box culvert; while roadway runoff is collected by an existing storm sewer system and routed to the entrance of the box culvert via roadside ditches. Discharge from this outfall ultimately feeds into Bee Branch. The I-85 improvements will increase imperviousness due to the proposed median paving. As a result, there will be a negligible 14 cfs increase in discharge from pre to post development conditions for the 10-year design storm. The receiving channel was analyzed to determine what impact the increase in discharge would have on the channel; the increase in discharge will cause less than 0.1 foot change in water surface elevation from pre to post development for the 10-year design storm. There will be no adverse downstream impact and detention is not recommended.

		SCS /	Analysis					
HSG	Land Use	Acres	CN					
В	Impervious	23.17	98.00					
В	Streets and roads: Gravel	2.04	85.00		Area W	eighted C	N	
В	Pasture, grassland, or range: Good	76.62	61.00			61		
В	Woods:Good	133.07	55.00					
А	Pasture,grassland,or range: Good	1.64	39.00					
А	Woods:Good	3.42	30.00	ļ				
				<u> </u>				
		239.96						
				1				
	County (NOAA-14)	-	our rainfall [in]					
	Cherokee	3	.73	J				
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [h
Sheet	Woods:dense underbrush	4.76%	100	0.8				0.4
Shallow Concentrated	Unpaved	4.76%	2177					0.1
Shallow Concentrated	Paved	4.76%	545					0.0
Channel 1		4.00%	1025	0.04	1.5	3.65028	4.117809	0.0
Channel 2								
tal			3847				1.5649	0.
	Drainage Area	239.96		Curve	e Number	(51	
	(acres)	235.50						

--- Identification Data ---

User: CECS Project: I-85 Improvement Proj DB Prep Date: 12/13/2016 Units: English SubTitle: OUTFALL 2114+87 LT (PRE) Areal Units: Acres State: South Carolina County: Cherokee_NOAA_B Filename: S:\Proj\2014\6114 I-85 mm 96-106\Design\Project PIN Number\Drainage\Calculations\OUTFALL\Q50 AN

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Tc
2114+87 LT		Outlet	239.96	61	0.683

Total area: 239.96 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	l-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.73	4.68	5.44	6.49	7.35	8.24	3.1

Storm Data Source:Cherokee_NOAA_B County, SC (NRCS)Rainfall Distribution Type:Type NO_BDimensionless Unit Hydrograph:<standard>

I-85 Improvement Proj DB Prep OUTFALL 2114+87 LT (PRE) Cherokee_NOAA_B County, South Carolina

Watershed Peak Table

	10-Yr	k Flow by 25-Yr (cfs)	50-Yr		
SUBAREAS 2114+87 LT	245.68	362.85	465.37	577.09	
REACHES					

OUTLET 245.68 362.85 465.37 577.09

CECS

OUTFALL 2114+87 LT (POST)

		SCS /	Analysis					
	1	-						
HSG	Land Use	Acres	CN					
В	Impervious	25.50	98.00					
В	Streets and roads: Gravel	2.04	85.00		Area W	eighted C	N	
В	Pasture, grassland, or range: Good	74.41	61.00			62		
В	Woods:Good	133.07	55.00					
А	Pasture, grassland, or range: Good	1.52	39.00					
А	Woods:Good	3.42	30.00					
				I				
		239.96						
	County (NOAA-14)	2-vear 24 Ho	our rainfall [in]	1				
	Cherokee		.73					
	cherokee		.,,,	J				
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [h
Sheet	Woods:dense underbrush	4.76%	100	0.8				0.4
Shallow Concentrated	Unpaved	4.76%	2177					0.1
Shallow Concentrated	Paved	4.76%	545					0.0
Channel 1		4.00%	1025	0.04	1.5	3.65028	4.117809	0.0
Channel 2								
otal			3847				1.5649	0.6
	Drainage Area (acres)	239.96		Curve Number 62		52		
				Time of C	oncentration			

--- Identification Data ---

User: CECS Project: I-85 Improvement Proj DB Prep Date: 12/13/2016 Units: English SubTitle: OUTFALL 2114+87 LT (POST) Areal Units: Acres State: South Carolina County: Cherokee_NOAA_B Filename: S:\Proj\2014\6114 I-85 mm 96-106\Design\Project PIN Number\Drainage\Calculations\OUTFALL\Q50 AN

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Tc
2114+87 LT		Outlet	239.96	62	0.683

Total area: 239.96 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	l-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.73	4.68	5.44	6.49	7.35	8.24	3.1

Storm Data Source:Cherokee_NOAA_B County, SC (NRCS)Rainfall Distribution Type:Type NO_BDimensionless Unit Hydrograph:<standard>

12/13/2016 9:49:39 AM

I-85 Improvement Proj DB Prep OUTFALL 2114+87 LT (POST) Cherokee_NOAA_B County, South Carolina

Watershed Peak Table

Sub-Area or Reach Identifier	10-Yr	k Flow by 25-Yr (cfs)	50-Yr	Return Period 100-Yr (cfs)	
SUBAREAS 2114+87 LT	259.71	379.14	484.20	597.12	
REACHES					

OUTLET 259.71 379.14 484.20 597.12

CECS

Hydraulic Analysis Report

Project Data

Project Title: 6114 - 2114+87 Outfall Channel Analysis Designer: DRH Project Date: Friday, February 03, 2017 Project Units: U.S. Customary Units Notes:

Channel Analysis: Channel Analysis-Pre

Notes:

Input Parameters

Channel Type: Custom Cross Section

Cross Section Data

Elevation (ft)	Elevation (ft)	Manning's n
0.00	766.00	0.0750
17.99	765.00	0.0750
38.92	764.00	0.0750
40.03	763.00	0.0750
40.88	762.00	0.0750
45.02	761.00	0.0750
48.98	760.00	0.0750
53.19	759.00	0.0400
54.00	758.00	0.0400
56.51	758.00	0.0400
59.09	759.00	0.0750
60.82	760.00	0.0750
62.62	761.00	0.0750
67.00	762.00	0.0750
76.34	763.00	0.0750
84.96	764.00	0.0750
93.45	765.00	0.0750
117.15	766.00	0.0750
135.50	767.00	

Longitudinal Slope: 0.0078 ft/ft Flow: 465.3700 cfs

Result Parameters

Depth: 5.4465 ft Area of Flow: 98.0565 ft² Wetted Perimeter: 43.0304 ft Hydraulic Radius: 2.2788 ft Average Velocity: 4.7459 ft/s Top Width: 40.6565 ft Froude Number: 0.5385 Critical Depth: 4.3072 ft Critical Velocity: 8.0016 ft/s Critical Slope: 0.0248 ft/ft Critical Slope: 0.0248 ft/ft Calculated Max Shear Stress: 2.6509 lb/ft² Calculated Avg Shear Stress: 1.1091 lb/ft² Composite Manning's n Equation: Lotter method Manning's n: 0.0479

Channel Analysis: Channel Analysis-Post

Notes:

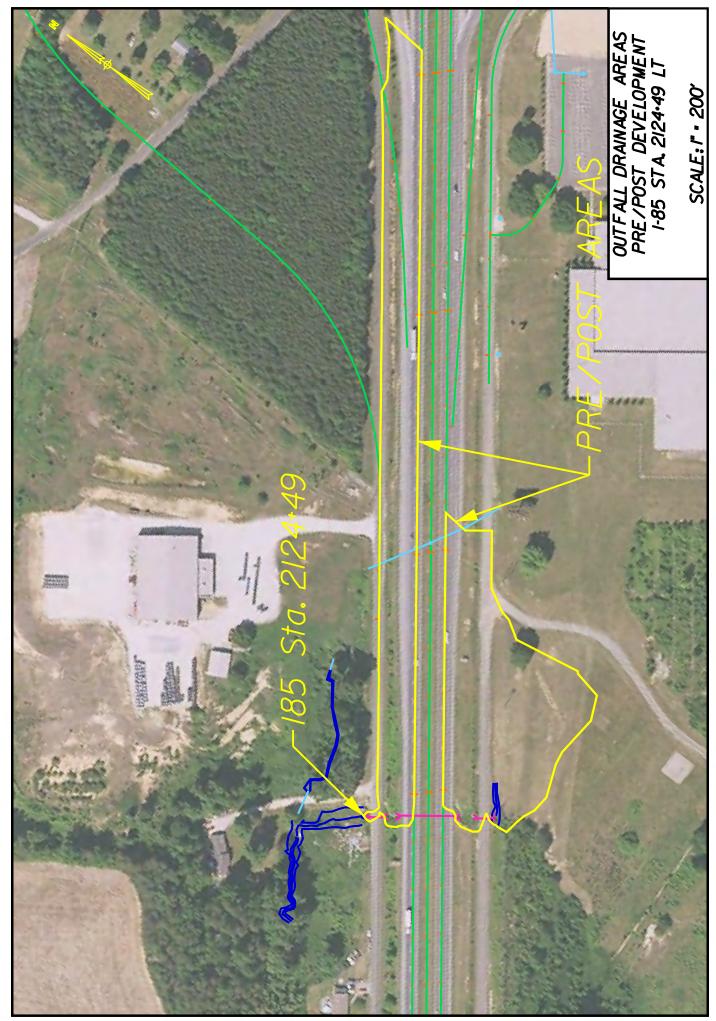
Input Parameters

Channel Type: Custom Cross Section

Cross Section Data

Elevation (ft)	Elevation (ft)	Manning's n
0.00	766.00	0.0750
17.99	765.00	0.0750
38.92	764.00	0.0750
40.03	763.00	0.0750
40.88	762.00	0.0750
45.02	761.00	0.0750
48.98	760.00	0.0750
53.19	759.00	0.0400
54.00	758.00	0.0400
56.51	758.00	0.0400
59.09	759.00	0.0750
60.82	760.00	0.0750
62.62	761.00	0.0750
67.00	762.00	0.0750
76.34	763.00	0.0750
84.96	764.00	0.0750
93.45	765.00	0.0750
117.15	766.00	0.0750
135.50	767.00	

Longitudinal Slope: 0.0078 ft/ft Flow: 484.2000 cfs


Result Parameters

Depth: 5.5330 ft Area of Flow: 101.6105 ft² Wetted Perimeter: 43.9100 ft Hydraulic Radius: 2.3141 ft Average Velocity: 4.7653 ft/s Top Width: 41.4977 ft Froude Number: 0.5367 Critical Depth: 4.3758 ft Critical Velocity: 8.0444 ft/s Critical Slope: 0.0249 ft/ft Critical Slope: 0.0249 ft/ft Critical Top Width: 29.95 ft Calculated Max Shear Stress: 2.6930 lb/ft² Calculated Avg Shear Stress: 1.1263 lb/ft² Composite Manning's n Equation: Lotter method Manning's n: 0.0482

OUTFALL 2124+49 LT

This outfall primarily receives runoff from the Exit 104 interchange and the I-85 mainline from Sta. 2124+00 to Sta. 2140+00. The drainage area is approximately 6 acres and consists of paved and grassed areas only. Roadway discharge is routed under I-85 to the outfall through a series of 4' x 6' R.C. box culverts. Discharge from this outfall is released into a heavily wooded area and is then conveyed to an unnamed tributary that feeds into Bee Branch. There will be a decrease in discharge of 1 cfs from pre to post development conditions for the 10-year design storm. Therefore, the proposed I-85 improvements and reconfiguration of the Exit 104 Interchange will have no adverse downstream impact.

		Rat	ional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	2.22	0.90					
Rolling, 2%-10%	Side Slopes, Turf	2.06	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Grass Shoulders	1.42	0.25			0.52		
6, 1								
	<u> </u>							
		5.70		_	_	_	_	
		2		1				
	County (NOAA-14) Cherokee		our rainfall [in] .73					
	Cherokee		./5					
Flow Type	Surface	Slope	Length [ft]	Manning's	Area [ft^2]	WP [ft]	Velocity	Time [hr]
	Jundee	Slope	Length [it]	n			[ft/s]	
Sheet	Grass:bermudagrass	2.27%	100	0.41				0.32
Shallow Concentrated	Linneyard	2 270/	220					0.02
Shallow	Unpaved	2.27%	239					0.02
Concentrated								
Channel 1		12.85%	65	0.045	3.5	7.2854	7.27954	0.00
Channel 2								
Total		•	404				0.3193	0.35
	-	L						
			Gaffney					
	Time of Concent	ration						
	(minutes)		22					
						-		
		C _f	C	I [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.52	4.618	5.70		L4	

0.52

0.52

0.52

1.1

1.2

1.25

5.70

5.70

5.70

5.284

5.804

6.311

17

21 23

Q₂₅

Q₅₀

Q₁₀₀

		Rat	ional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	2.06	0.90					
Rolling, 2%-10%	Side Slopes, Turf	2.22	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Grass Shoulders	1.42	0.25			0.50		
		5.70		-				
				1				
	County (NOAA-14)		our rainfall [in]					
	Cherokee	3.	.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	2.27%	100	0.41				0.32
Shallow								
Concentrated Shallow	Unpaved	2.27%	239					0.02
Concentrated								
Channel 1		12.85%	65	0.045	3.5	7.2854	7.27954	0.00
Channel 2								
Total			404				0.3193	0.35
	_							
			Gaffney					
	Time of Concent	ration	22					
	(minutes)		22					
		C _f	С	I [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.50	4.618	5.70		13	
	Q ₂₅	1.1	0.50	5.284	5.70	1	L 7	

Q₅₀

Q₁₀₀

1.2

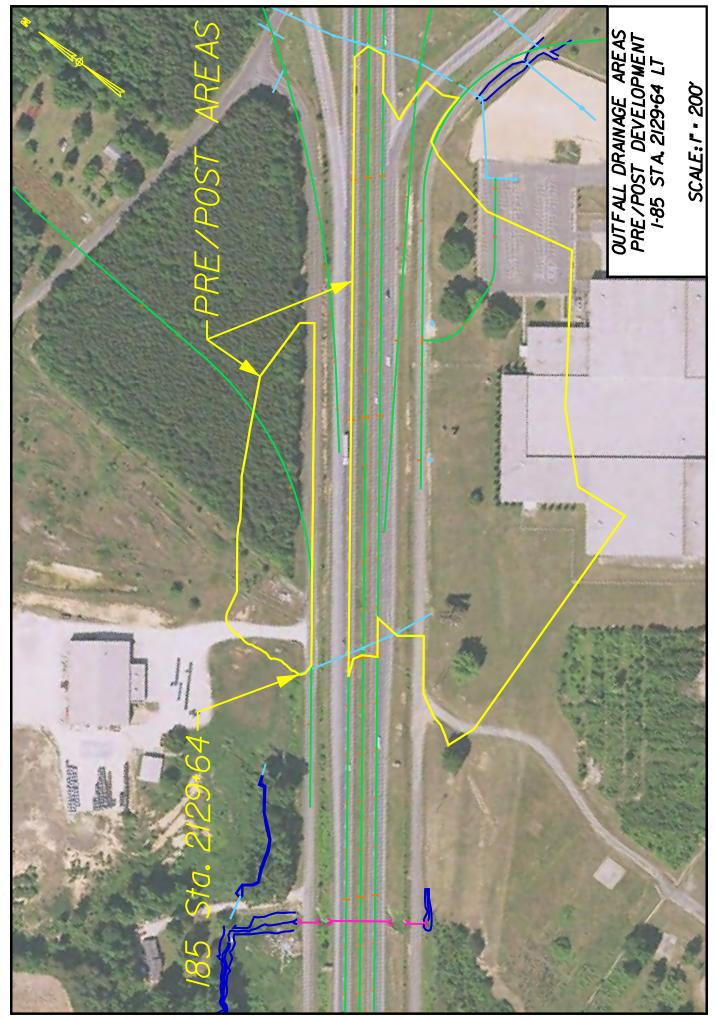
1.25

0.50

0.50

5.804

6.311

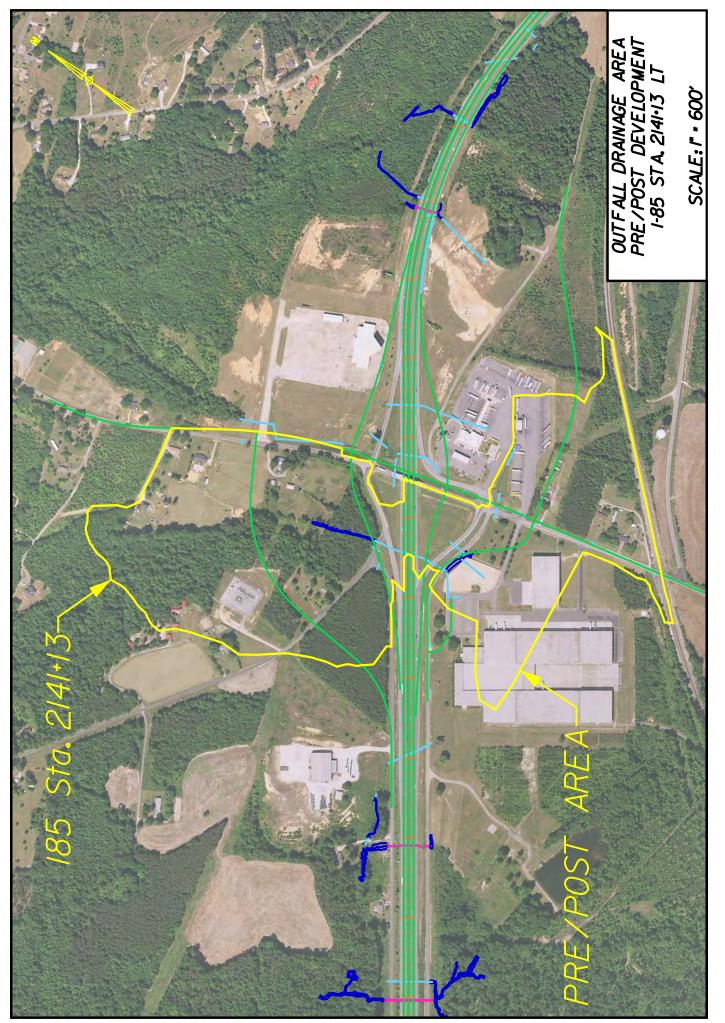

5.70

5.70

OUTFALL 2129+64 LT

This outfall receives runoff from offsite areas, the Exit 104 interchange, and the I-85 mainline from Sta. 2130+00 to Sta. 2143+00. The drainage area is approximately 14 acres and includes roadway pavement, grassed medians, commercial development, and wooded areas. Offsite and roadway runoff is routed under I-85 to the outfall via an existing storm sewer system. Discharge from this outfall is released into a heavily wooded area and is then conveyed to an unnamed tributary that feeds into Bee Branch. The I-85 improvements will increase imperviousness due to the proposed median paving along the mainline and the reconfiguration of the Exit 104 Interchange. As a result, there will be a negligible increase in discharge of 4 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		Rat	tional Analysis					
								,
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	4.47	0.90					
Rolling, 2%-10%	Side Slopes, Turf	7.85	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Woodland & Forest	1.26	0.15			0.48		
		13.58						
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee		.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	4.54%	100	0.8				0.41
Shallow								
Concentrated	Unpaved	4.54%	130					0.01
Shallow Concentrated								
Channel 1								
Channel 2								
			220				0.1400	0.40
Total	J	L	230				0.1499	0.42
		_		_	_	_	_	
			Gaffney					
	Time of Concentr	ration	26					
			20					
	(minutes)							
	(minutes)	C,	C	l [in/hr]	AREA (ac)	(FS	
		C _f	C 0.48	I [in/hr]	AREA (ac) 13.58		FS 28	
	Q ₁₀	1	0.48	4.296	13.58	2	28	
						2		


		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	5.83	0.90					
Rolling, 2%-10%	Side Slopes, Turf	7.14	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Woodland & Forest	0.61	0.15			0.55		
-								
		13.58		l				
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	.73					
						-		
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	4.54%	100	0.8				0.416
Shallow			100					0.014
Concentrated Shallow	Unpaved	4.54%	130					0.011
Concentrated								
Channel 1								
Channel 2								
Total			230				0.1499	0.426
	_	-						
			Gaffney					
	Time of Concent	ration	26					
	(minutes)		26					
		C _f	С	I [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.55	4.296	13.58		32	
	Q ₂₅	1.1	0.55	4.907	13.58		40	
	Q ₅₀	1.2	0.55	5.383	13.58		48	
	Q ₁₀₀	1.25	0.55	5.846	13.58	ļ	55	

OUTFALL 2141+13 LT

This outfall receives cumulative discharge from Outfall 2143+72 LT, the Exit 104 Interchange, and limited offsite areas. The analysis point is offsite in order to capture the sheet flow impacts to the approximately 88-acre drainage area which encompasses roadway pavement, grassed medians, commercial development, sparse residential areas, wooded areas, and a portion of the Southern Railway. Offsite and roadway runoff is routed under I-85 to the outfall via an existing storm sewer system. Additionally, other storm sewers systems under the interchange access ramps, route runoff to the same outfall point. Discharge from this outfall is released into a heavily wooded area and is then conveyed to Bee Branch. The I-85 improvements will increase imperviousness due to the proposed median paving along the mainline and the reconfiguration of the Exit 104 Interchange. As a result, there will be a negligible increase in discharge of 8 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

OUTFALL 2141+13 LT (PRE)

		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	19.02	0.90					
Rolling, 2%-10%	Gravel Pavements	1.36	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	13.63	0.30			0.38		
Rolling, 2%-10%	Grass Shoulders	25.17	0.25					
Hilly, Over 10%	Woodland & Forest	17.97	0.20					
Rolling, 2%-10%	Woodland & Forest	10.83	0.15					
	l	87.98						
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]]				
	Cherokee	3.	.73]				
			_			1	N/ 1 1	
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrust	2.68%	100	0.8				0.513
Shallow		2 600/	202					0.001
Concentrated Shallow	Unpaved	2.68%	292					0.031
Concentrated								
Channel 1								
Channel 2								
Total			392				0.2002	0.544
			Gaffney					
	Time of Concentr	ation						
	(minutes)		33					
		6		1 [:/!]			EC	
	0	C _f 1	C 0.38	I [in/hr] 3.828	AREA (ac) 87.98		:FS 28	
	Q ₁₀ Q ₂₅	1.1	0.38	4.363	87.98		61	
	Q ₂₅	1.2	0.38	4.777	87.98		92	
		_		- 100			47	

1.25

0.38

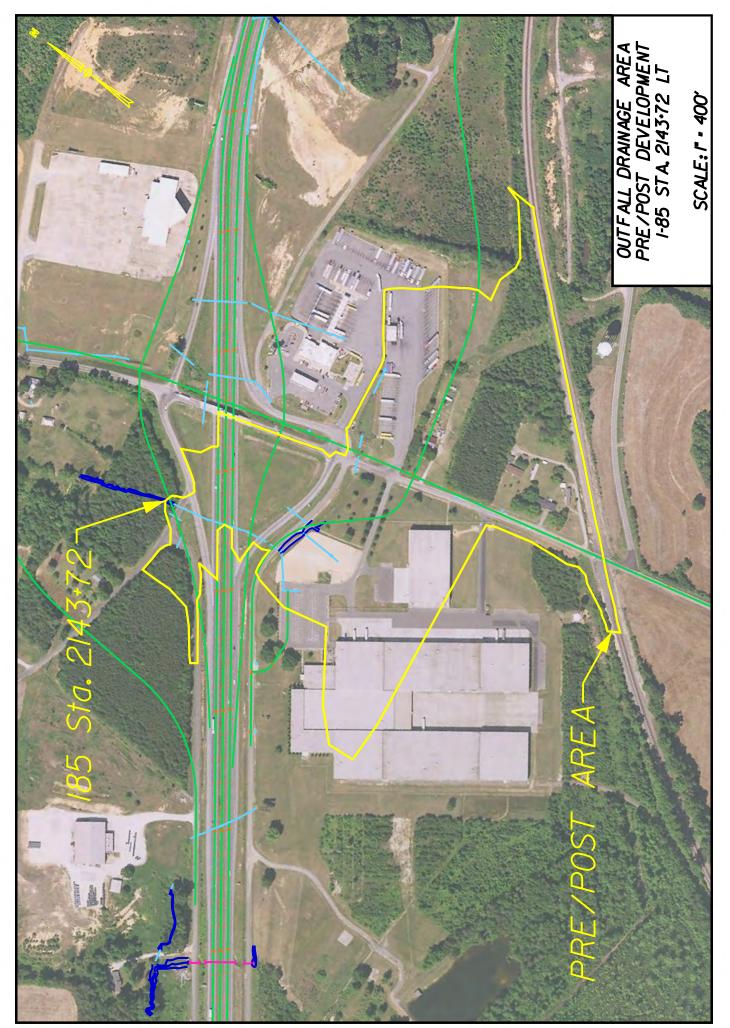
5.180

87.98

217

Q₁₀₀

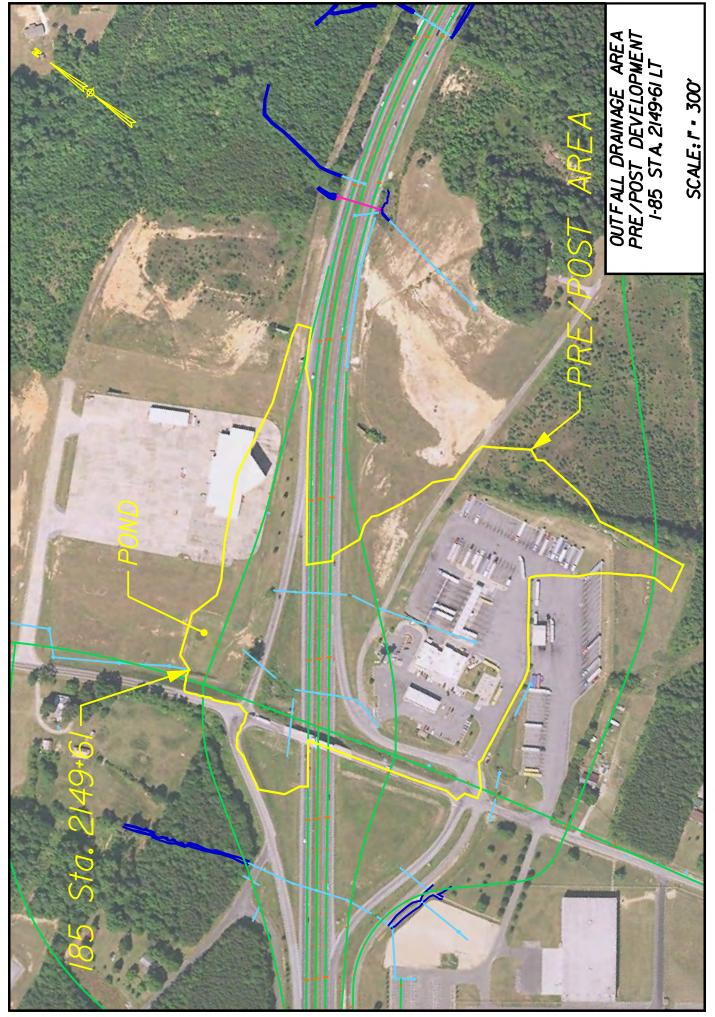
OUTFALL 2141+13 LT (POST)


		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	21.36	0.90					
Rolling, 2%-10%	Gravel Pavements	1.36	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	18.84	0.30			0.40		
Rolling, 2%-10%	Grass Shoulders	22.23	0.25					
Hilly, Over 10%	Woodland & Forest	14.22	0.20					
Rolling, 2%-10%	Woodland & Forest	9.97	0.15					
0,								
		87.98		l				
	l	07.50						
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	-	.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	2.68%	100	0.8				0.513
Shallow								
Concentrated Shallow	Unpaved	2.68%	292					0.031
Concentrated								
Channel 1								
Channel 2								
Total			392				0.2002	0.544
	_						<u> </u>	
	_							
			Gaffney					
	Time of Concentr	ation						
	(minutes)		33					
		C _f	С	l [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.40	3.828	87.98		36	
	Q ₂₅	1.1	0.40	4.363	87.98		70	
	Q ₅₀	1.2	0.40	4.777	87.98		04	
	Q ₁₀₀	1.25	0.40	5.180	87.98	2	30	

OUTFALL 2143+72 LT

This outfall receives runoff from offsite areas, the Exit 104 interchange, and the I-85 mainline from Sta. 2143+00 to Sta. 2147+00. The drainage area is approximately 41 acres and encompasses roadway pavement, grassed medians, commercial development, sparse residential areas, wooded areas, and a portion of the Southern Railway. Offsite and roadway runoff is routed under I-85 to the outfall via an existing storm sewer system. Additionally, other storm sewer systems under the interchange access ramps, route runoff to the same outfall point. Discharge from this outfall is released into a heavily wooded area and is then conveyed to Bee Branch. The I-85 improvements will increase imperviousness due to the proposed median paving along the mainline and the reconfiguration of the Exit 104 Interchange. As a result, there will be a negligible increase in discharge of 4 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

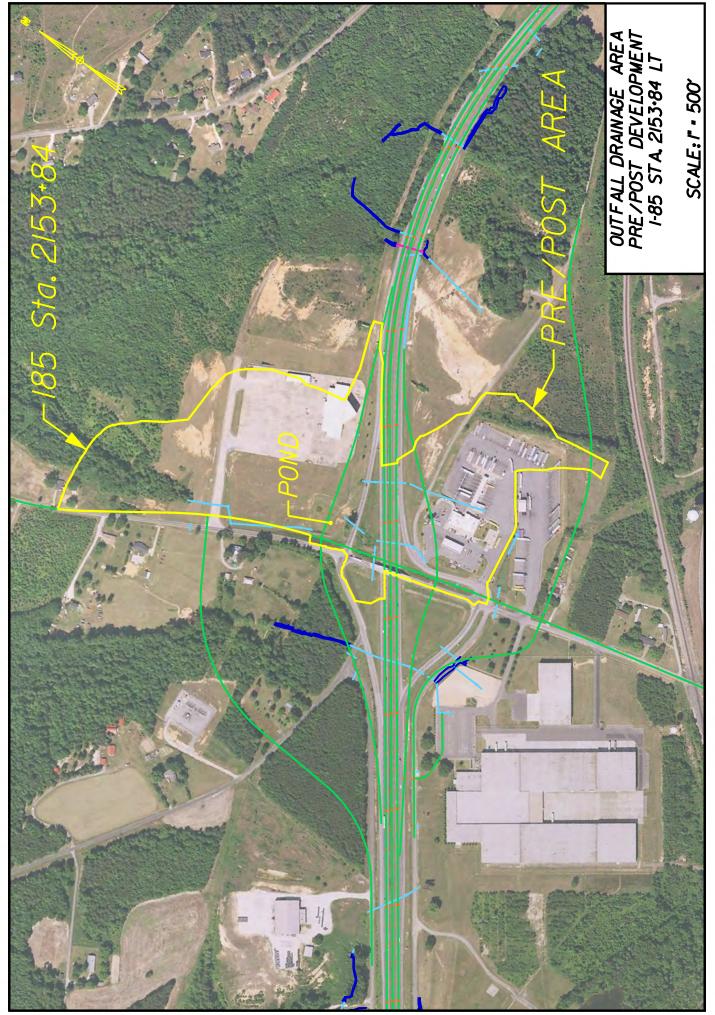
		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	15.18	0.90					
Rolling, 2%-10%	Gravel Pavements	1.36	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	10.46	0.30			0.50		
Rolling, 2%-10%	Grass Shoulders	7.09	0.25					
Rolling, 2%-10%	Woodland & Forest	6.83	0.15					
_								
		40.92		l				
		40.52						
	County (NOAA-14)	2-vear 24 Ho	our rainfall [in]	1				
	Cherokee		.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	2.68%	100	0.8				0.513
Shallow								
Concentrated Shallow	Unpaved	2.68%	292					0.031
Concentrated								
Channel 1								
Channel 2								
Total			392				0.2002	0.544
	_	-						
			Gaffney					
	Time of Concent	ration						
	(minutes)		33					
		C _f	С	l [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.50	3.828	40.92		78	
	Q ₂₅	1.1	0.50	4.363	40.92		98	
	Q ₅₀	1.2	0.50	4.777	40.92		17	
	Q ₁₀₀	1.25	0.50	5.180	40.92	1	32	


		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	16.55	0.90					
Rolling, 2%-10%	Gravel Pavements	1.36	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	10.90	0.30			0.52		
Rolling, 2%-10%	Grass Shoulders	6.15	0.25					
Rolling, 2%-10%	Woodland & Forest	5.96	0.15					
Ċ,								
		40.92						
		40.92		_	_	-		
	County (NOAA-14)	2-vear 24 Ho	our rainfall [in]					
	Cherokee		.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	2.68%	100	0.8				0.513
Shallow								
Concentrated Shallow	Unpaved	2.68%	292					0.031
Concentrated								
Channel 1								
Channel 2								
Total			392				0.2002	0.544
	_							
	_							
			Gaffney					
	Time of Concent	ation	22					
	(minutes)		33					
		C _f	С	I [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.52	3.828	40.92		32	
	Q ₂₅	1.1	0.52	4.363	40.92		02	
	Q ₅₀	1.2	0.52	4.777	40.92		22	
	Q ₁₀₀	1.25	0.52	5.180	40.92	1	38	

OUTFALL 2149+61 LT

An existing offsite detention pond receives discharge from offsite areas, the Exit 104 interchange, and the I-85 mainline from Sta. 2147+00 to Sta. 2153+00. The contributing drainage area was summed to the riser of the detention pond, located just outside the existing right-of-way, in order to determine the potential impact of the proposed I-85 improvements on the pond. The overall drainage area is approximately 23 acres. The pond discharges into an offsite storm sewer system that outfalls into an unnamed tributary to Bee Branch. The proposed interchange improvements will impact the detention pond. The pond will need to be reestablished unless the potential increase in discharge, resulting from the pond's removal, can be addressed with the proposed interchange improvements. The proposed I-85 improvements will decrease imperviousness to the overall watershed due to the reconfiguration of the Exit 104 Interchange; which will result in a decrease in discharge of 2 cfs for the 10-year design event when compared to the existing condition.

		Rat	tional Analysis					
								,
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	11.07	0.90					
Rolling, 2%-10%	Side Slopes, Turf	10.31	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Unimproved Areas	1.33	0.20			0.59		
	L							
		22.71						
		1		1				
	County (NOAA-14)		our rainfall [in]					
	Cherokee	3	.73					
_				Manningla			Valacity	
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	1.49%	100	0.41			[:0/0]	0.382
Shallow	Grussiserindudgruss	1.1370	100	0.11				0.001
Concentrated	Unpaved	1.49%	285					0.040
Shallow								
Concentrated								
Channel 1								
Channel 2								
Total		l	385				0.2540	0.421
								I
			Gaffney					
	Time of Concent	ration				_		
	(minutes)	iation	26					
	(minutes)							
		C _f	С	I [in/hr]	AREA (ac)		CFS	
	Q ₁₀	1 1	0.59	4.296	22.71		57	
	Q ₁₀	1.1	0.59	4.290	22.71		72	
	Q ₂₅	1.1	0.59	5.383	22.71		86	
	Q ₁₀₀	1.25	0.59	5.846	22.71		97	
	4100	1.25	0.55	5.040	22.71			


		Rat	ional Analysis					
_			_		_	_	_	
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	10.19	0.90					
Rolling, 2%-10%	Side Slopes, Turf	11.19	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Unimproved Areas	1.33	0.20			0.56		
	L							
		22.71						
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee		.73					
		•						
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	1.49%	100	0.41				0.382
Shallow								
Concentrated Shallow	Unpaved	1.49%	285					0.040
Concentrated								
Channel 1								
Channel 2								
Total			385				0.2540	0.42
	_							
		_	Gaffney	_		_	_	
			,					
	Time of Concent	ration	26					
	(minutes)							
		C _f	С	I [in/hr]	AREA (ac)	C	:FS	
	Q ₁₀	1	0.56	4.296	22.71		55	
		1.1	0.56	4.907	22.71		59	
	Q ₂₅	T • T	0.50	1.707				
	Q ₂₅ Q ₅₀	1.1	0.56	5.383	22.71		33	

OUTFALL 2153+84 LT

This outfall receives cumulative discharge from Outfall 2149+61 LT, the Exit 104 interchange, State Road S-11-99 and limited offsite areas. The analysis point is offsite in order to capture the sheet flow impacts to the approximately 41-acre drainage area which includes roadway pavement, grassed medians, commercial development, and unimproved areas. Offsite and roadway discharge is routed under I-85 to the outfall via an existing storm sewer system. Discharge from this outfall is released into a heavily wooded area and is then conveyed to an unnamed tributary that feeds into Bee Branch. There will be no change in discharge from pre to post development conditions for the 10-year design storm. Therefore, the proposed I-85 improvements and reconfiguration of the Exit 104 Interchange will have no adverse downstream impact.

		Rat	ional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	16.70	0.90					
Rolling, 2%-10%	Side Slopes, Turf	10.51	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Grass Shoulders	8.89	0.25			0.52		
Rolling, 2%-10%	Unimproved Areas	1.33	0.20					
Rolling, 2%-10%	Woodland & Forest	3.75	0.15					
		41.18						
		41.10						
	County (NOAA-14) Cherokee	-	our rainfall [in] .73					
	Cherokee		.75					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	1.49%	100	0.41				0.38
Shallow								
Concentrated Shallow	Unpaved	1.49%	285					0.04
Concentrated								
Channel 1								
Channel 2								
Total			385				0.2540	0.42
			Gaffney					
	Time of Concent	ation 26						
	(minutes)							
		C _f	С	l [in/hr]	AREA (ac)	C	:FS	
	Q ₁₀	1	0.52	4.296	41.18	9	91	
	Q ₂₅	1.1	0.52	4.907	41.18	1	15	

Q₅₀

Q₁₀₀

1.2

1.25

0.52

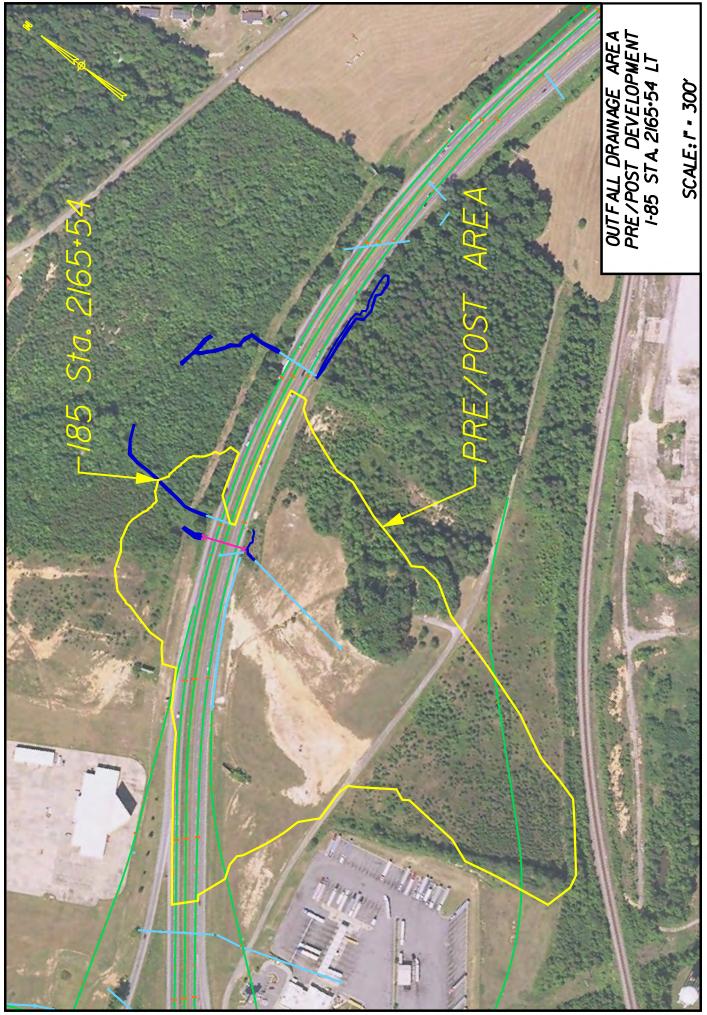
0.52

5.383

5.846

41.18

41.18


		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	16.44	0.90					
Rolling, 2%-10%	Side Slopes, Turf	13.13	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Grass Shoulders	6.69	0.25			0.52		
Rolling, 2%-10%	Unimproved Areas	1.33	0.20					
Rolling, 2%-10%	Woodland & Forest	3.59	0.15					
Ċ,								
	L							
		41.18						
		41.10		_	_	-		
	County (NOAA-14)	2-vear 24 Ho	our rainfall [in]					
	Cherokee		.73					
		-						
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	1.49%	100	0.41				0.381
Shallow								
Concentrated Shallow	Unpaved	1.49%	285					0.040
Concentrated								
Channel 1								
Channel 2								
Total			385				0.2540	0.421
	_							
	_							
			Gaffney					
	Time of Concent	ration						
	(minutes)		26					
		C _f	С	l [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.52	4.296	41.18		91	
	Q ₂₅	1.1	0.52	4.907	41.18		15	
	Q ₅₀	1.2	0.52	5.383	41.18		37	
	Q ₁₀₀	1.25	0.52	5.846	41.18	1	55	

OUTFALL 2165+54 LT

This outfall receives runoff from offsite areas, the Exit 104 interchange, and the I-85 mainline from Sta. 2153+00 to Sta. 2165+00. The drainage area is approximately 28 acres and encompasses roadway pavement, grassed medians and fields, unimproved areas, and wooded areas. Offsite and roadway runoff is collected by existing storm sewer systems, which route runoff to the head of an existing 4' x 6' R.C. box culvert. The box culvert carries the water under I-85 to the outfall. Discharge from this outfall is released into a heavily wooded area and is then conveyed to an unnamed tributary that feeds into Bee Branch. The I-85 improvements will increase imperviousness due to the proposed median paving along the mainline and the reconfiguration of the Exit 104 Interchange. As a result, there will be a negligible increase in discharge of 5 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

Land SlopeLand UseAcresCRolling, 2%-10%Pavements & Roofs2.980.90Rolling, 2%-10%Earth shoulders2.140.50Area Weighted CSide Slopes, Turf10.520.300.33Rolling, 2%-10%Unimproved Areas7.530.20Woodland & Forest4.720.15Image: Image of the stress of the str	
Rolling, 2%-10% Rolling, 2%-10%Pavements & Roofs2.980.90Rolling, 2%-10% Rolling, 2%-10%Earth shoulders2.140.50Area Weighted CSide Slopes, Turf10.520.300.33Rolling, 2%-10% Rolling, 2%-10%Unimproved Areas7.530.20Woodland & Forest4.720.15Image: Comparison of the stress	
Rolling, 2%-10% Earth shoulders 2.14 0.50 Area Weighted C Rolling, 2%-10% Side Slopes, Turf 10.52 0.30 0.33 Rolling, 2%-10% Unimproved Areas 7.53 0.20 Rolling, 2%-10% Woodland & Forest 4.72 0.15	
Rolling, 2%-10%Earth shoulders2.140.50Area Weighted CRolling, 2%-10%Side Slopes, Turf10.520.300.33Unimproved Areas7.530.20Woodland & Forest4.720.15Indication<	
Rolling, 2%-10% Unimproved Areas 7.53 0.20 Rolling, 2%-10% Woodland & Forest 4.72 0.15	
Rolling, 2%-10% Unimproved Areas 7.53 0.20 Woodland & Forest 4.72 0.15 Image: Ima	
27.89	
27.89	
27.89	
27.89	
27.89	
County (NOAA-14) 2-year 24 Hour rainfall [in]	
Cherokee 3.73	
Flaux Turne Sturfees Slane Length [ft] Manning's Area [ft 62] WD [ft] Velocity	Time o [h r
Flow Type Surface Slope Length [ft] Maining s n Area [ft^2] WP [ft] Velocity [ft/s]	Time [hr]
Sheet Woods: light underbrush 2.84% 100 0.4	0.28
Shallow2.84%1189	0.12
Shallow	0.12
Concentrated	
Channel 1	
Channel 2	
Total 1289 0.8747	0.40
	7
Gaffney	
Time of Concentration	1
(minutes) 25	
C _f C I [in/hr] AREA (ac) CFS	
Q ₁₀ 1 0.33 4.372 27.89 40	
Q₂₅ 1.1 0.33 4.996 27.89 50	
Q ₅₀ 1.2 0.33 5.482 27.89 60	

1.25

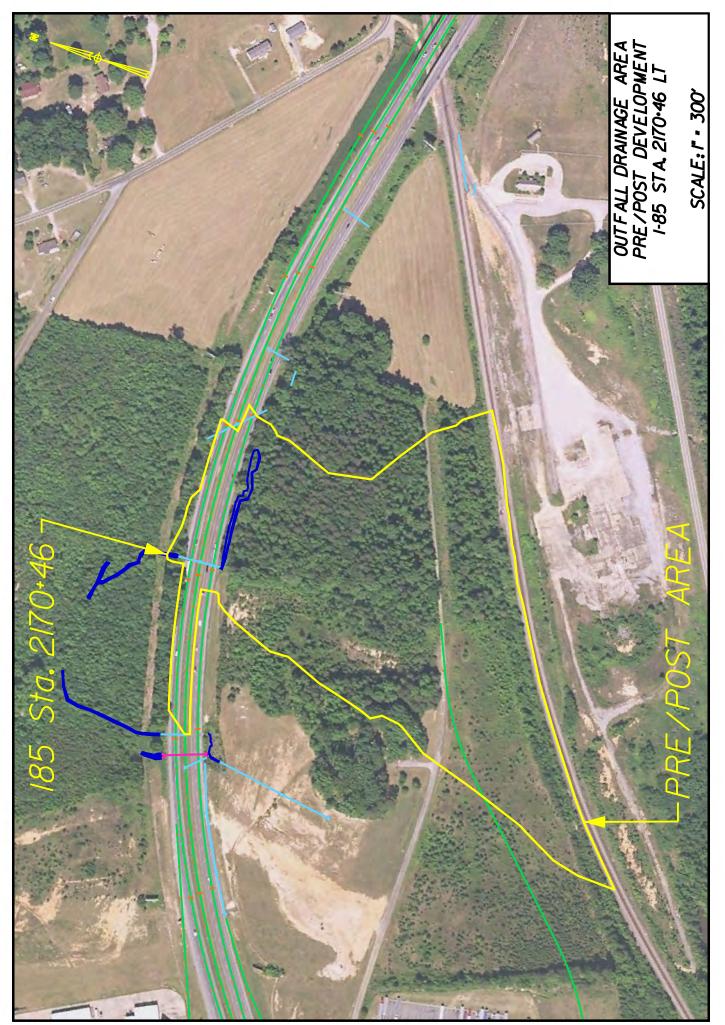
0.33

27.89

5.956

68

Q₁₀₀


		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	4.63	0.90					
Rolling, 2%-10%	Earth shoulders	2.05	0.50		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	10.85	0.30			0.37		
Rolling, 2%-10%	Unimproved Areas	5.69	0.20					
Rolling, 2%-10%	Woodland & Forest	4.67	0.15					
Ċ,								
		27.89						
		27.09						
	County (NOAA-14)	2-vear 24 Ho	our rainfall [in]					
	Cherokee	-	.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods: light underbrush	2.84%	100	0.4				0.288
Shallow								
Concentrated Shallow	Unpaved	2.84%	1189					0.121
Concentrated								
Channel 1								
Channel 2								
Total			1289				0.8747	0.409
	1							
			Gaffney					
	Time of Concent	ration	35					
	(minutes)		25					
		C _f	С	I [in/hr]	AREA (ac)	C	CFS	
	Q ₁₀	1	0.37	4.372	27.89		45	
	Q ₂₅	1.1	0.37	4.996	27.89		57	
	Q ₅₀	1.2	0.37	5.482	27.89		68	
	Q ₁₀₀	1.25	0.37	5.956	27.89	7	77	

OUTFALL 2170+46 LT

This outfall receives runoff from offsite areas, the Exit 104 interchange, and the I-85 mainline from Sta. 2165+00 to Sta. 2174+50. The drainage area is approximately 22 acres and includes roadway pavement, grassed medians, unimproved areas, and dense wooded areas. Offsite and roadway runoff is routed under I-85 to the outfall via an existing storm sewer system. Discharge from this outfall is released into a heavily wooded area and is then conveyed to an unnamed tributary that feeds into Bee Branch. The I-85 improvements will increase imperviousness due to the proposed median paving along the mainline and the reconfiguration of the Exit 104 Interchange. As a result, there will be a negligible increase in discharge of 3 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

Rolling, 2%-10% Gr	Land Use vements & Roofs	Acres						
Rolling, 2%-10% Pa Rolling, 2%-10% Gr	vements & Roofs	Acres				_	_	•
Rolling, 2%-10% Gr			С					
		1.74	0.90					
Rolling, 2%-10% Sid	avel Pavements	0.92	0.55		Area	Weighte	d C	
0,	de Slopes, Turf	1.78	0.30			0.25		
Rolling, 2%-10% Ur	nimproved Areas	3.51	0.20					
Rolling, 2%-10% W	oodland & Forest	13.94	0.15					
_								
E		21.89						
	L	21.89				-	_	
Co	County (NOAA-14)		2-year 24 Hour rainfall [in]					
Ch	ierokee	3.	73					
						1		_
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr
	oods:dense underbrusl	2.60%	100	0.8				0.52
Shallow		2 600/						0.00
Concentrated Ur Shallow	npaved	2.60%	908					0.09
Concentrated								
Channel 1								
Channel 2								
Total			1008				0.4540	0.61

1.2

1.25

0.25

0.25

4.422

4.791

21.89

21.89

29

32

Q₅₀

Q₁₀₀

Land Slope Land Use Acres C Rolling, 2%-10% Pavements & Roofs 2.74 0.90 Rolling, 2%-10% Gravel Pavements 0.92 0.55 Rolling, 2%-10% Side Slopes, Turf 2.20 0.30 Rolling, 2%-10% Woodland & Forest 13.44 0.15 Image: Comparison of the strest 13.44 0.15 10 Image: Comparison of the strest 13.44 0.15 10 Image: Comparison of the strest 13.44 0.15 10 Image: Comparison of the strest 12.00 10 10 Image: Comparison of the strest 12.89 10 10 Image: Comparison of the strest 3.73 10 10 Image: Comparison of the strest Slope Length [ft] Sheet Woods:dense underbrust 2.60%	Manning's	Area	Weighter	d C	
Rolling, 2%-10% Pavements & Roofs 2.74 0.90 Rolling, 2%-10% Gravel Pavements 0.92 0.55 Rolling, 2%-10% Side Slopes, Turf 2.20 0.30 Rolling, 2%-10% Unimproved Areas 2.59 0.20 Rolling, 2%-10% Woodland & Forest 13.44 0.15 Image: State		Area		d C	
Rolling, 2%-10% Gravel Pavements 0.92 0.55 Rolling, 2%-10% Side Slopes, Turf 2.20 0.30 Rolling, 2%-10% Unimproved Areas 2.59 0.20 Rolling, 2%-10% Woodland & Forest 13.44 0.15 Image: State		Area		d C	
Rolling, 2%-10% Side Slopes, Turf 2.20 0.30 Rolling, 2%-10% Unimproved Areas 2.59 0.20 Woodland & Forest 13.44 0.15 Image: Imag		Area		d C	
Rolling, 2%-10% Unimproved Areas 2.59 0.20 Rolling, 2%-10% Woodland & Forest 13.44 0.15 Image: Imag			0.28		
Rolling, 2%-10% Woodland & Forest 13.44 0.15					
Image: Sheet Sheet Sheet 2.60% 1					
County (NOAA-14) 2-year 24 Hour rainfall [in Cherokee 3.73 Flow Type Surface Slope Length [ft] Sheet Woods:dense underbrust 2.60%					
County (NOAA-14)2-year 24 Hour rainfall [in CherokeeCherokee3.73Flow TypeSurfaceSlopeLength [ft]SheetWoods:dense underbrust2.60%					
County (NOAA-14) 2-year 24 Hour rainfall [in Cherokee 3.73 Flow Type Surface Slope Length [ft] Sheet Woods:dense underbrust 2.60%					
County (NOAA-14) 2-year 24 Hour rainfall [in Cherokee 3.73 Flow Type Surface Slope Length [ft] Sheet Woods:dense underbrust 2.60%					
County (NOAA-14) 2-year 24 Hour rainfall [in Cherokee 3.73 Flow Type Surface Slope Length [ft] Sheet Woods:dense underbrust 2.60%					
County (NOAA-14)2-year 24 Hour rainfall [in CherokeeCherokee3.73Flow TypeSurfaceSlopeLength [ft]SheetWoods:dense underbrust2.60%					
County (NOAA-14)2-year 24 Hour rainfall [in CherokeeCherokee3.73Flow TypeSurfaceSlopeLength [ft]SheetWoods:dense underbrust2.60%					
County (NOAA-14) 2-year 24 Hour rainfall [in Cherokee 3.73 Flow Type Surface Slope Length [ft] Sheet Woods:dense underbrust 2.60%					
Cherokee 3.73 Flow Type Surface Slope Length [ft] Sheet Woods:dense underbrust 2.60% 1					
Cherokee 3.73 Flow Type Surface Slope Length [ft] Sheet Woods:dense underbrust 2.60% 1					
Flow Type Surface Slope Length [ft] Sheet Woods:dense underbrust 2.60% 1	Manning's				
Sheet Woods:dense underbrust 2.60% 1	Manning				
	n	^S Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Shallow	00 0.8	3			0.52
Concentrated Unpaved 2.60% 9 Shallow	08				0.09
Concentrated					
Channel 1					
Channel 2					
Total 10	08			0.4540	0.61
			_	_	1
Gaffney					
Time of Concentration (minutes)	8				
C _f C	l [in/hr]	AREA (ac)	6	:FS	
Q ₁₀ 1 0.28	3.551	21.89		22	
\mathbf{Q}_{10} 1 0.20 \mathbf{Q}_{25} 1.1 0.28	5.551	21.05		27	
Q_{50} 1.2 0.28	4.042	21.89	2	27	

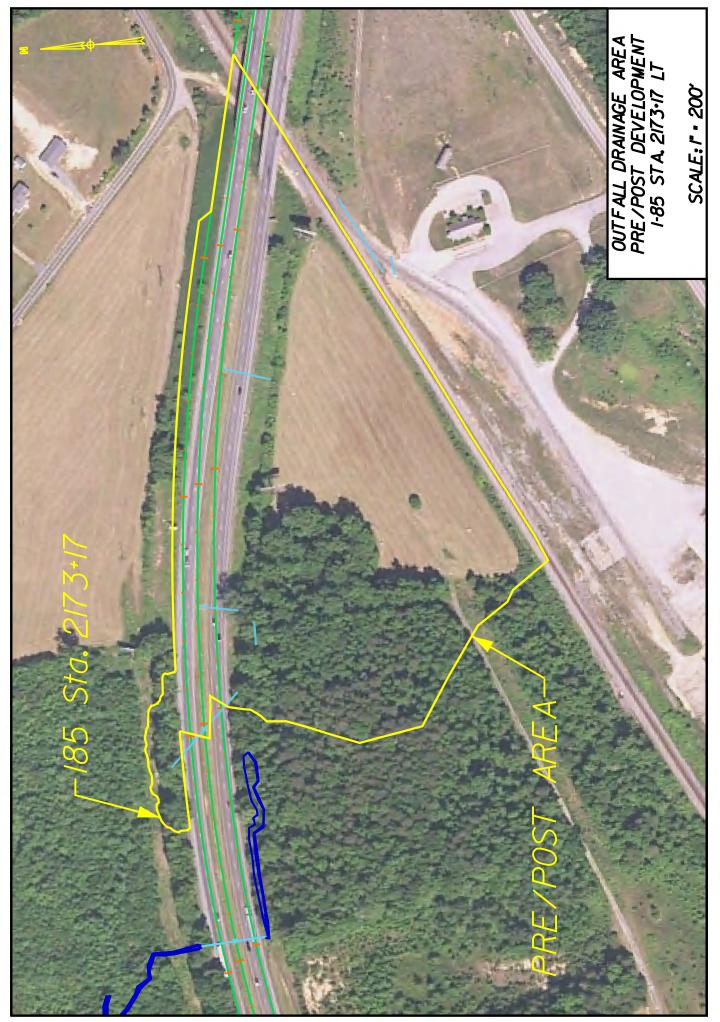
0.28

1.25

4.791

21.89

37



Q₁₀₀

OUTFALL 2173+17 LT

This outfall receives runoff from offsite areas as well as roadway discharge from Sta. 2174+50 to Sta. 2188+50. The drainage area is approximately 15 acres and consists of roadway pavement, grassed medians and fields, dense wooded areas, and a portion of the Southern Railway. Offsite and roadway runoff is routed under I-85 to the outfall via an existing storm sewer system. Discharge from this outfall is released into a heavily wooded area and is then conveyed to an unnamed tributary that feeds into Bee Branch. The I-85 improvements will increase imperviousness due to the proposed median paving. As a result, there will be a negligible increase in discharge of 3 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

OUTFALL 2173+17 LT (PRE)

		Rat	ional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	2.12	0.90					
Rolling, 2%-10%	Gravel Pavements	0.82	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	3.46	0.30			0.36		
Rolling, 2%-10%	Meadows & Pasture Land	4.76	0.30					
Rolling, 2%-10%	Woodland & Forest	4.21	0.15					
		45.27						
	l	15.37	_	_	_	-	_	
	County (NOAA-14)	2-year 24 Ho	ur rainfall [in]					
	Cherokee		.73					
	-				1			
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	2.57%	100	0.41				0.306
Shallow Concentrated	Linneyard	2 5 70/	010					0.00
Shallow	Unpaved	2.57%	810					0.087
Concentrated								
Channel 1								
Channel 2								
Total]	L	910				0.6435	0.393
			Gaffney	_		_	_	
			Garmey		-			
	Time of Concentr	ration	24					
	(minutes)							
		C _f	С	I [in/hr]	AREA (ac)		CFS	
	Q ₁₀	C _f 1	0.36	4.451	15.37		24	
	Q ₁₀ Q ₂₅	1.1	0.36	5.089	15.37		- · 31	
	Q ₅₀	1.2	0.36	5.585	15.37		37	

Q₁₀₀

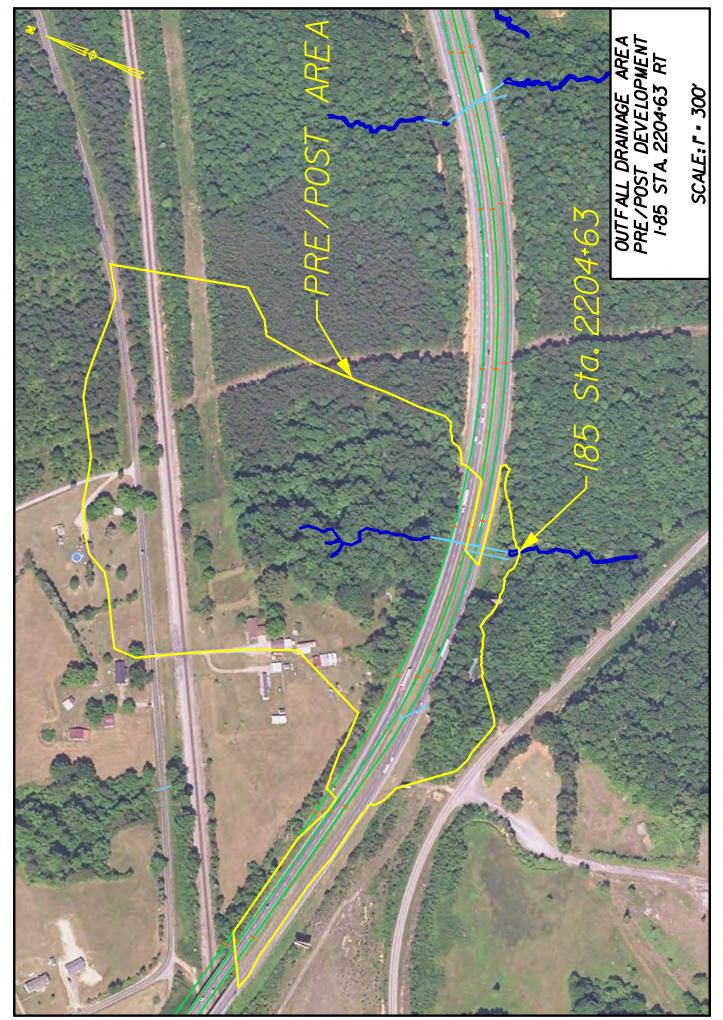
1.25

0.36

6.069

15.37

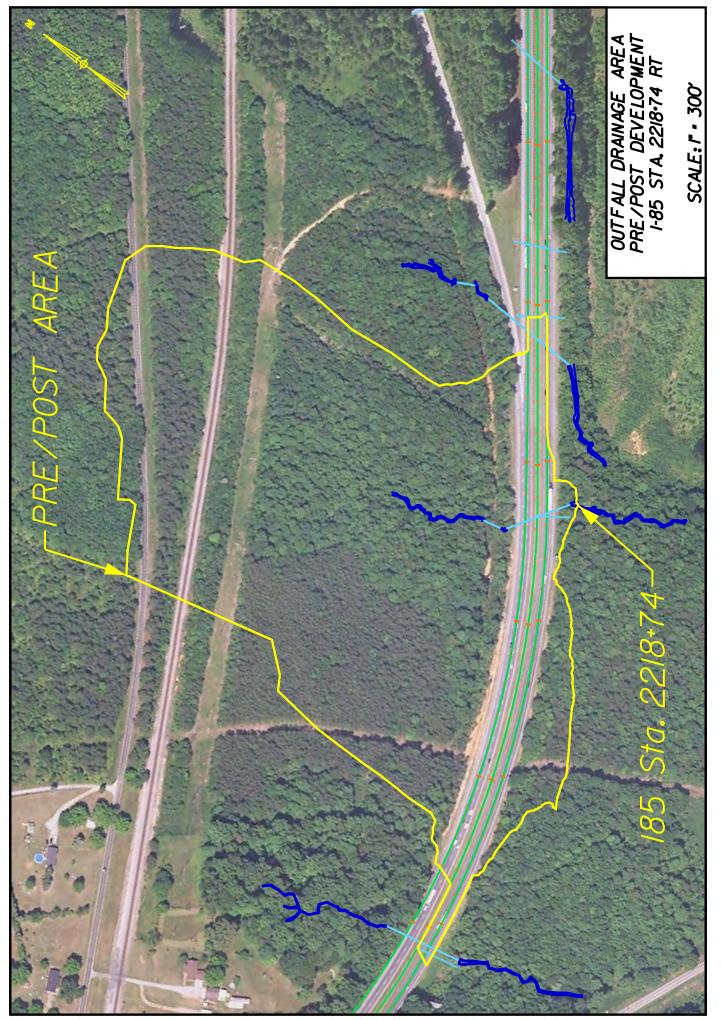
OUTFALL 2173+17 LT (POST)


		Rat	ional Analysis					
				F		_	_	
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	3.16	0.90					
Rolling, 2%-10%	Gravel Pavements	0.88	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	2.36	0.30			0.40		
Rolling, 2%-10%	Meadows & Pasture Land	4.76	0.30					
Rolling, 2%-10%	Woodland & Forest	4.21	0.15					
		45.27						
	l	15.37	_	_	_	-	-	l
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	2.57%	100	0.41				0.30
Shallow		,	100	0112				0.00
Concentrated	Unpaved	2.57%	810					0.08
Shallow								
Concentrated Channel 1								
Channel 2								
Total			910				0.6435	0.39
1000	1	l	510				010100	0.00
			Gaffney			_	_	
	Time of Concentr	ation						
	(minutes)		24					
		C _f	С	I [in/hr]	AREA (ac)	C	:FS	
	Q ₁₀	1	0.40	4.451	15.37		27	
	Q ₂₅	1.1	0.40	5.089	15.37		34	
	Q ₅₀	1.2	0.40	5.585	15.37	4	41	
	Q ₁₀₀	1.25	0.40	6.069	15.37	4	46	

OUTFALL 2204+63 RT

This outfall receives runoff from offsite areas as well as roadway discharge from Sta. 2190+00 to Sta. 2204+00. The drainage area is approximately 33 acres and is characterized by roadway pavement, grassed medians, sparse residential tracts, dense wooded areas, and a portion of the Southern Railway. Roadway runoff is routed to the outfall through an existing storm sewer system; while offsite runoff is routed under I-85 via an existing 36" R.C. pipe. Discharge from this outfall is conveyed to an unnamed tributary that feeds into Jumping Branch. The I-85 improvements will increase imperviousness due to the proposed median paving. As a result, there will be a negligible increase in discharge of 3 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		Ratio	onal Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	3.28	0.90					
Rolling, 2%-10%	Gravel Pavements	1.40	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	4.45	0.30			0.29		
Rolling, 2%-10%	Grass Shoulders	7.25	0.25					
Hilly, Over 10%	Woodland & Forest	5.41	0.20					
Rolling, 2%-10%	Woodland & Forest	11.52	0.15					
		22.21						
		33.31						l
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	.73					
Flow Type	Surface	Slope	Length [ft]	Manning's	Area [ft^2]	WP [ft]	Velocity	Time [hr]
Sheet	Woods:dense underbrush	5.04%	100	n 0.8			[ft/s]	0.39
Shallow		5.04%	100	0.8				0.59
Concentrated	Unpaved	5.04%	767					0.05
Shallow								
Concentrated								
Channel 1		1.11%	1480	0.04	2	4.5765	2.25813	0.18
Channel 2								
Total	J	l	2347				1.0195	0.63
			Gaffney					
	Time of Concentra	tion	39					
	(minutes)							
		C _f	С	I [in/hr]	AREA (ac)	C	FS	
	Q ₁₀	1	0.29	3.500	33.31	3	34	
	Q ₂₅	1.1	0.29	3.984	33.31	4	12	
	Q ₅₀	1.2	0.29	4.358	33.31	5	51	
	Q ₁₀₀	1.25	0.29	4.720	33.31		57	


		Ratio	nal Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	4.77	0.90					
Rolling, 2%-10%	Gravel Pavements	1.40	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	2.96	0.30			0.32		
Rolling, 2%-10%	Grass Shoulders	7.25	0.25					
Hilly, Over 10%	Woodland & Forest	5.41	0.20					
Rolling, 2%-10%	Woodland & Forest	11.52	0.15					
		33.31						
	County (NOAA-14)	2-vear 24 Ho	ur rainfall [in]					
	Cherokee		.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrush	5.04%	100	0.8				0.39
Shallow								
Concentrated Shallow	Unpaved	5.04%	767					0.05
Concentrated								
Channel 1		1.11%	1480	0.04	2	4.5765	2.25813	0.18
Channel 2			1.00	0.01				0.10
Total			2347				1.0195	0.63
	-	L						
		_	Gaffney	_	_			
	Time of Concentra	tion						
	(minutes)		39					
		C _f	С	l [in/hr]	AREA (ac)	6	FS	
	Q ₁₀	1 C _f	0.32	3.500	33.31		r3 87	
	Q ₁₀	1.1	0.32	3.984	33.31		46	
				0.701				
	Q ₅₀	1.2	0.32	4.358	33.31	5	5	

OUTFALL 2218+74 RT

This outfall receives runoff from offsite areas as well as roadway discharge from Sta. 2204+00 to Sta. 2224+50. The drainage area is approximately 42 acres and encompasses roadway pavement, grassed medians, dense wooded areas, and a portion of the Southern Railway. Roadway runoff is routed to the outfall through an existing storm sewer system; while offsite runoff is routed under I-85 via an existing 36" R.C. pipe. Discharge from this outfall is conveyed to an unnamed tributary that feeds into Jumping Branch. The I-85 improvements will increase imperviousness due to the proposed median paving. As a result, there will be a negligible increase in discharge of 4 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

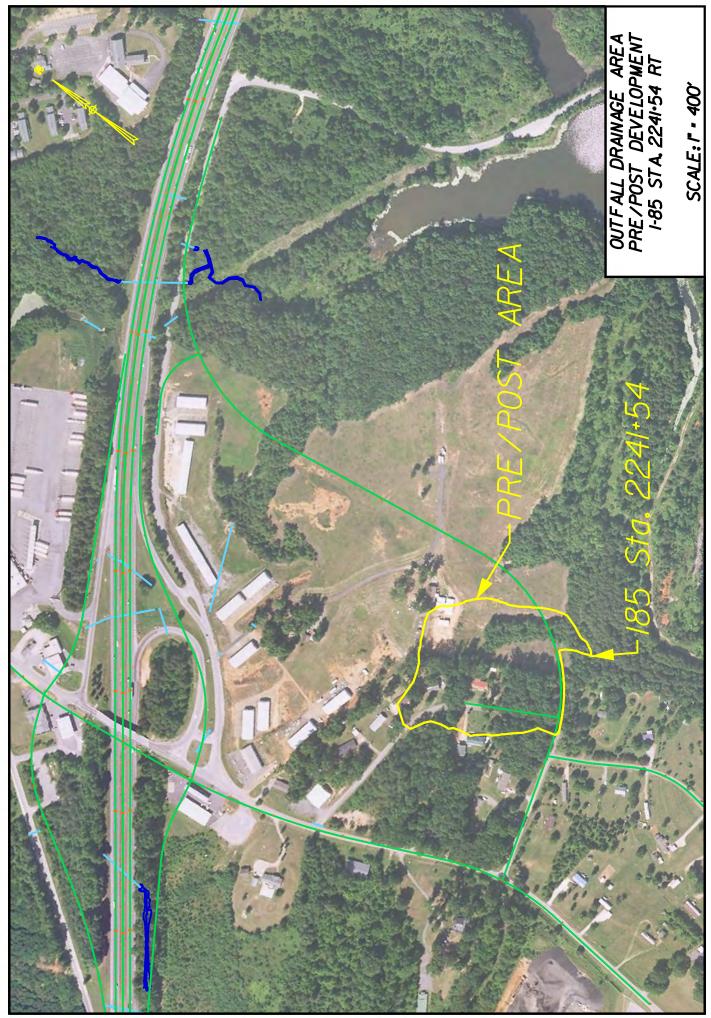
		Ratio	nal Analysis					
						_		1
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	4.00	0.90					
Rolling, 2%-10%	Gravel Pavements	1.45	0.55		Area	Weighteo	d C	
Rolling, 2%-10%	Side Slopes, Turf	6.19	0.30			0.26		
Hilly, Over 10%	Woodland & Forest	4.87	0.20					
Rolling, 2%-10%	Woodland & Forest	25.59	0.15					
		42.10		J				
		42.10						
		2		1				
	County (NOAA-14) Cherokee		ur rainfall [in] .73					
	Cherokee		.75	J				
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr
Sheet	Woods:dense underbrush	10.42%	100	0.8				0.29
Shallow								
Concentrated	Unpaved	10.42%	495					0.02
Shallow Concentrated								
Channel 1		2.21%	380	0.04	3	6 2246	3.36648	0.03
Channel 2		2.21/0	580	0.04	5	0.3240	3.30048	0.03
Total			975				0.7608	0.35
Total	1	L		J			0.7000	0.50
			Gaffney					
	Time of Concentra	tion						
	(minutes)		22					
	(
		C _f	С	l [in/hr]	AREA (ac)	C	FS	
	Q ₁₀	1	0.26	4.618	42.10		51	
	Q ₂₅	1.1	0.26	5.284	42.10		54	
	Q ₅₀	1.2	0.26	5.804	42.10		77	
	Q 50							


		Ratio	nal Analysis					
					_	-	_	
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	5.27	0.90					
Rolling, 2%-10%	Gravel Pavements	1.45	0.55		Area	Weighteo	d C	
Rolling, 2%-10%	Side Slopes, Turf	4.92	0.30			0.28		
Hilly, Over 10%	Woodland & Forest	4.87	0.20					
Rolling, 2%-10%	Woodland & Forest	25.59	0.15					
		42.10						
	County (NOAA-14)	2-year 24 Ho	ur rainfall [in]					
	Cherokee	3.	.73					
Flow Type	Surface	Slope	Length [ft]	Manning's	Area [ft^2]	WP [ft]	Velocity	Time [hr]
				n			[ft/s]	inne [in]
Sheet	Woods:dense underbrush	10.42%	100	n 0.8		[]	[ft/s]	0.29
Shallow	Woods:dense underbrush	10.42%	100			[]	[ft/s]	
Shallow Concentrated	Woods:dense underbrush Unpaved	10.42% 10.42%	100 495				[ft/s]	0.29
Shallow Concentrated Shallow							[ft/s]	0.29
Shallow Concentrated Shallow Concentrated		10.42%	495	0.8				0.29
Shallow Concentrated Shallow Concentrated Channel 1					3		[ft/s] 3.36648	0.29
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2		10.42%	495 380	0.8			3.36648	0.29
Shallow Concentrated Shallow Concentrated Channel 1		10.42%	495	0.8				0.29
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2		10.42%	495 380 975	0.8			3.36648	0.29
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Unpaved	10.42%	495 380	0.8			3.36648	0.29
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2		10.42%	495 380 975	0.8			3.36648	0.29
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Unpaved	10.42%	495 380 975 Gaffney 22	0.8	3	6.3246	3.36648	0.29
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Unpaved	10.42%	495 380 975 Gaffney 22 C	0.8 0.04	AREA (ac)	6.3246	3.36648 0.7608	0.29
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Unpaved Time of Concentra (minutes)	10.42%	495 380 975 Gaffney 22 C 0.28	0.8 0.04	3 3 AREA (ac) 42.10	6.3246	3.36648 0.7608	0.29
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Unpaved	10.42%	495 380 975 Gaffney 22 C	0.8 0.04	AREA (ac)	6.3246	3.36648 0.7608	0.29

OUTFALL 2223+02 RT

This outfall receives runoff from offsite areas, the Exit 106 interchange, and the I-85 mainline from Sta. 2224+50 to Sta. 2240+00. The drainage area is approximately 50 acres and includes roadway pavement, grassed medians, dense wooded areas, business areas, and a portion of the Southern Railway. Offsite and roadway runoff reach the outfall via multiple cross-line pipes under I-85. Discharge from this outfall is conveyed to an unnamed tributary that feeds into Jumping Branch. The I-85 improvements will increase imperviousness due to the proposed median paving along the mainline and the reconfiguration of the Exit 106 interchange. As a result, there will be a negligible increase in discharge of 4 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

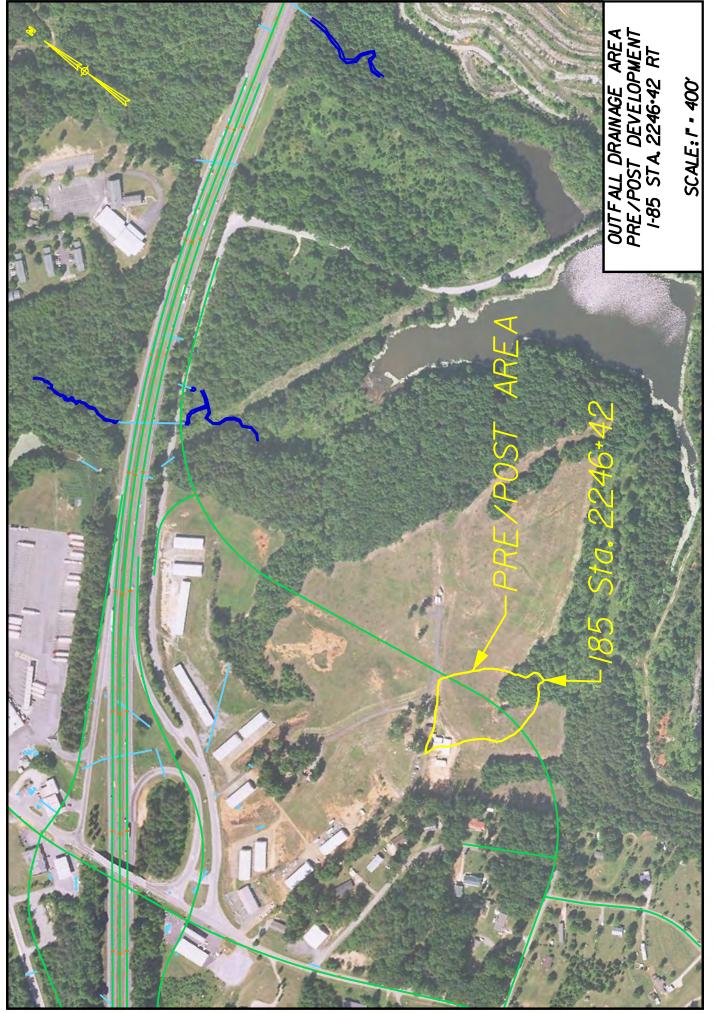
		Ratio	nal Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	7.69	0.90					
Rolling, 2%-10%	Gravel Pavements	0.96	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	10.20	0.30			0.31		
Rolling, 2%-10%	Unimproved Areas	0.18	0.20					
Rolling, 2%-10%	Woodland & Forest	30.57	0.15					
		┨────┤						
		├						
		10.50						
		49.60		_	_	_		
				1				
	County (NOAA-14)		ur rainfall [in]					
	Cherokee	3.	73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrush	5.34%	100	0.8				0.390
Shallow								
Concentrated	Unpaved	5.34%	1132					0.084
Shallow								
Concentrated		-						
Channel 1								
Channel 2								
Total	J	L	1232				0.7222	0.474
				_	_	_	_	
			Gaffney					
	Time of Concentra	tion	29					
	(minutes)		25					
		C _f	С	I [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.31	4.082	49.60		52	
	Q ₂₅	1.1	0.31	4.658	49.60		78	
				- 10-	10.00		1	
	Q ₅₀	1.2	0.31	5.105 5.541	49.60		93 05	


		nal Analysis					
Land Use	Acres	С					
Pavements & Roofs	8.13	0.90					
Gravel Pavements	0.96	0.55		Area	Weighte	d C	
Side Slopes, Turf	15.30	0.30			0.33		
Unimproved Areas	0.25	0.20					
Woodland & Forest	24.96	0.15					
	49.60						
County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
Cherokee							
Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Woods:dense underbrush	5.34%	100	0.8				0.390
Unpaved	5.34%	1132					0.084
	l	1232				0.7222	0.474
	_	_	_	_	_	_	
		Gaffney					
Time of Concentra	tion						
(minutes)		29					
	C _f	С	I [in/hr]	AREA (ac)	C	FS	
Q ₁₀	1	0.33	4.082	49.60	e	66	
Q ₂₅	1.1	0.33	4.658	49.60	8	33	
		0.00	5 105	49.60		99	
Q ₅₀	1.2	0.33	5.105	49.00			
	Pavements & Roofs Gravel Pavements Side Slopes, Turf Unimproved Areas Woodland & Forest County (NOAA-14) Cherokee Surface Woods:dense underbrush Unpaved Unpaved Time of Concentra (minutes)	Pavements & Roofs 8.13 Gravel Pavements 0.96 Side Slopes, Turf 15.30 Unimproved Areas 0.25 Woodland & Forest 24.96	Pavements & Roofs 8.13 0.90 Gravel Pavements 0.96 0.55 Side Slopes, Turf 15.30 0.30 Unimproved Areas 0.25 0.20 Woodland & Forest 24.96 0.15 Image: State S	Pavements & Roofs 8.13 0.90 Gravel Pavements 0.96 0.55 5 Side Slopes, Turf 15.30 0.30 0 Unimproved Areas 0.25 0.20 0 Woodland & Forest 24.96 0.15 0 Improved Areas 0.25 0.20 0 Improved Areas Improved Areas 0 0 Improved Improved Areas 0 0 0 Improved Surface Slope Length [ft] Manning's n Improved 5.34% 1100 0.8 0 Improved 5.34% 1132 1232 Improved Improved 1232 1232	Pavements & Roofs 8.13 0.90 Gravel Pavements 0.96 0.55 Area Side Slopes, Turf 15.30 0.30 Unimproved Areas 0.25 0.20 Woodland & Forest 24.96 0.15	Pavements & Roofs 8.13 0.90 Gravel Pavements 0.96 0.55 Area Weighter Side Slopes, Turf 15.30 0.30 0.33 Unimproved Areas 0.25 0.20 Woodland & Forest 24.96 0.15 Woodland & Forest 24.96 0.15	Pavements & Roofs 8.13 0.90 Area Weighted C Gravel Pavements 0.96 0.55 Area Weighted C Side Slopes, Turf 15.30 0.30 0.33 Unimproved Areas 0.25 0.20 0.33 Woodland & Forest 24.96 0.15

OUTFALL 2241+54 RT

This outfall is approximately 8 acres and primarily receives offsite discharge from a wooded residential area with minimal pavement and grass. Discharge from this outfall is released into a heavily wooded area and is then conveyed to Mill Creek. The proposed Lakeview Drive improvements will increase imperviousness which will result in a negligible increase in discharge of 1 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

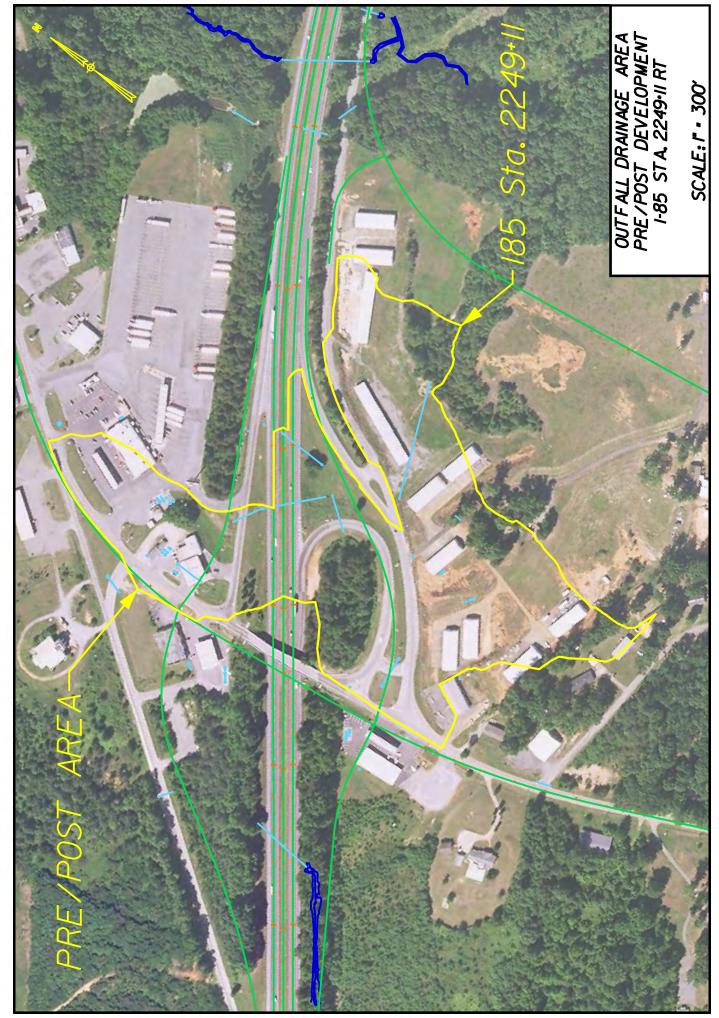
		Ratio	onal Analysis					
		-						
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.61	0.90					
Rolling, 2%-10%	Earth shoulders	0.36	0.50		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	0.31	0.30			0.26		
Rolling, 2%-10%	Grass Shoulders	2.17	0.25					
Rolling, 2%-10%	Woodland & Forest	4.23	0.15					
				-				
		7.68		J				
		7.00						
				1				
	County (NOAA-14)	-	our rainfall [in]					
	Cherokee	3	.73	J				
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrush	11.57%	100	0.8				0.28
Shallow								
Concentrated	Unpaved	11.57%	435					0.02
Shallow Concentrated								
Channel 1								
Channel 2								
Total			535				0.4824	0.30
	-	ľ						
			Gaffney		-	_		
	Time of Concentra	ation						
	(minutes)		19					
		C _f	С	I [in/hr]	AREA (ac)	0	CFS	
	Q ₁₀	1	0.26	4.893	7.68		10	
	Q ₂₅	1.1	0.26	5.607	7.68		12	
	Q ₅₀	1.2	0.26	6.165	7.68		15	
	Q ₁₀₀	1.25	0.26	6.711	7.68		17	


		Ratio	nal Analysis					
	T.				_			1
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.96	0.90					
Rolling, 2%-10%	Earth shoulders	0.36	0.50		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	1.17	0.30			0.31		
Rolling, 2%-10%	Grass Shoulders	1.72	0.25					
Rolling, 2%-10%	Woodland & Forest	3.47	0.15					
	L							
		7.68						
				,				
	County (NOAA-14)	2-year 24 Ho	ur rainfall [in]					
	Cherokee	3.	.73					
	Cherokee	3.	.73) (al a citu	
Flow Type	Cherokee Surface	3. Slope	.73 Length [ft]	Manning's	Area [ft^2]	WP [ft]	Velocity	Time [hr]
	Surface	Slope	Length [ft]	n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet					Area [ft^2]	WP [ft]		
	Surface Woods:dense underbrush	Slope 11.57%	Length [ft]	n 0.8	Area [ft^2]	WP [ft]		0.28
Sheet Shallow	Surface	Slope	Length [ft]	n 0.8	Area [ft^2]	WP [ft]		0.28
Sheet Shallow Concentrated Shallow Concentrated	Surface Woods:dense underbrush	Slope 11.57%	Length [ft]	n 0.8	Area [ft^2]	WP [ft]		0.28
Sheet Shallow Concentrated Shallow Concentrated Channel 1	Surface Woods:dense underbrush	Slope 11.57%	Length [ft]	n 0.8	Area [ft^2]	WP [ft]		0.28
Sheet Shallow Concentrated Shallow Concentrated	Surface Woods:dense underbrush	Slope 11.57%	Length [ft]	n 0.8	Area [ft^2]	WP [ft]		0.28
Sheet Shallow Concentrated Shallow Concentrated Channel 1	Surface Woods:dense underbrush	Slope 11.57%	Length [ft]	n 0.8	Area [ft^2]	WP [ft]		0.28
Sheet Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Surface Woods:dense underbrush	Slope 11.57%	Length [ft] 100 435	n 0.8	Area [ft^2]	WP [ft]	[ft/s]	0.28
Sheet Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Surface Woods:dense underbrush	Slope 11.57%	Length [ft] 100 435	n 0.8	Area [ft^2]	WP [ft]	[ft/s]	0.28
Sheet Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Surface Woods:dense underbrush	Slope 11.57%	Length [ft] 100 435	n 0.8	Area [ft^2]	WP [ft]	[ft/s]	0.28
Sheet Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Surface Woods:dense underbrush Unpaved	Slope 11.57% 11.57%	Length [ft] 100 435 535	n 0.8	Area [ft^2]	WP [ft]	[ft/s]	Time [hr] 0.28 0.02
Sheet Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Surface Woods:dense underbrush Unpaved	Slope 11.57% 11.57%	Length [ft] 100 435 535	n 0.8	Area [ft^2]	WP [ft]	[ft/s]	0.28
Sheet Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Surface Woods:dense underbrush Unpaved	Slope 11.57% 11.57%	Length [ft] 100 435 535 Gaffney	n 0.8	Area [ft^2]	WP [ft]	[ft/s]	0.28
Sheet Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Surface Woods:dense underbrush Unpaved	Slope 11.57% 11.57%	Length [ft] 100 435 535 6affney 19	n 0.8			[ft/s]	0.28
Sheet Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Surface Woods:dense underbrush Unpaved	Slope 11.57% 11.57%	Length [ft] 100 435 535 6affney 19	n 0.8	AREA (ac)		[ft/s] 0.4824	0.28
Sheet Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Surface Woods:dense underbrush Unpaved Time of Concentra (minutes) Q ₁₀	Slope 11.57% 11.57%	Length [ft] 100 435 535 Gaffney 19 C 0.31	n 0.8	AREA (ac) 7.68		[ft/s] 0.4824	0.28
Sheet Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Surface Woods:dense underbrush Unpaved	Slope 11.57% 11.57%	Length [ft] 100 435 535 6affney 19	n 0.8	AREA (ac)		[ft/s] 0.4824	0.28

OUTFALL 2246+42 RT

This outfall is approximately 3 acres and primarily receives offsite discharge from a grassed field. Discharge from this outfall is released into a heavily wooded area and is then conveyed to Mill Creek. The proposed Lakeview Drive improvements will increase imperviousness which will result in a negligible increase in discharge of 1 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		Rat	ional Analysis					
		1						,
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.07	0.90					
Rolling, 2%-10%	Grass Shoulders	2.05	0.25		Area	Weighte	d C	
Rolling, 2%-10%	Woodland & Forest	0.53	0.15			0.25		
0.								
		2.65						
		2.03	_					
	County (NOAA-14)	2-vear 24 Ho	our rainfall [in]					
	Cherokee		.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
							[[4]]	
Sheet	Grass:bermudagrass	14.34%	100	0.41			[17,3]	0.15
Shallow				0.41			[[7]]	
Shallow Concentrated	Grass:bermudagrass Unpaved	14.34% 14.34%	100 467	0.41				
Shallow Concentrated Shallow				0.41				
Shallow Concentrated				0.41				
Shallow Concentrated Shallow Concentrated Channel 1				0.41				
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2			467					0.02
Shallow Concentrated Shallow Concentrated Channel 1							0.9000	0.02
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2			467 567					0.02
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Unpaved	14.34%	467					0.02
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Unpaved	14.34%	467 567					0.02
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Unpaved	14.34%	467 567 Gaffney					0.02
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Unpaved	14.34%	467 567 Gaffney 11		ARFA (cc)		0.9000	0.02
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Unpaved	14.34%	467 567 Gaffney 11 C	[in/hr]	AREA (ac) 2.65		0.9000	0.02
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Unpaved Time of Concent (minutes)	14.34%	467 567 Gaffney 11 C 0.25	L [in/hr] 5.815	2.65		0.9000	0.02
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Unpaved	14.34%	467 567 Gaffney 11 C	[in/hr]			0.9000	0.15


		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.29	0.90					
Rolling, 2%-10%	Side Slopes, Turf	1.38	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Grass Shoulders	0.72	0.25			0.34		
Rolling, 2%-10%	Woodland & Forest	0.26	0.15					
		2.65						
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	.73					
							1	
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	14.34%	100	0.41				0.154
Shallow								
Concentrated Shallow	Unpaved	14.34%	467			_		0.021
Concentrated								
Channel 1								
Channel 2								
Total			567				0.9000	0.175
	_							
			Gaffney					
	Time of Concentration							
	(minutes)	11						
		C _f	С	I [in/hr]	AREA (ac)		:FS	
	Q ₁₀	1	0.34	5.815	2.65		5	
	Q ₂₅	1.1	0.34	6.699	2.65		7	
	Q ₅₀	1.2	0.34	7.395	2.65		8	
	Q ₁₀₀	1.25	0.34	8.080	2.65		9	

OUTFALL 2249+11 RT

This outfall receives runoff from offsite areas, the Exit 106 interchange, and the I-85 mainline from Sta. 2240+00 to Sta. 2245+00. The drainage area is approximately 23 acres and consists of roadway pavement, grassed medians, unimproved sections, and business areas. Offsite and roadway runoff is routed to the outfall via multiple existing storm sewer systems crossing under I-85 and systems crossing under the interchange access ramps. Discharge from this outfall is released into a heavily wooded area and is then conveyed to Mill Creek. The proposed I-85 improvements will decrease imperviousness due to the realignment of the Exit 106 interchange access ramps. As a result, there will be a decrease in discharge of 3 cfs from pre to post development conditions for the 10-year design storm. Therefore, the proposed I-85 improvements and reconfiguration of the Exit 106 Interchange will have no adverse downstream impact.

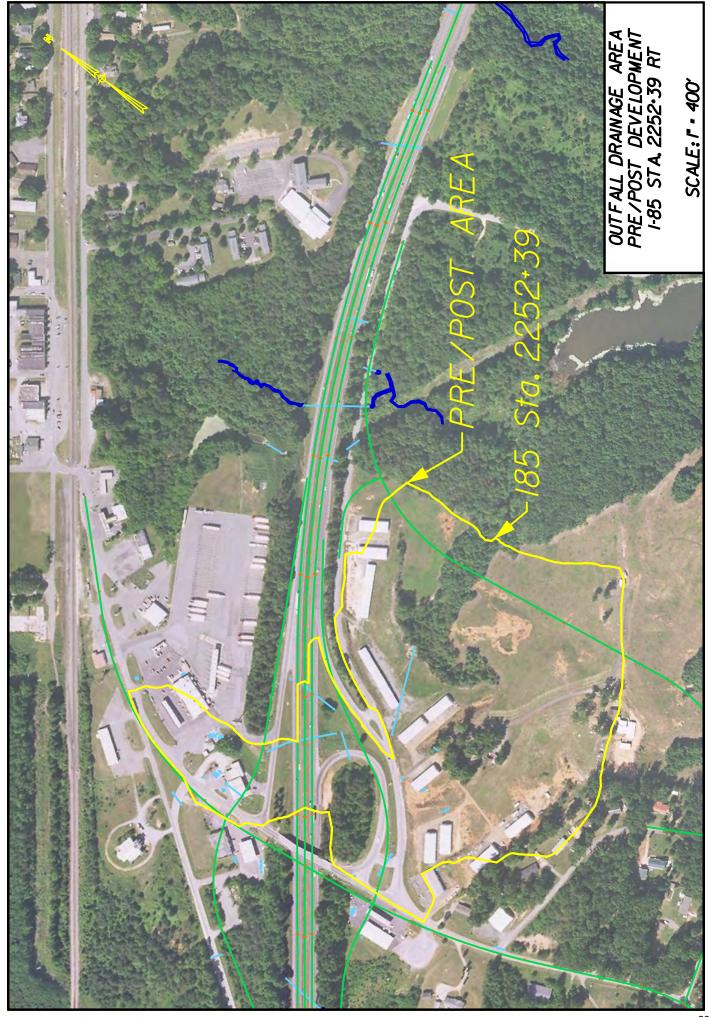
		Rat	tional Analysis	
Land Slope	Land Use	Acres	С	
Rolling, 2%-10%	Pavements & Roofs	5.92	0.90	
Rolling, 2%-10%	Industrial Areas, Light	4.70	0.70	Area Weighted C
Rolling, 2%-10%	Side Slopes, Turf	3.97	0.30	0.50
Rolling, 2%-10%	Grass Shoulders	5.24	0.25	
Rolling, 2%-10%	Unimproved Areas	2.73	0.20	
Rolling, 2%-10%	Woodland & Forest	0.79	0.15	
		23.35		

County (NOAA-14)	2-year 24 Hour rainfall [in]
Cherokee	3.73

Gaffney									
Time of Concent (minutes)	5								
	C _f	С	I [in/hr]	AREA (ac)	CFS				
Q ₁₀	1	0.50	6.770	23.35	80				
Q ₂₅	1.1	0.50	7.845	23.35	102				
Q ₅₀	1.2	0.50	8.698	23.35	123				
Q ₁₀₀	1.25	0.50	9.546	23.35	141				

		Ra	tional Analysis	
		_		
Land Slope	Land Use	Acres	С	
Rolling, 2%-10%	Pavements & Roofs	5.20	0.90	
Rolling, 2%-10%	Industrial Areas, Light	4.23	0.70	Area Weighted C
Rolling, 2%-10%	Side Slopes, Turf	8.39	0.30	0.49
Rolling, 2%-10%	Grass Shoulders	3.89	0.25	
Rolling, 2%-10%	Unimproved Areas	0.85	0.20	
Rolling, 2%-10%	Woodland & Forest	0.79	0.15	
] []
]
		23.35		

County (NOAA-14)	2-year 24 Hour rainfall [in]
Cherokee	3.73


Gaffney									
Time of Concent (minutes)	5								
	C _f	С	l [in/hr]	AREA (ac)	CFS				
Q ₁₀	1	0.49	6.770	23.35	77				
Q ₂₅	1.1	0.49	7.845	23.35	99				
Q ₅₀	1.2	0.49	8.698	23.35	119				
Q ₁₀₀	1.25	0.49	9.546	23.35	136				

OUTFALL 2252+39 RT

This outfall receives cumulative discharge from Outfall 2249+11 RT, the Exit 106 Interchange, the proposed roadway for Lakeview Drive, and limited offsite areas. The drainage area is approximately 43 acres and consists of roadway pavement, grassed areas, unimproved sections, and business areas. Offsite and roadway runoff is routed to the outfall via multiple existing storm sewer systems crossing under I-85 and systems crossing under the interchange access ramps. Discharge from this outfall is released into a heavily wooded area and is then conveyed to Mill Creek. The I-85 improvements will increase imperviousness due to the proposed median paving and Exit 106 interchange realignment. As a result, there will be a negligible increase in discharge of 1 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		Rat	ional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	6.53	0.90					
Rolling, 2%-10%	Industrial Areas, Light	4.70	0.70		Area	Weighte	d C	
Rolling, 2%-10%	Earth shoulders	0.58	0.50			0.40		
Rolling, 2%-10%	Side Slopes, Turf	5.85	0.30					
Rolling, 2%-10%	Grass Shoulders	21.87	0.25					
Rolling, 2%-10%	Unimproved Areas	0.85	0.20					
Rolling, 2%-10%	Woodland & Forest	2.84	0.15					
0,								
		43.22		-				
	County (NOAA-14)		ur rainfall [in]					
	Cherokee	3.	73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	10.12%	100	0.41			[10/3]	0.17
Shallow		1011270	200	0111				0.117
Concentrated	Unpaved	10.12%	1012					0.05
Shallow Concentrated								
Channel 1								
Channel 2								
Total			1112				1.3342	0.23
	Gaffney							
	Time of Concent	tration	1.4					
	(minutes)		14					
		C _f	С	I [in/hr]	AREA (ac)		CFS	
	Q ₁₀	1	0.40	5.432	43.22		94	
	Q ₂₅	1.1	0.40	6.243	43.22		.19	
	A	1 2	0.40	C 000	1 1 2 2 2			

Q₅₀

Q₁₀₀

1.2

1.25

0.40

0.40

43.22

43.22

6.880

7.505

143

		Rat	ional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	6.62	0.90					
Rolling, 2%-10%	Industrial Areas, Light	4.23	0.70		Area	Weighte	d C	
Rolling, 2%-10%	Earth shoulders	0.48	0.50			0.41		
Rolling, 2%-10%	Side Slopes, Turf	13.25	0.30					
Rolling, 2%-10%	Grass Shoulders	15.75	0.25					
Rolling, 2%-10%	Unimproved Areas	0.85	0.20					
Rolling, 2%-10%	Woodland & Forest	2.04	0.15					
,								
		43.22						
	County (NOAA-14)	2-year 24 Ho	ur rainfall [in]					
	Cherokee	3.	.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	10.12%	100	0.41				0.177
Shallow								
Concentrated Shallow	Unpaved	10.12%	1012					0.055
Concentrated								
Channel 1								
Channel 2								
Total			1112				1.3342	0.232
	7	L		I			<u> </u>	
	Gaffney							
	Gamey							
	Time of Concent	ration	14					
	(minutes)							
						-	250	
		C _f	C	I [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.41	5.432	43.22		95 21	
	Q ₂₅	1.1	0.41	6.243	43.22		21 45	

Q₅₀

Q₁₀₀

1.2

1.25

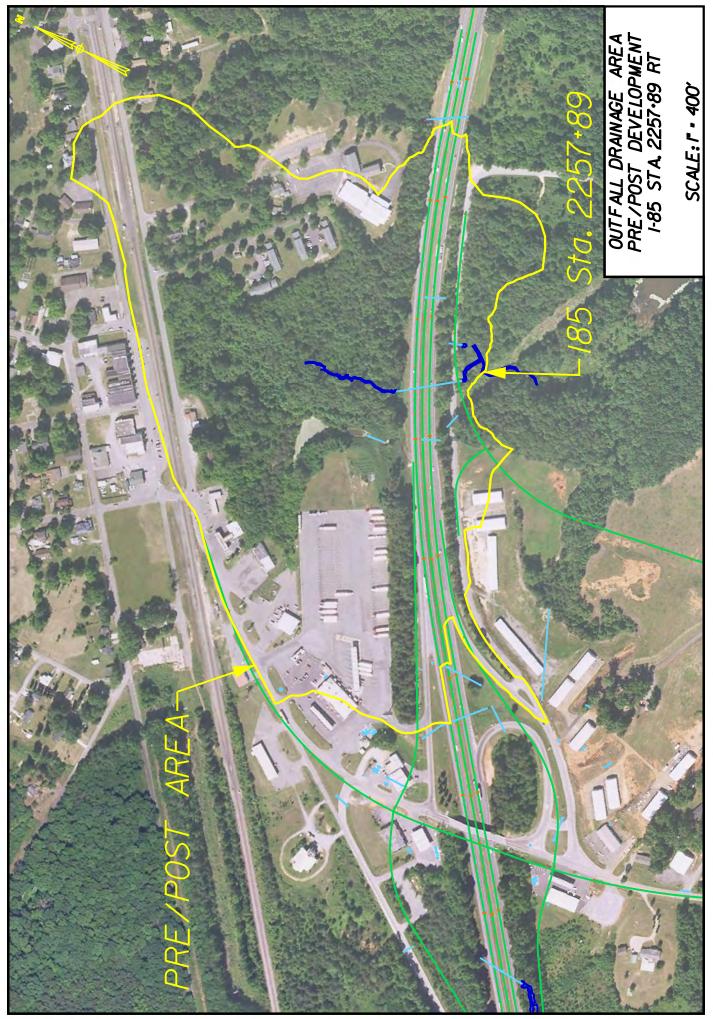
0.41

0.41

43.22

43.22

6.880


7.505

145

OUTFALL 2257+89 RT

This outfall receives runoff from offsite areas, the Exit 106 interchange, and the I-85 mainline from Sta. 2245+00 to Sta. 2268+00. The drainage area is approximately 73 acres and is characterized by roadway pavement, grassed medians, sparse residential tracts, business areas, and dense wooded areas. The area also includes a 0.5-acre impoundment. Roadway runoff is routed to the outfall through multiple existing storm sewer systems; while offsite runoff is routed under I-85 via an existing 48" R.C pipe. Discharge from this outfall is released into a heavily wooded area and is then conveyed to Mill Creek. The I-85 improvements will increase imperviousness due to the proposed median paving along the mainline and the reconfiguration of the Exit 106 interchange. As a result, there will be a negligible increase in discharge of 7 cfs from pre to post development conditions for the 10-year design storm. The increased runoff to the undeveloped area will have no adverse downstream impact and detention is not recommended.

		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	21.20	0.90					
Rolling, 2%-10%	Gravel Pavements	2.69	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	7.36	0.30			0.41		
Rolling, 2%-10%	Grass Shoulders	0.81	0.25					
Rolling, 2%-10%	Unimproved Areas	10.98	0.20					
Rolling, 2%-10%	Woodland & Forest	29.75	0.15					
	l	72.79				_		
	County (NOAA-14)	2-vear 24 Ho	our rainfall [in]	1				
	Cherokee		.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	6.33%	100	0.8				0.364
Shallow	l la second	c 220/	C 4 2					0.044
Concentrated Shallow	Unpaved	6.33%	642					0.044
Concentrated								
Channel 1								
Channel 2								
Total		l	742				0.5053	0.408
				_			_	
	Gaffney							
	Time of Concentration							
	(minutes)		25					
	-	C _f	C	I [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.41	4.372	72.79		30	
	Q ₂₅	1.1 1.2	0.41	4.996	72.79 72.79		63 95	
	Q ₅₀	1.2	0.41	5.482	12.19	1	33	

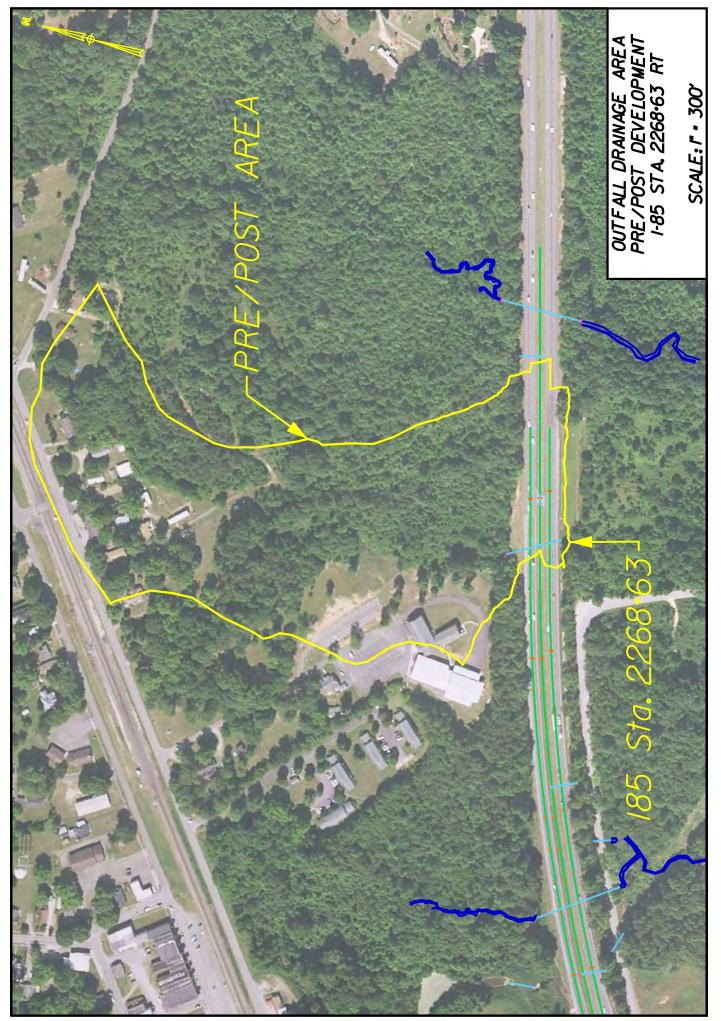
1.25

0.41

5.956

72.79

Q₁₀₀


		Rat	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	22.82	0.90					
Rolling, 2%-10%	Gravel Pavements	2.69	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	12.16	0.30			0.43		
Rolling, 2%-10%	Grass Shoulders	0.52	0.25					
Rolling, 2%-10%	Unimproved Areas	9.23	0.20					
Rolling, 2%-10%	Woodland & Forest	25.37	0.15					
0,								
		72.79						
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	.73					
						-	-	
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	6.33%	100	0.8				0.364
Shallow								
Concentrated Shallow	Unpaved	6.33%	642					0.044
Concentrated								
Channel 1								
Channel 2								
Total			742				0.5053	0.408
	-							
			Gaffney					
	Time of Concent	ration	25					
	(minutes)		25					
						-		
		C _f	С	I [in/hr]	AREA (ac)		CFS	
	Q ₁₀	1	0.43	4.372	72.79		.37	
	Q ₂₅	1.1	0.43	4.996	72.79		.73	
	Q ₅₀	1.2	0.43	5.482	72.79		.07	
	Q ₁₀₀	1.25	0.43	5.956	72.79	2	.34	

OUTFALL 2268+63 RT

This outfall receives runoff from offsite areas as well as roadway discharge Sta. 2268+00 to Sta. 2274+50. The drainage area is approximately 25 acres and encompasses roadway pavement, grassed medians, sparse residential tracts, business areas, and dense wooded areas. Offsite and roadway runoff is routed under I-85 to the outfall via an existing storm sewer system. Discharge from this outfall is released into a heavily wooded area and is then conveyed to Mill Creek. There will be no change in discharge from pre to post development conditions for the 10-year design storm. Therefore, the proposed I-85 improvements will have no adverse downstream impact.

		Ratio	onal Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	2.54	0.90					
Rolling, 2%-10%	Gravel Pavements	0.08	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	1.49	0.30			0.28		
Rolling, 2%-10%	Meadows & Pasture Land	4.94	0.30			0.20		
Rolling, 2%-10%	Grass Shoulders	2.21	0.25					
Rolling, 2%-10%	Woodland & Forest	13.48	0.15					
KUIIIIg, 276-1076		15.40	0.15					
	L							
				J				
		24.74						l
				1				
	County (NOAA-14)		our rainfall [in]					
	Cherokee	3	.73	ļ				
				Manning's			Velocity	
Flow Type	Surface	Slope	Length [ft]	n	Area [ft^2]	WP [ft]	[ft/s]	Time [hr]
Sheet	Woods:dense underbrush	3.58%	100	0.8				0.45
Shallow								
Concentrated	Unpaved	3.58%	1658					0.15
Shallow Concentrated								
Concentrated Channel 1								
Channel 2								
Total			1758				0.8034	0.60
Total	J		1738	J			0.8034	0.00
			Gaffney					
	Time of Concentra	ition	27					
	(minutes)		37					
		C _f	С	I [in/hr]	AREA (ac)	C	FS	
	Q ₁₀	1	0.28	3.603	24.74	2	25	
	Q ₂₅	1.1	0.28	4.102	24.74		31	
	Q ₅₀	1.2	0.28	4.489	24.74	3	37	
	Q ₁₀₀	1.25	0.28	4.864	24.74	4	12	

		Ratio	onal Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	2.92	0.90	1				
Rolling, 2%-10%	Gravel Pavements	0.08	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	1.11	0.30			0.29		
Rolling, 2%-10%	Meadows & Pasture Land	4.94	0.30					
Rolling, 2%-10%	Grass Shoulders	2.21	0.25					
Rolling, 2%-10%	Woodland & Forest	13.48	0.15					
_								
		24.74						
				1				
	County (NOAA-14)		our rainfall [in]					
	Cherokee	3	.73	J				
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr
Sheet	Woods:dense underbrush	3.58%	100	0.8				0.4
Shallow								
Concentrated Shallow	Unpaved	3.58%	1658					0.1
Concentrated								
Channel 1								
Channel 2								
Total			1758				0.8034	0.6
	-							
			Gaffney					
	Time of Concentra	tion						
	(minutes)		37					
		C _f	С	I [in/hr]	AREA (ac)	C	:FS	
	Q ₁₀	1	0.29	3.603	24.74	2	25	
	Q ₂₅	1.1	0.29	4.102	24.74	3	32	
	Q ₅₀	1.2	0.29	4.489	24.74		38	
	Q ₁₀₀	1.25	0.29	4.864	24.74	4	43	

4.2 Cross-Line Analysis

Cross-lines were analyzed according to the SCDOT's *Requirements for Hydraulic Design Studies*, dated May 26, 2009. All existing cross-lines along I-85 were analyzed for the 50-year design storms. Frontage road cross-lines were analyzed for 25-year design storms. All cross-lines were analyzed for performance during 100-year design storms. The Federal Highway Administration's HY-8 program was used to evaluate the performance of the existing cross-lines, and GEOPAK Drainage was used to analyze existing cross-line drainage systems. No indications of median drainage surcharging were identified. The hydrologic and hydraulic analysis for the project cross-lines are found in this section, and is summarized in *Table 4.2* - The Culvert Assessment Summary Table.

HY-8 Analysis

Tailwater (TW) conditions for the culverts were established within HY-8 by inputting the receiving channel characteristics (cross-sectional geometry, *n*-value, and grade).

Within the project area existing roadway culverts are frequently constructed in series with short ditch sections connecting the upstream and downstream culverts. In order to model the impact of the downstream (DS) structure on the upstream (US) culvert's performance the downstream culvert was analyzed first to establish headwater (HW) elevations for the design events. The calculated HW depths were assumed, due to the short length of connecting channel, to be constant through the channel. Therefore, US TW elevations were able to be estimated by simply adding the DS HW depth to the US culvert's outlet elevation thereby establishing a TW rating curve for the US culvert.

GEOPAK Analysis

Tailwater conditions for cross-lines that are part of a larger closed storm sewer system were established by modeling the downstream receiving channel as a ditch section within GEOPAK drainage. The receiving channel's characteristics (cross-sectional geometry, *n*-value, and grade) taken into account when modeling the receiving channel.

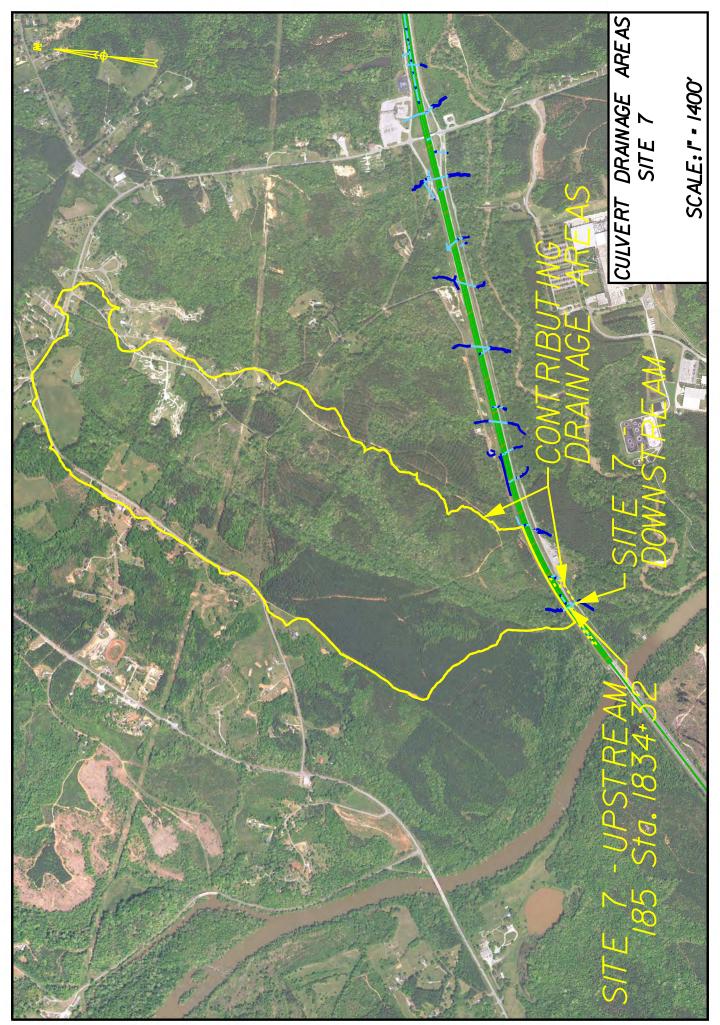


Table 4.2 - Culvert Assessment Summary Table

														Design Storm		1	100-Year Storm		Recommended			
Site ID	Location	Video Pipe on Inspection Pipe ID	Road/ Classification	Design Year (25-Year/50-	Stream Name	Drainage Structure	Structure Height (Ft)	Existing Invert (Inlet)	Existing Invert (Outlet)	Cross-Line Drainage Area	Design Flow (cfs)	100-Year Flow (cfs)	Calculated Headwater	Headwater Depth (From Inlet)	Hw/D	Calculated Headwater	Headwater Depth (From Inlet)	Hw/D	Outlet Protection Pad Dimensions	Hydraulic Analysis Notes	Visual Inspection Notes	Recommendation
Site 7	1834+32	32	I-85 / Primary	Year) 50-Year Storm	Unnamed tributary to Buffalo Creek	8' x 8' RCBC	8.0	558.33	557.79	(Acre) 458.11	637	811	573.80	15.47	1.9	575.98	17.65	2.2	(LxW)		Sedimentation inside of culvert. Erosion along slopes of infall.	downstream culvert. Improve downstream culvert. See calculations for Site 7 - Improved Downstream
Site 8	1839+52	52	I-85 / Primary			18" RCP	1.5	581.11	578.15										NA		Pipe outlet/outfall 60% blocked with sediment and	Culvert . Clean pipe. Clean outfall.
Site 9	1847+93	93	I-85 / Primary			30" RCP	2.5	605.48	602.46										NA		debris. Pipe outlet/outfall 70% blocked with sediment, debris, and vegetation.	Clean pipe. Clean outfall.
Site 10	1854+69	69	I-85 / Primary			18" RCP	1.5	608.67	590.70		1								NA		U/S heavily vegetated with erosion. D/S outlet joint separated.	Clean and stabilize U/S. Stabilize outfall and repair joint separation.
Site 11	1854+58	58	I-85 / Primary			NA	NA	NA	NA										NA		Not surveyed, unable to locate.	NA
Site 12	1858+83	83	I-85 / Primary			24" RCP	2.0	591.68	559.93										NA		US/ heavily vegetated. D/S scour hole with joint separation.	Clean and stabilize U/S. Stabilize outfall and repair joint separation.
Site 13	1863+58	58	I-85 / Primary	50-Year Storm	Buffalo Creek	4' x 6' RCBC	6.0	567.36	565.35	57.24	62	70	570.68	3.32	0.6	570.95	3.59	0.6	25' x 29'		Upstream heavily vegetated but channel is clear. Scour at culvert exit; and slight erosion along downstream channel.	Repair downstream scour hole and construct energy dissipator.
Site 14	1865+79		I-85 / Primary			18" RCP	1.5	590.84	560.18										NA			None.
Site 15	1873+79		I-85 / Primary			18" RCP	1.5	581.80	557.78										NA		D/S joint separation and scour.	Stabilize outfall and repair joint separation. Repair downstream scour hole and construct energy
Site 16	1874+88		I-85 / Primary	50-Year Storm	Buffalo Creek	4' x 6' RCBC 30" RCP	6.0	562.81 590.79	557.97	64.57	98	111	566.85	4.04	0.7	567.21	4.40	0.7	25' x 29' NA		Slight scour at culvert exit; otherwise stable outfall.	dissipator. Clean U/S. Clear D/S debris.
Site 17	1884+43		I-85 / Primary	50-Year Storm	Buffalo Creek	72" RCP TO 4' x 6' RCBC	6.0	603.69	596.80	2.37	4	5	604.29	0.60	0.10	604.39	0.70	0.1	NA	Culvert analyzed as 72" RCP and 4' x 6' RCBC. 72" RCP produced the highest headwater elevation and is listed in the table. Hw/D compares the listed headwater elevation to 72" inlet height.	D/S vegetated.	Clear D/S vegetation.
Site 19	1898+40	40	I-85 / Primary			18" RCP	1.5	588.39	NA										NA		D/S scour hole, channel erosion, and joint separation	Stabilize outfall channel, construct energy dissipator, and repair joint separation.
Site 20	1900+14	14	I-85 / Primary	50-Year Storm	Unnamed tributary to Buffalo Creek	7' x 7' RCBC	7.0	563.34	560.24	320.65	606	758	573.92	10.58	1.5	577.35	14.01	2.0	NA		Upstream channel not aligned with culvert; large tree located in front of headwall. Erosion down slopes from roadway runoff draining to inlet and slight scou around inlet headwall.	clear infall; stabilize roadway side slopes and protect
Site 21	1909+86	86	I-85 / Primary	50-Year Storm	Buffalo Creek	4' x 6' RCBC	6.0	571.13	562.51	94.14	119	135	575.70	4.57	0.8	576.11	4.98	0.8	25' x 29'		Upstream heavily vegetated. Large scour hole at culvert exit.	Clear upstream vegetation. Repair downstream scour hole and construct energy dissipator.
Site 22	1916+38	38	I-85 / Primary	50-Year Storm	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not surveyed. Analysis not completed.	NA	NA
Site 23	1917+16	16	I-85 / Primary			18" RCP	1.5	578.05	564.45										NA	Survey is inconsistent with field observation.	D/S outlet not surveyed, unable to locate.	NA
Site 24	1945+56	56	I-85 / Primary	50-Year Storm	Unnamed tributary to Buffalo Creek	12' x 10' RCBC	10.0	569.62	557.36	955	839	984	577.35	7.73	0.8	578.31	8.69	0.9	77' x 88'		Downstream channel eroded along first outer curve of creek.	Stabilize outfall channel and construct energy dissipator.
Site 25	1958+06	06	I-85 / Primary			18" RCP	1.5	577.12	574.97										NA		Not surveyed, unable to locate.	NA
Site 26	1966+55	55	I-85 / Primary	50-Year Storm	NA Unnamed	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not surveyed. Analysis not completed.	NA	NA
Site 27	1969+45	45	I-85 / Primary	50-Year Storm	tributary to Buffalo Creek	4' x 6' RCBC	6.0	589.22	585.40	0.96	4.5	5.1	589.79	0.57	0.1	589.84	0.62	0.1	NA	Very little flow to culvert.	Upstream heavily vegetated.	None.
Site 28	1973+13	13	I-85 / Primary			18" RCP	1.5	608.69	607.51										NA		D/S scour hole with debris and vegetation.	Clear D/S vegetation and debris, stabilize channel.
Site 29	1976+02	02	I-85 / Primary			24" RCP	2.0	618.55	611.54										NA		U/S heavily vegetated, Type 9 CB within apparent Clear Zone. D/S scour hole and debris filled channel.	Clear U/S vegetation, Convert Type 9 to DI Type 112. Repair D/S scour hole, clear and stabilize outfall.
Site 30	1982+48	48	I-85 / Primary			18" RCP	1.5	646.47	634.16										NA		D/S outfall overgrown.	Clean outfall.
Site 31	1989+06	06	I-85 / Primary			24" RCP	2.0	665.67	660.36										NA		D/S scour hole and joint separation.	Stabilize outfall and repair joint separation.
Site 32	1998+61		I-85 / Primary			18" RCP	1.5	692.63	684.18										NA		Outfall overgrown.	Clear overgrowth.
Site 33	2006+38		I-85 / Primary			18" RCP	1.5	714.50	709.03										NA		D/S scour hole and joint separation.	Stabilize outfall and repair joint separation.
Site 34	2010+43		I-85 / Primary			18" RCP	1.5	726.27	709.03										NA		D/S pipe end 20% blocked, outfall overgrown.	Clear pipe and clean outfall.
Site 35	2015+03	03	I-85 / Primary		Unnamed	18" RCP	1.5	737.12	735.43										NA		D/S pipe end 40% blocked.	Clear pipe and clean outfall.
Site 36	2018+40	40	I-85 / Primary	50-Year Storm	tributary to Buffalo Creek	36" RCP	3.0	NA	715.35	73.97	134	151	NA	NA	NA	NA	NA	NA	NA	Insufficient survey. Analysis not completed.	NA	NA
Site 37	2022+99	99	I-85 / Primary			18" RCP	1.5	758.93	758.11										NA			None.
Site 38A	2029+09	09	S-11-352 / Secondary	y 25-Year Storm	Unnamed tributary to Buffalo Creek	42" RCP	3.5	766.94	764.62	11.09	25	34	769.08	2.14	0.6	769.81	2.87	0.8	NA		Wooded but stable. Downstream heavily vegetated.	Clear vegetation; Stabilize channel.
Site 38B	2029+09	09	I-85 / Primary	50-Year Storm	Unnamed tributary to Buffalo Creek	42" RCP	3.5	758.28	740.11	23.62	76	86	762.56	4.28	1.2	763.10	4.82	1.4	NA	Site 38A is upstream to Site 38B.	Upstream heavily vegetated. Very large erosion downstream; downstream paved channel has failed (~500 yards away) due to channel overtopping.	Clean infall and stabilize outfall channel. Retain culvert with no increase in discharge to the culvert.
Site 39 Site 40	2034+99		I-85 / Primary I-85 / Primary			NA 30" RCP	NA 2.5	NA 809.07	NA 802.61										NA NA		Not surveyed, unable to locate. See Site 41.	NA None.
Site 40	2040+58	00	I-85 / Primary			50 KCP	2.5	809.07	802.01										NA		JEE JILE 41.	Inone.

Table 4.2 - Culvert Assessment Summary Table

		ĺ													Design Storm		:	100-Year Storm		Recommended			
Image Image <t< th=""><th>Site ID</th><th>Location</th><th>-</th><th></th><th>(25-Year/50-</th><th>Stream Name</th><th>-</th><th></th><th></th><th>-</th><th>Drainage Area</th><th></th><th></th><th></th><th></th><th>Hw/D</th><th></th><th></th><th>Hw/D</th><th>Outlet Protection Pad Dimensions</th><th>Hydraulic Analysis Notes</th><th>Visual Inspection Notes</th><th>Recommendation</th></t<>	Site ID	Location	-		(25-Year/50-	Stream Name	-			-	Drainage Area					Hw/D			Hw/D	Outlet Protection Pad Dimensions	Hydraulic Analysis Notes	Visual Inspection Notes	Recommendation
inter inter< inter inter< in	Site 41	2040+58		I-85 / Primary			36" RCP	3.0	802.41	801.27												D/S scour hole.	Stabilize outfall.
Main	Site 42	2042+00		I-85 / Primary			NA	NA	NA	NA										NA		U/S overgrown. D/S pipe blocked with sediment.	Clean infall. Clear D/S pipe and outfall.
int int< int int< int< int int< int int in	Site 43	2045+19		I-85 / Primary			NA	NA	NA	NA										NA		Not surveyed, unable to locate.	NA
int int< int int< int< int int< int int in		1																				Median inlet is heavily silted and has tree growing in	
And And <td>Site 44</td> <td>2055+19</td> <td></td> <td>I-85 / Primary</td> <td></td> <td></td> <td>24" RCP</td> <td>2.0</td> <td>842.63</td> <td>839.36</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NA</td> <td></td> <td>it. D/S pipe is 80% blocked with no evident outfall</td> <td>Clean system and reestablish outfall.</td>	Site 44	2055+19		I-85 / Primary			24" RCP	2.0	842.63	839.36										NA		it. D/S pipe is 80% blocked with no evident outfall	Clean system and reestablish outfall.
No. No. <td>Site 45</td> <td>2058+62</td> <td></td> <td>I-85 / Primary</td> <td></td> <td></td> <td>18" RCP</td> <td>1.5</td> <td>834.00</td> <td>831.51</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NA</td> <td></td> <td></td> <td>Clean pipe and outfall.</td>	Site 45	2058+62		I-85 / Primary			18" RCP	1.5	834.00	831.51										NA			Clean pipe and outfall.
····································	Site 46	2064+48		I-85 / Primary	50-Year Storm	tributary to Bee		5.0	779.33	766.72	91.24	179	203	786.00	6.67	1.3	786.71	7.38	1.5	NA	4' x 6' RCBC produced the highest headwater elevation and is listed in the table. Hw/D compares the listed headwater elevation to	Downstream culvert is 50% filled with sediment.	Clean downstream culvert and outfall. Stabilize downstream channel. Remove 60" RCP and extend 4' x 6' RCBC. 4' x 6' RCBC Hw/D = 1.10; which will then meet design standards.
B B	Site 47	2066+16		I-85 / Primary			18" RCP	1.5	802.82	799.06										NA		Outfall is vegetated.	Clear outfall.
Image Image <	Site 48	2075+51		I-85 / Primary			18" RCP	1.5	776.14	771.31										NA		Outfall heavily eroded with joint separation.	Stabilize outfall and repair joint separation.
No. No. <td>Site 49</td> <td>2076+39</td> <td></td> <td>I-85 / Primary</td> <td>50-Year Storm</td> <td>tributary to Bee</td> <td>4' x 6' RCBC</td> <td>6.0</td> <td>751.18</td> <td>744.32</td> <td>97.43</td> <td>172</td> <td>195</td> <td>757.12</td> <td>5.94</td> <td>1.0</td> <td>757.73</td> <td>6.55</td> <td>1.1</td> <td>25' x 29'</td> <td></td> <td></td> <td>Repair scour hole and construct energy dissipator.</td>	Site 49	2076+39		I-85 / Primary	50-Year Storm	tributary to Bee	4' x 6' RCBC	6.0	751.18	744.32	97.43	172	195	757.12	5.94	1.0	757.73	6.55	1.1	25' x 29'			Repair scour hole and construct energy dissipator.
No. No. <td>Site 50</td> <td>2082+58</td> <td></td> <td>I-85 / Primary</td> <td>50-Year Storm</td> <td>Unnamed tributary to Bee</td> <td>4' x 4' RCBC</td> <td>4.0</td> <td>771.72</td> <td>770.57</td> <td>47.20</td> <td>103</td> <td>116</td> <td>776.03</td> <td>4.31</td> <td>1.1</td> <td>776.47</td> <td>4.75</td> <td>1.2</td> <td>21' x 26'</td> <td></td> <td>erosion.</td> <td>Remove vegetation from upstream and downstream channels. Stabilize upstream culvert entrance with riprap. Repair downstream scour hole and construct energy dissipator.</td>	Site 50	2082+58		I-85 / Primary	50-Year Storm	Unnamed tributary to Bee	4' x 4' RCBC	4.0	771.72	770.57	47.20	103	116	776.03	4.31	1.1	776.47	4.75	1.2	21' x 26'		erosion.	Remove vegetation from upstream and downstream channels. Stabilize upstream culvert entrance with riprap. Repair downstream scour hole and construct energy dissipator.
Image: bit image	Site 51	2095+08		I-85 / Primary	50-Year Storm	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not surveyed. Analysis not completed.	NA	NA
And Sind Sind <ths< td=""><td>Site 52</td><td>2097+13</td><td></td><td>I-85 / Primary</td><td>50-Year Storm</td><td>tributary to Bee</td><td>36" RCP</td><td>3.0</td><td>821.15</td><td>787.08</td><td>23.18</td><td>62</td><td>70</td><td>823.79</td><td>2.64</td><td>0.9</td><td>824.00</td><td>2.85</td><td>1.0</td><td>18' x 21'</td><td>Analyzed with geopak drainage.</td><td></td><td>Clean outfall. Stabilize downstream outlet and construct energy dissipator.</td></ths<>	Site 52	2097+13		I-85 / Primary	50-Year Storm	tributary to Bee	36" RCP	3.0	821.15	787.08	23.18	62	70	823.79	2.64	0.9	824.00	2.85	1.0	18' x 21'	Analyzed with geopak drainage.		Clean outfall. Stabilize downstream outlet and construct energy dissipator.
5 5	Site 53	2114+83		I-85 / Primary	50-Year Storm	Unnamed tributary to Bee	6' x 6' RCBC	6.0	763.05	759.61	235.68	477	588	773.74	10.69	1.8	777.17	14.12	2.4	NA			Clear main channel downstream. Retain culvert with no additional discharge to the culvert.
No. No. <td>Site 54</td> <td>2116+00</td> <td></td> <td>I-85 / Primary</td> <td></td> <td></td> <td>18" RCP</td> <td>1.5</td> <td>795.35</td> <td>770.13</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NA</td> <td></td> <td>Outfall heavily vegetated.</td> <td>Clear outfall.</td>	Site 54	2116+00		I-85 / Primary			18" RCP	1.5	795.35	770.13										NA		Outfall heavily vegetated.	Clear outfall.
Abb Abb <td>Site 55</td> <td>2124+50</td> <td></td> <td>I-85 / Primary</td> <td>50-Year Storm</td> <td>tributary to Bee</td> <td>4' x 6' RCBC</td> <td>6.0</td> <td>805.78</td> <td>802.24</td> <td>2.78</td> <td>8</td> <td>9</td> <td>806.53</td> <td>0.75</td> <td>0.1</td> <td>806.59</td> <td>0.81</td> <td>0.1</td> <td>NA</td> <td></td> <td>between culverts; and paved channels draining down</td> <td>Clear vegetation between culverts upstream and downstream.</td>	Site 55	2124+50		I-85 / Primary	50-Year Storm	tributary to Bee	4' x 6' RCBC	6.0	805.78	802.24	2.78	8	9	806.53	0.75	0.1	806.59	0.81	0.1	NA		between culverts; and paved channels draining down	Clear vegetation between culverts upstream and downstream.
Since Since <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																							
918 bit 1 918 bit 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																							
Object of the state o																					Survey incomplete.		
9 1000 101000 101000																			-				
1 Set 1 1 Set 1 1 Set 1 1 Set 1 1 Set 2																							
1 No. 1		2164+36			50-Year Storm	tributary to Bee	4' x 6' RCBC	6.0	814.29	818.92	24.85	63	72	820.44	6.15	1.0	820.49	6.20	1.0	NA		Sediment buildup [~ 6" to 1'] on inside of culvert.	Retain culvert with no additional discharge to the culvert. Clean culvert; Clean infall and outfall.
Alf de la	Site 63	2170+41		I-85 / Primary	50-Year Storm	tributary to Bee	36" RCP	3.0	818.60	817.38	21.67	32	36	821.27	2.67	0.9	821.47	2.87	1.0	NA		Downstream surrounded with heavy vegetation.	Clear outfall to R/W.
Site 6 20244 1 5/Fer 3/Fer 5/Fer 3/Fer 5/Fer 3/Fer 3/Fer 3/Fer 3/Fer 3/Fer 3/Fer 3	Site 64	2174+88		I-85 / Primary			30" RCP	2.5	820.46	820.76										NA		Slight D/S erosion and joint separation.	Stabilize outfall and repair joint separation.
Sheep Sheep <t< td=""><td>Site 65</td><td>2204+44</td><td></td><td>I-85 / Primary</td><td>50-Year Storm</td><td>tributary to</td><td>36" RCP</td><td>3.0</td><td>811.53</td><td>804.97</td><td>27.18</td><td>40</td><td>45</td><td>814.58</td><td>3.05</td><td>1.0</td><td>814.85</td><td>3.32</td><td>1.1</td><td>15' x 19'</td><td></td><td></td><td>Stabilize upstream channel. Repair scour hole and joint separation downstream. Construct energy dissipator.</td></t<>	Site 65	2204+44		I-85 / Primary	50-Year Storm	tributary to	36" RCP	3.0	811.53	804.97	27.18	40	45	814.58	3.05	1.0	814.85	3.32	1.1	15' x 19'			Stabilize upstream channel. Repair scour hole and joint separation downstream. Construct energy dissipator.
Site 68 L223+93 Les / Primary Site 7 Prim	Site 66	2218+37		I-85 / Primary	50-Year Storm	tributary to	36" RCP	3.0	797.19	789.14	36.69	59	67	801.41	4.22	1.4	802.04	4.85	1.6	18' x 21'			
Site 68 222 +93 1.85 / Primary 50-Year Storm tributary to 36" RCP 3.0" 80.4.8 79.5.7 19.61 2.3 2.6 807.0 2.15 807.0 2.15 9.0"	Site 67	2218+40		I-85 / Primary			18" RCP	1.5	808.75	793.70										NA		Paved oufall channel eroding behind top of channel.	Stabilize outfall channel.
Site 70 232+55 Instrumentation A	Site 68	2223+93		I-85 / Primary	50-Year Storm	tributary to	36" RCP	3.0	804.82	796.57	19.61	23	26	807.00	2.18	0.7	807.16	2.34	0.8	15' x 19'			Clean infall to R/W. Repair downstream scour hole and construct energy dissipator.
	Site 69	2226+83		I-85 / Primary			18" RCP	1.5	821.31	809.50										NA		D/S channel eroded, joint separation.	Stabilize outfall and repair joint separation.
Site 71 2243+23 I-85 / Primary 30" RCP 2.5 849.32 835.81 None.	Site 70	2232+55		I-85 / Primary			24" RCP	2.0	833.50	827.34										NA		D/S scour hole and channel erosion.	Stabilize outfall.
	Site 71	2243+23		I-85 / Primary			30" RCP	2.5	849.32	835.81										NA		Survey inconsistent with field observation.	None.

		SCS /	Analysis					
HSG	Land Use	Acres	CN					
В	Streets and roads: Paved open ditches	4.71	89.00					
В	Streets and roads: Dirt	3.73	82.00		Area W	eighted C	N	
В	Residential: 1/3 acre	9.86	72.00			56		
В	Pasture,grassland,or range: Good	66.14	61.00					
В	Woods:Good	352.42	55.00					
А	Pasture,grassland,or range: Good	0.12	39.00					
А	Woods:Good	21.13	30.00					
		458.11						
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr
Sheet	Woods:dense underbrush	7.38%	100	0.8				0.34
Shallow	Unpaved	7.38%	1472					0.09
Concentrated Shallow		1.30/0	14/2					0.05
Concentrated								
Channel 1		1.53%	7849	0.04	18	13.7295	5.512184	0.39
Channel 2								
otal			9421				3.1483	0.83
			1		_			
	Drainage Area (acres)	458.11		Curve	e Number	:	56	
					Concentration		50	
				(m.	inutes)			

WinTR-55 Current Data Description

--- Identification Data ---

User: CECS Date: 12/14/2016 Project: I-85 Improvement Proj DB Prep Units: English SubTitle: SITE 7 - UPSTREAM Areal Units: Acres State: South Carolina County: Cherokee_NOAA_B Filename: S:\Proj\2014\6114 I-85 mm 96-106\Design\Project PIN Number\Drainage\Calculations\CULVERT - POST

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Tc
SITE 7		Outlet	458.11	56	0.833

Total area: 458.11 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.73	4.68	5.44	6.49	7.35	8.24	3.1

Storm Data Source:Cherokee_NRainfall Distribution Type:Type NO_BDimensionless Unit Hydrograph:<standard>

Cherokee_NOAA_B County, SC (NRCS) Type NO_B <standard>

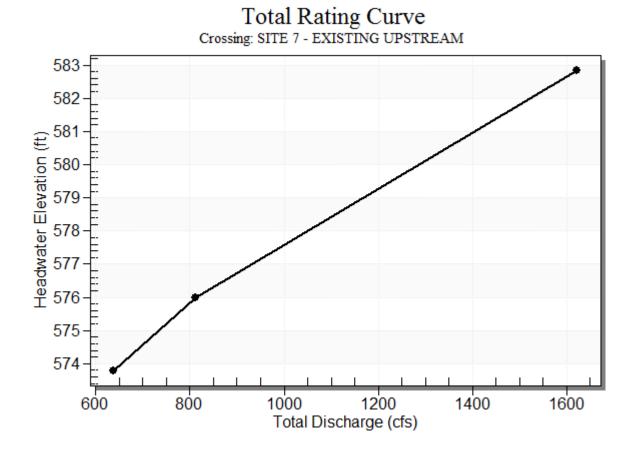
I-85 Improvement Proj DB Prep SITE 7 - UPSTREAM Cherokee_NOAA_B County, South Carolina

Watershed Peak Table

Sub-Area or Reach Identifier	Pea 10-Yr (cfs)	25-Yr	Rainfall 50-Yr (cfs)	Return Period 100-Yr (cfs)	
SUBAREAS SITE 7	303.95	479.04	636.48	810.64	
REACHES					

OUTLET 303.95 479.04 636.48 810.64

CECS


HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Recurrence

ſ	Headwater	Discharge Names	Total Discharge	SITE 7 -	Roadway	Iterations
	Elevation (ft)		(cfs)	EXISTING	Discharge (cfs)	
				UPSTREAM		
				Discharge (cfs)		
	573.80	50 year	637.00	637.00	0.00	1
	575.98	100 year	811.00	811.00	0.00	1
	581.86	Overtopping	1161.28	1161.28	0.00	Overtopping

Table 1 - Summary of Culvert Flows at Crossing: SITE 7 - EXISTING UPSTREAM

Rating Curve Plot for Crossing: SITE 7 - EXISTING UPSTREAM

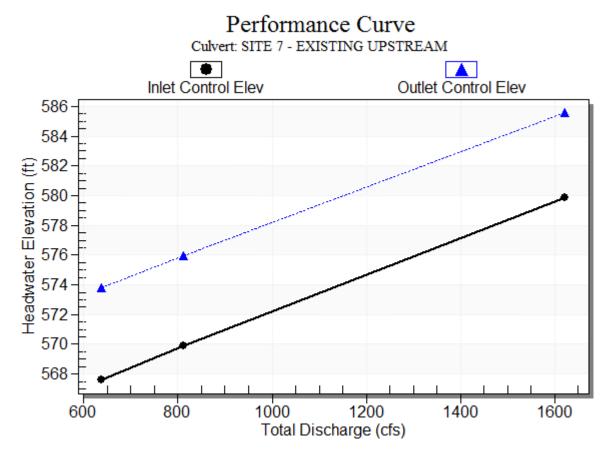
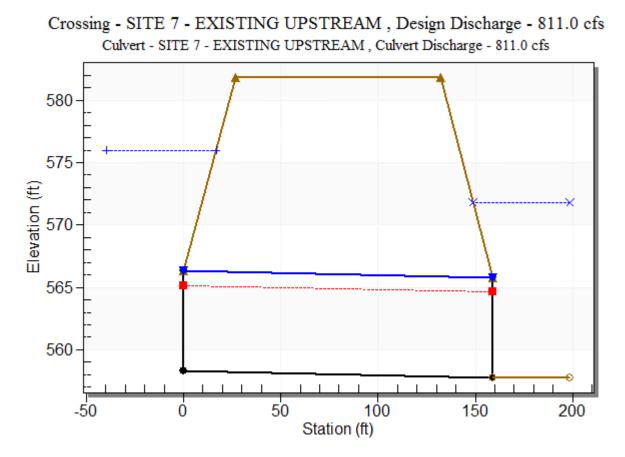

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	637.00	637.00	573.80	9.270	15.469	4-FFf	6.111	5.818	8.000	13.450	9.953
100 year	811.00	811.00	575.98	11.575	17.648	4-FFf	8.000	6.834	8.000	14.040	12.672

Table 2 - Culvert Summary Table: SITE 7 - EXISTING UPSTREAM


Straight Culvert

Inlet Elevation (invert): 558.33 ft, Outlet Elevation (invert): 557.79 ft Culvert Length: 159.00 ft, Culvert Slope: 0.0034

Culvert Performance Curve Plot: SITE 7 - EXISTING UPSTREAM

Water Surface Profile Plot for Culvert: SITE 7 - EXISTING UPSTREAM

Site Data - SITE 7 - EXISTING UPSTREAM

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 558.33 ft Outlet Station: 159.00 ft Outlet Elevation: 557.79 ft Number of Barrels: 1

Culvert Data Summary - SITE 7 - EXISTING UPSTREAM

Barrel Shape: Concrete Box Barrel Span: 8.00 ft Barrel Rise: 8.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (30-75° flare) Wingwall Inlet Depression: NONE

Table 3 - Downstream Channel Rating Curve (Crossing: SITE 7 - EXISTING UPSTREAM)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
637.00	571.24	13.45	0.00
811.00	571.83	14.04	0.00

Tailwater Channel Data - SITE 7 - EXISTING UPSTREAM

Tailwater Channel Option: Enter Rating Curve Channel Invert Elevation: 557.79 ft

Roadway Data for Crossing: SITE 7 - EXISTING UPSTREAM

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 581.86 ft Roadway Surface: Paved Roadway Top Width: 105.00 ft

SITE 7 – Existing Upstream Culvert Tailwater Rating Curve

	Downstream (DS) Culvert			Upstream (US) Culvert				
	Inlet Elevation	558.01		Outlet Elevation	557.7	'9		
Return Event		Headw	ater		Tailwa	ter		
LVCIIL		Elevation	Depth		Elevation	Depth		
50-Year		571.24	13.23		571.02	13.23		
100-Year		571.83	13.82		571.61	13.82		
* All elevations and depths are in feet.								
			Note					
Due to the lower US outlet elevation, calculated tailwater elevations are below the DS headwater elevation. For this crossing, US tailwater elevations will be held to the same elevations as the DS headwater.								

SCS Analysis									
HSG	Land Use	Acres	CN						
В	Impervious	1.85	98.00						
В	Streets and roads: Paved open ditches	4.90	89.00	Area Weighted CN					
В	Streets and roads: Dirt	3.73	82.00			56			
В	Residential: 1/3 acre	9.86	72.00						
В	Pasture,grassland,or range: Good	66.14	61.00						
В	Woods:Good	352.42	55.00						
А	Pasture,grassland,or range: Good	0.34	39.00						
А	Woods:Good	21.13	30.00						
		460.37		l					
		400.37							
	County (NOAA-14)	2-year 24 Hour rainfall [in]		1					
	Cherokee	3	.73						
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]	
Sheet	Woods:dense underbrush	7.38%	100	0.8				0.342	
Shallow Concentrated	Unpaved	7.38%	1472					0.093	
Shallow		,	1772					0.055	
Concentrated									
Channel 1		1.53%	7849	0.04	18	13.7295	5.512184	0.396	
Channel 2									
Total			9421				3.1483	0.831	
	Drainage Area	460.27		C	Number		-6		
	(acres)	(acres) 460.37 Curve Number 56							
				Time of C	Concentration				
					inutes)		50		

WinTR-55 Current Data Description

--- Identification Data ---

User: CECS Date: 12/14/2016 Project: I-85 Improvement Proj DB Prep Units: English SubTitle: SITE 7 - DOWNSTREAM Areal Units: Acres State: South Carolina County: Cherokee_NOAA_B Filename: S:\Proj\2014\6114 I-85 mm 96-106\Design\Project PIN Number\Drainage\Calculations\CULVERT - POST

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
SITE 7		Outlet	460.37	56	0.830

Total area: 460.37 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.73	4.68	5.44	6.49	7.35	8.24	3.1

Storm Data Source:Cherokee_NRainfall Distribution Type:Type NO_BDimensionless Unit Hydrograph:<standard>

Cherokee_NOAA_B County, SC (NRCS) Type NO_B <standard>

12/14/2016 5:16:59 PM

I-85 Improvement Proj DB Prep SITE 7 - DOWNSTREAM Cherokee_NOAA_B County, South Carolina

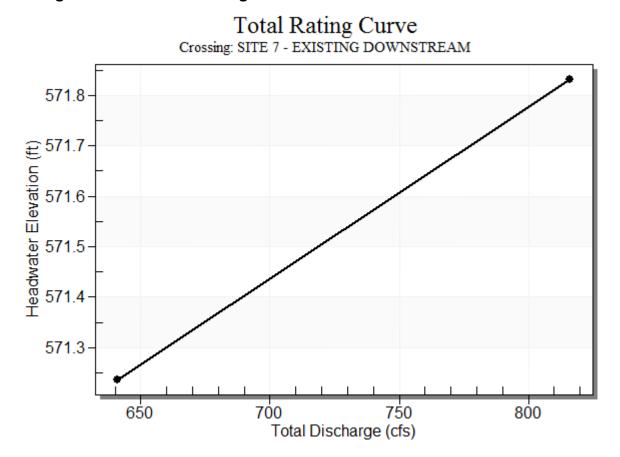
Watershed Peak Table

Sub-Area or Reach Identifier	Pea 10-Yr (cfs)	25-Yr	50-Yr	Return Period 100-Yr (cfs)	
SUBAREAS SITE 7	306.18	482.30	640.64	815.97	
REACHES					

OUTLET 306.18 482.30 640.64 815.97

CECS

WinTR-55, Version 1.00.10 Page 1 12/14/2016 5:16:59 PM


HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Recurrence

ſ	Headwater	Discharge Names	Total Discharge	SITE 7 -	Roadway	Iterations
	Elevation (ft)		(cfs)	EXISTING	Discharge (cfs)	
				DOWNSTREAM		
				Discharge (cfs)		
	571.24	50 year	641.00	606.42	34.27	10
	571.83	100 year	816.00	585.45	230.05	4
ſ	571.00	Overtopping	592.11	592.11	0.00	Overtopping

Table 1 - Summary of Culvert Flows at Crossing: SITE 7 - EXISTING DOWNSTREAM

Rating Curve Plot for Crossing: SITE 7 - EXISTING DOWNSTREAM

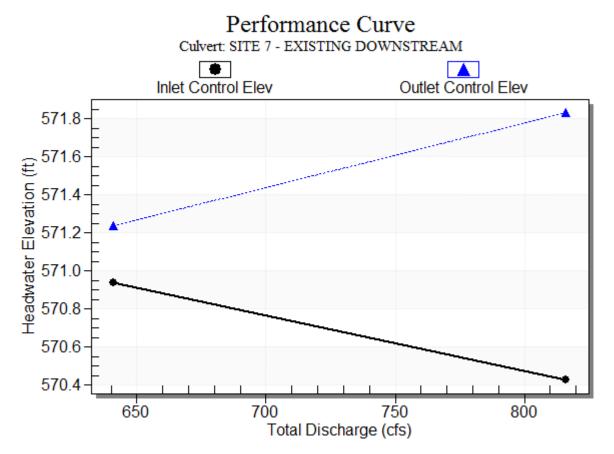
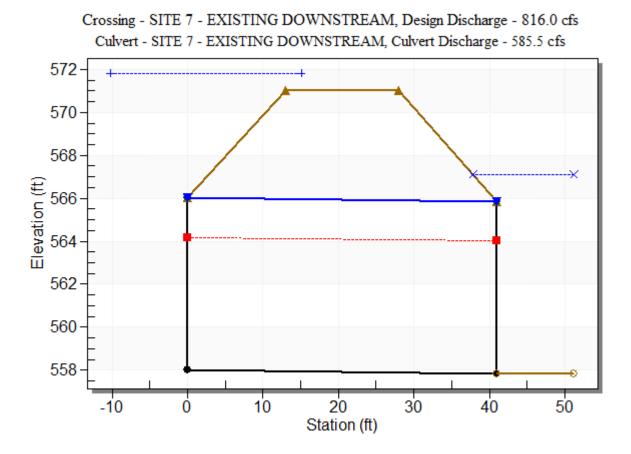

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	641.00	606.42	571.24	12.930	13.227	4-FFf	8.000	6.263	8.000	8.315	12.064
100 year	816.00	585.45	571.83	12.417	13.823	4-FFf	8.000	6.159	8.000	9.256	11.647

Table 2 - Culvert Summary Table: SITE 7 - EXISTING DOWNSTREAM


Straight Culvert

Inlet Elevation (invert): 558.01 ft, Outlet Elevation (invert): 557.85 ft Culvert Length: 41.00 ft, Culvert Slope: 0.0039

Culvert Performance Curve Plot: SITE 7 - EXISTING DOWNSTREAM

Water Surface Profile Plot for Culvert: SITE 7 - EXISTING DOWNSTREAM

Site Data - SITE 7 - EXISTING DOWNSTREAM

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 558.01 ft Outlet Station: 41.00 ft Outlet Elevation: 557.85 ft Number of Barrels: 1

Culvert Data Summary - SITE 7 - EXISTING DOWNSTREAM

Barrel Shape: Circular Barrel Diameter: 8.00 ft Barrel Material: Corrugated Steel Embedment: 0.00 in Barrel Manning's n: 0.0270 Culvert Type: Straight Inlet Configuration: Thin Edge Projecting Inlet Depression: NONE

Table 3 - Downstream Channel Rating Curve (Crossing: SITE 7 - EXISTING DOWNSTREAM)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
641.00	566.16	8.31	4.17	2.13	0.33
816.00	567.11	9.26	4.43	2.37	0.33

Tailwater Channel Data - SITE 7 - EXISTING DOWNSTREAM

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 6.00 ft Side Slope (H:V): 1.50 (_:1) Channel Slope: 0.0041 Channel Manning's n: 0.0600 Channel Invert Elevation: 557.85 ft

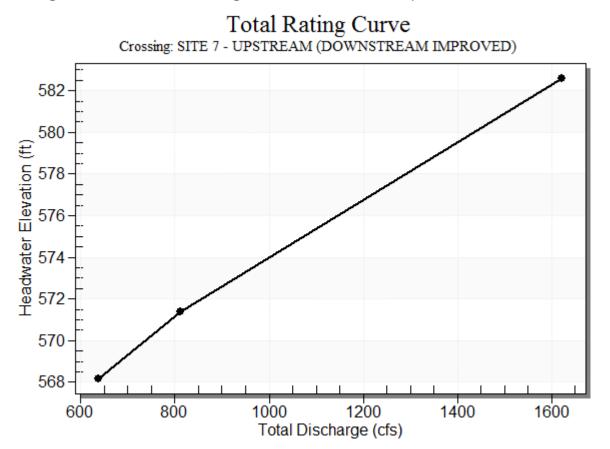
Roadway Data for Crossing: SITE 7 - EXISTING DOWNSTREAM

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 571.00 ft Roadway Surface: Paved Roadway Top Width: 15.00 ft

SITE 7 – Improved Downstream Culvert

The existing downstream culvert, located under the frontage road, was found to be undersized. With improvement of the downstream culvert, the upstream 8' x 8' R.C. Box will perform adequately. Improvement of the downstream culvert to an 8'(H) x 10'(W) R.C. Box will provide a Hw/D ratio of 1.2 and is recommended. Supporting documentation for this recommendation can be found in the following pages.

	Culvert Size	Invert Elevation	50 - Year Hw Elev.	Hw/D	100 – Year Hw Elev.	Hw/D
Upstream (With Improved Downstream)	8' x 8' RCBC	558.33	568.19	1.2	571.40	1.6
Improved Downstream	8' x 10' RCBC	557.74	565.58	1.0	567.20	1.2


HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Recurrence

Table 1 - Summary of Culvert Flows at Crossing: SITE 7 - UPSTREAM (DOWNSTREAM IMPROVED)

Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 7 - UPSTREAM (DOWNSTREAM IMPROVED) Discharge (cfs)	Roadway Discharge (cfs)	Iterations
568.19	50 year	637.00	637.00	0.00	1
571.40	100 year	811.00	811.00	0.00	1
581.86	Overtopping	1203.56	1203.56	0.00	Overtopping

Rating Curve Plot for Crossing: SITE 7 - UPSTREAM (DOWNSTREAM IMPROVED)

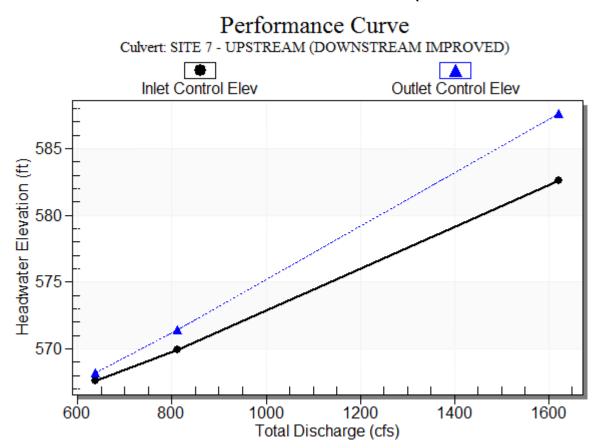
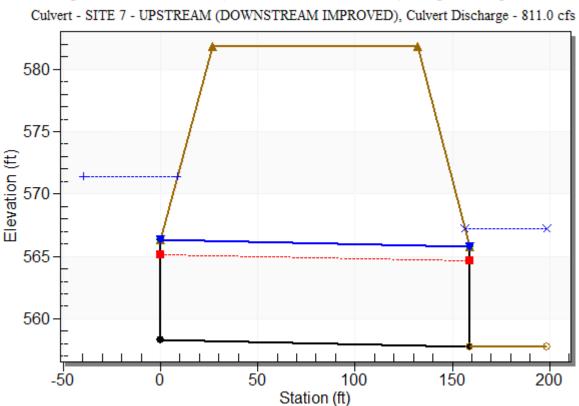

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	637.00	637.00	568.19	9.270	9.859	6-FFt	6.111	5.818	7.840	7.840	10.156
100 year	811.00	811.00	571.40	11.575	13.068	4-FFf	8.000	6.834	8.000	9.460	12.672

Table 2 - Culvert Summary Table: SITE 7 - UPSTREAM (DOWNSTREAM IMPROVED)


Straight Culvert

Inlet Elevation (invert): 558.33 ft, Outlet Elevation (invert): 557.79 ft Culvert Length: 159.00 ft, Culvert Slope: 0.0034

Culvert Performance Curve Plot: SITE 7 - UPSTREAM (DOWNSTREAM IMPROVED)

Water Surface Profile Plot for Culvert: SITE 7 - UPSTREAM (DOWNSTREAM **IMPROVED**)

Crossing - SITE 7 - UPSTREAM (DOWNSTREAM IMPROVED), Design Discharge - 811.0 cfs

Site Data - SITE 7 - UPSTREAM (DOWNSTREAM IMPROVED)

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 558.33 ft Outlet Station: 159.00 ft Outlet Elevation: 557.79 ft Number of Barrels: 1

Culvert Data Summary - SITE 7 - UPSTREAM (DOWNSTREAM IMPROVED)

Barrel Shape: Concrete Box Barrel Span: 8.00 ft Barrel Rise: 8.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (30-75° flare) Wingwall Inlet Depression: NONE

Table 3 - Downstream Channel Rating CurveCrossing: SITE 7 - UPSTREAM(DOWNSTREAM IMPROVED)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
637.00	565.63	7.84	0.00
811.00	567.25	9.46	0.00

Tailwater Channel Data - SITE 7 - UPSTREAM (DOWNSTREAM IMPROVED)

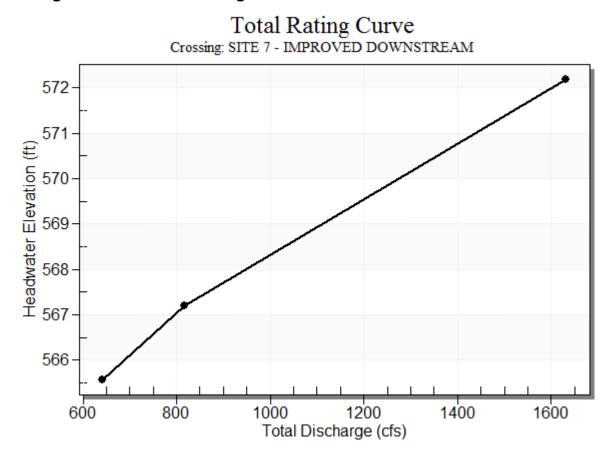
Tailwater Channel Option: Enter Rating Curve Channel Invert Elevation: 557.79 ft

Roadway Data for Crossing: SITE 7 - UPSTREAM (DOWNSTREAM IMPROVED)

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 581.86 ft Roadway Surface: Paved Roadway Top Width: 105.00 ft

SITE 7 – Upstream (With Improved Downstream) Culvert Tailwater Rating Curve

	Downstrea	m (DS) Culve	ert	Upstream (US) Culvert	
Deturn	Inlet Elevation	557.7	74	Outlet Elevation	557.7	'9
Return Event		Headw	ater		Tailwa	ter
Lvent		Elevation	Depth		Elevation	Depth
50-Year		565.58	7.84		565.63	7.84
100-Year		567.20	9.46		567.25	9.46
* All elevations	and depths are in feet.					
			Note			
Improved do upstream cul		elevations w	ere calcu	lated based upon the s	lope of the ex	isting


HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Recurrence

Headwater	Discharge Names	Total Discharge	SITE 7 -	Roadway	Iterations
Elevation (ft)	-	(cfs)	IMPROVED	Discharge (cfs)	
			DOWNSTREAM	-	
			Discharge (cfs)		
565.58	50 year	641.00	641.00	0.00	1
567.20	100 year	816.00	816.00	0.00	1
571.00	Overtopping	1149.12	1149.12	0.00	Overtopping

 Table 1 - Summary of Culvert Flows at Crossing: SITE 7 - IMPROVED DOWNSTREAM

Rating Curve Plot for Crossing: SITE 7 - IMPROVED DOWNSTREAM

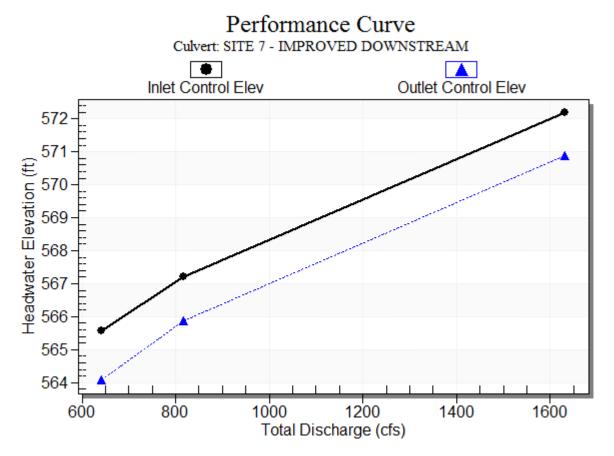
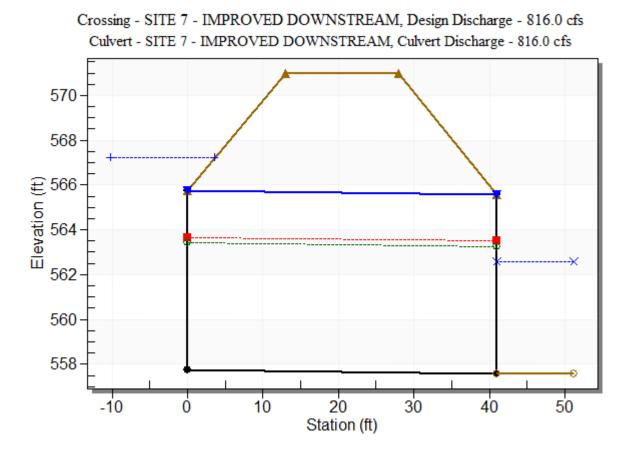

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	641.00	641.00	565.58	7.836	6.339	6-FFc	4.722	5.034	4.722	4.758	13.575
100 year	816.00	816.00	567.20	9.461	8.121	6-FFc	5.665	5.913	5.665	4.987	14.404

 Table 2 - Culvert Summary Table: SITE 7 - IMPROVED DOWNSTREAM


Straight Culvert

Inlet Elevation (invert): 557.74 ft, Outlet Elevation (invert): 557.59 ft Culvert Length: 41.00 ft, Culvert Slope: 0.0037

Culvert Performance Curve Plot: SITE 7 - IMPROVED DOWNSTREAM

Water Surface Profile Plot for Culvert: SITE 7 - IMPROVED DOWNSTREAM

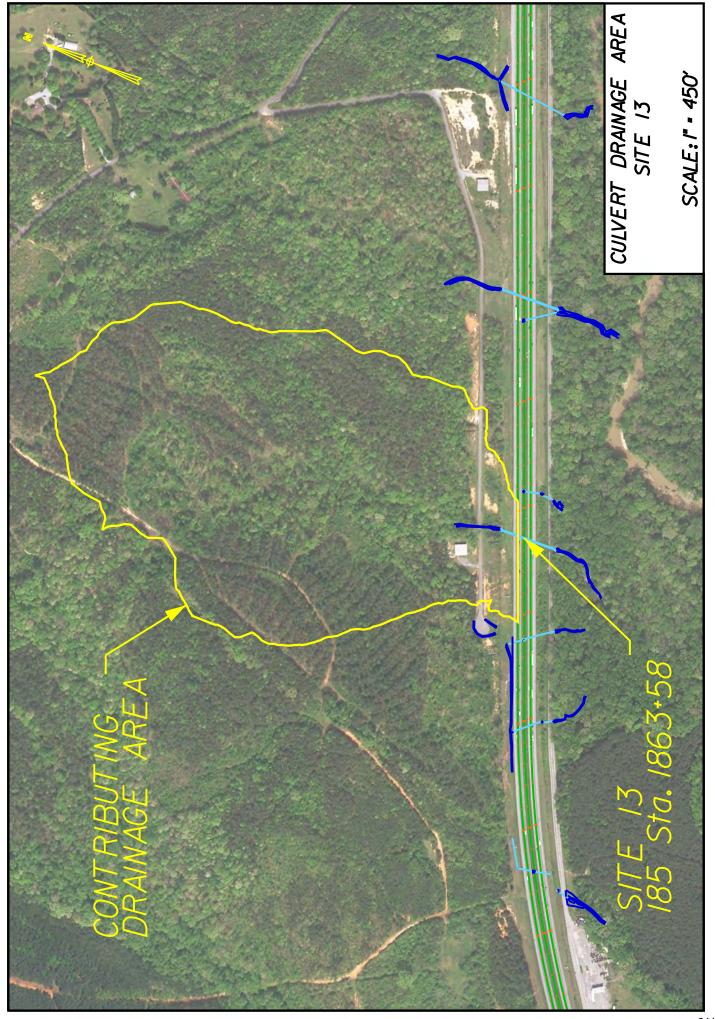
Site Data - SITE 7 - IMPROVED DOWNSTREAM

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 557.74 ft Outlet Station: 41.00 ft Outlet Elevation: 557.59 ft Number of Barrels: 1

Culvert Data Summary - SITE 7 - IMPROVED DOWNSTREAM

Barrel Shape: Concrete Box Barrel Span: 10.00 ft Barrel Rise: 8.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (30-75° flare) Wingwall Inlet Depression: NONE

Table 3 - Downstream Channel Rating Curve (Crossing: SITE 7 - IMPROVED DOWNSTREAM)


Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
641.00	562.35	4.76	2.43	1.22	0.41
816.00	562.58	4.99	2.55	1.28	0.39

Tailwater Channel Data - SITE 7 - IMPROVED DOWNSTREAM

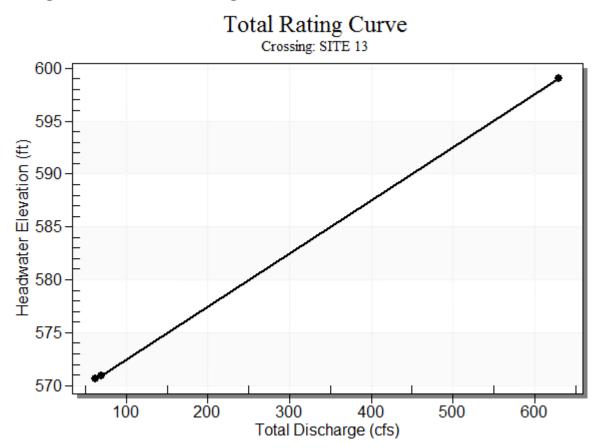
Tailwater Channel Option: Irregular Channel

Roadway Data for Crossing: SITE 7 - IMPROVED DOWNSTREAM

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 571.00 ft Roadway Surface: Paved Roadway Top Width: 15.00 ft

		Ra	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.75	0.90					
Rolling, 2%-10%	Side Slopes, Earth	0.22	0.60		Area	Weighte	d C	
	Side Slopes, Turf	2.69	0.30			0.18		
Hilly, Over 10%	Woodland & Forest	7.85	0.20			0.10		
Rolling, 2%-10%	Woodland & Forest	45.73	0.15					
1011116, 270 1070		13173	0.13					
		┟────╂						
		↓↓						
				_				
		57.24						
				I				
	County (NOAA-14)		our rainfall [in]					
	Cherokee	3	3.73					
Flow Type	Surface	Slope	Length [ft]	Manning's	Area [ft^2]	WP [ft]	Velocity	Time [hr]
Chaot		0.210/	100	n			[ft/s]	0.220
Sheet Shallow	Woods:dense underbrus	8.21%	100	0.8				0.328
Concentrated	Unpaved	8.21%	1434					0.086
Shallow								
Concentrated								
Channel 1		3.88%	1011	0.045	11.5	18.178	4.80901	0.058
Channel 2								
Total		l l	2545				1.4960	0.473
			Gaffney					
	Time of Concentra	ation						
	(minutes)	ation	29					
		C _f	С	I [in/hr]	AREA (ac)	C	FS	
	Q ₁₀	1	0.18	4.082	57.24		1	
	Q ₂₅	1.1	0.18	4.658	57.24		51	
	Q ₅₀	1.2	0.18	5.105	57.24	e	52	

HY-8 Culvert Analysis Report


Crossing Discharge Data

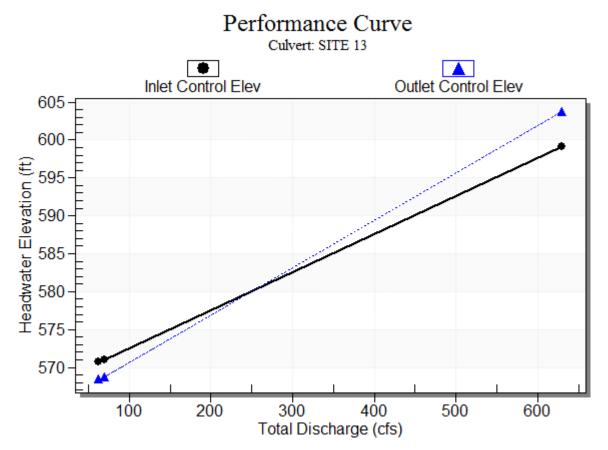
Discharge Selection Method: Recurrence

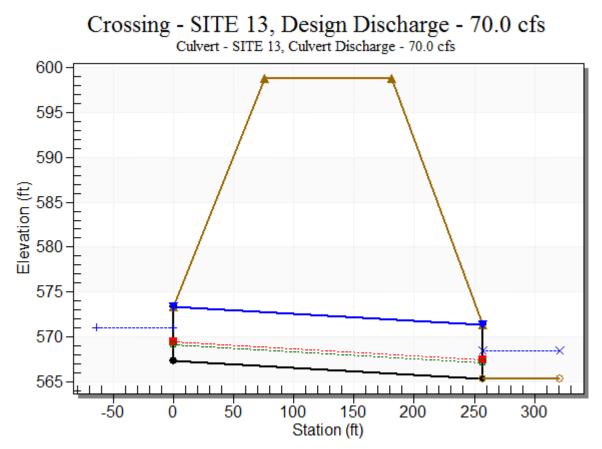
-						
	Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 13 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
	570.68	50 year	62.00	62.00	0.00	1
	570.95	100 year	70.00	70.00	0.00	1
	598.87	Overtopping	543.42	543.42	0.00	Overtopping

 Table 1 - Summary of Culvert Flows at Crossing: SITE 13

Rating Curve Plot for Crossing: SITE 13

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	62.00	62.00	570.68	3.319	1.106	6-FFt	1.540	1.954	1.540	2.873	10.067
100 year	70.00	70.00	570.95	3.591	1.351	6-FFt	1.683	2.119	1.683	3.052	10.401


Table 2 - Culvert Summary Table: SITE 13



Straight Culvert

Inlet Elevation (invert): 567.36 ft, Outlet Elevation (invert): 565.35 ft Culvert Length: 257.01 ft, Culvert Slope: 0.0078

Culvert Performance Curve Plot: SITE 13

Water Surface Profile Plot for Culvert: SITE 13

Site Data - SITE 13

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 567.36 ft Outlet Station: 257.00 ft Outlet Elevation: 565.35 ft Number of Barrels: 1

Culvert Data Summary - SITE 13

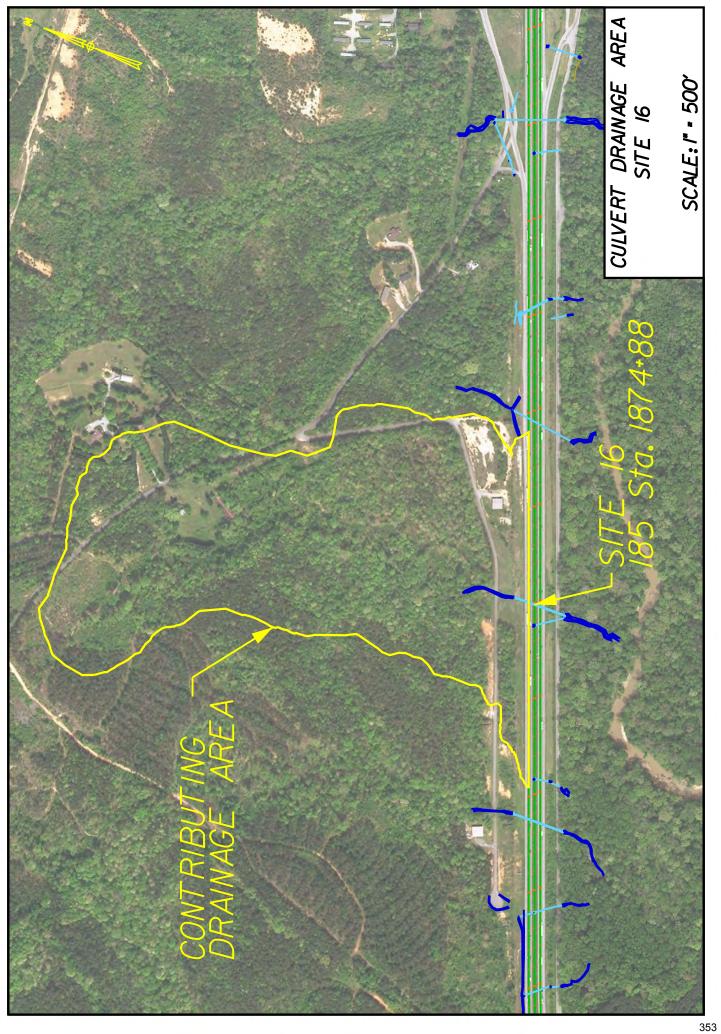
Barrel Shape: Concrete Box Barrel Span: 4.00 ft Barrel Rise: 6.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (90°) Headwall Inlet Depression: NONE

ſ	Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
ľ	62.00	568.22	2.87	2.79	0.81	0.35
	70.00	568.40	3.05	2.88	0.86	0.36

 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 13)

Tailwater Channel Data - SITE 13

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 4.00 ft Side Slope (H:V): 1.30 (_:1) Channel Slope: 0.0045 Channel Manning's n: 0.0500 Channel Invert Elevation: 565.35 ft


Roadway Data for Crossing: SITE 13

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 598.87 ft Roadway Surface: Paved Roadway Top Width: 105.00 ft

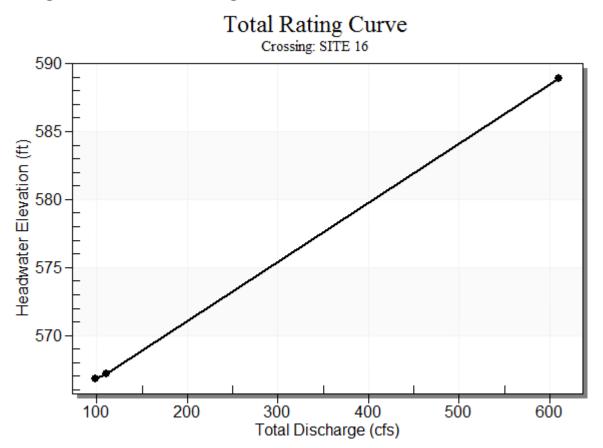
Р	ipe/Box Dimensio	ns		Flow
		(inch)		(cfs)
Pipe Diameter				
Box Dimension				62
Span (ft)	4	48		02
Height (ft)	6	72		
Longth	18/: d+b	Pin		ConTaxt
Length	Width	Ripi	гар	GeoText
	Width 4 - Calculated)	Ripi Quantity	rap Class ²	GeoText
		· · · ·	-	GeoText (SqYd)

** Riprap Class (D50) as per HEC-14 Eq. 10.4; Tailwater condition assumed (TW=0.4D)

		Ra	ational Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	2.43	0.90					
Rolling, 2%-10%	Side Slopes, Earth	1.12	0.60		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	9.06	0.30			0.25		
Hilly, Over 10%	Woodland & Forest	51.96	0.20					
		C 4 5 7						
		64.57	_	_	_	_		l
		2						
	County (NOAA-14) Cherokee		our rainfall [in] 3.73					
	Cherokee	·	5.75					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	8.04%	100	0.8				0.331
Shallow								
Concentrated	Unpaved	8.04%	1864					0.113
Shallow								
Concentrated Channel 1		2.50%	711	0.04	24	16 201	7.62365	0.026
Channel 2		2.50%	711	0.04	24	16.301	7.02305	0.026
Total			2675				1.5816	0.470
TOLAT		ļ	2075				1.5610	0.470
	Gaffney							
	Time of Concentra (minutes)	ation	on 29					
		C _f	С	I [in/hr]	AREA (ac)	C	FS	
	Q ₁₀	1	0.25	4.082	64.57	e	55	
	Q ₂₅	1.1	0.25	4.658	64.57	8	32	
	Q ₅₀	1.2	0.25	5.105	64.57	9	98	

SITE 16

HY-8 Culvert Analysis Report


Crossing Discharge Data

Discharge Selection Method: Recurrence

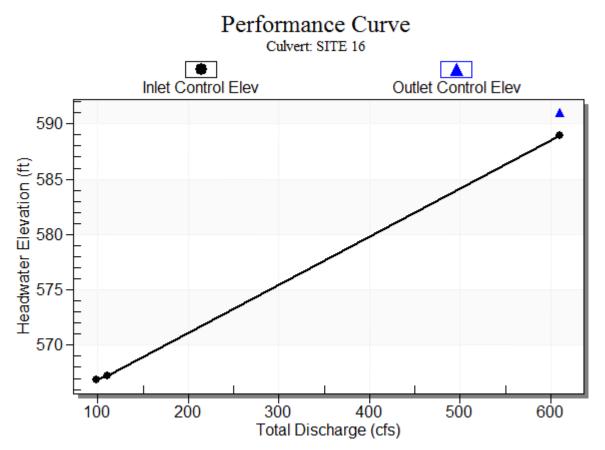
Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 16 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
566.85	50 year	98.00	98.00	0.00	1
567.21	100 year	111.00	111.00	0.00	1
588.68	Overtopping	548.81	548.81	0.00	Overtopping

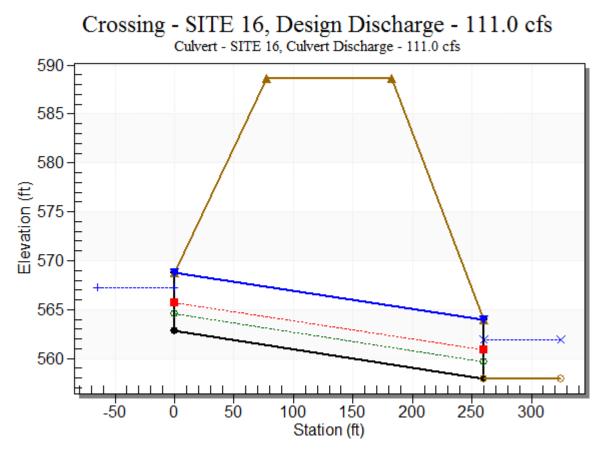
 Table 1 - Summary of Culvert Flows at Crossing: SITE 16

Rating Curve Plot for Crossing: SITE 16

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	98.00	98.00	566.85	4.042	0.0*	6-FFt	1.567	2.652	1.567	3.727	15.636
100 year	111.00	111.00	567.21	4.398	0.0*	6-FFt	1.717	2.881	1.717	3.967	16.159

Table 2 - Culvert Summary Table: SITE 16


* Full Flow Headwater elevation is below inlet invert.



Straight Culvert

Inlet Elevation (invert): 562.81 ft, Outlet Elevation (invert): 557.97 ft Culvert Length: 260.05 ft, Culvert Slope: 0.0186

Culvert Performance Curve Plot: SITE 16

Water Surface Profile Plot for Culvert: SITE 16

Site Data - SITE 16

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 562.81 ft Outlet Station: 260.00 ft Outlet Elevation: 557.97 ft Number of Barrels: 1

Culvert Data Summary - SITE 16

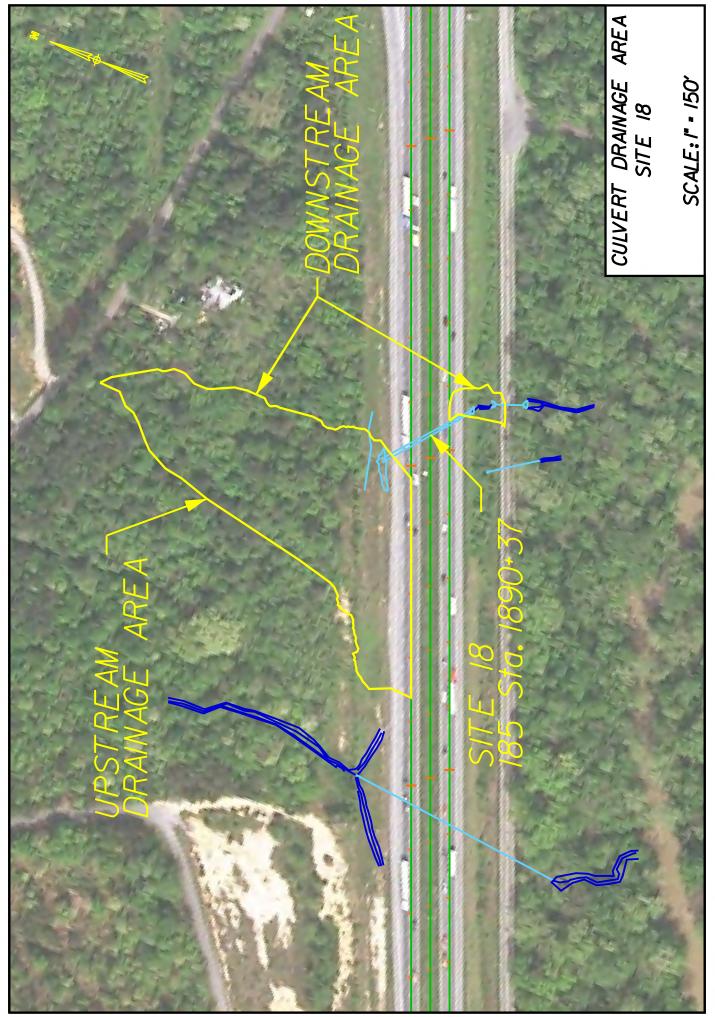
Barrel Shape: Concrete Box Barrel Span: 4.00 ft Barrel Rise: 6.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (30-75° flare) Wingwall Inlet Depression: NONE

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
98.00	561.70	3.73	2.78	0.74	0.31
111.00	561.94	3.97	2.87	0.79	0.31

 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 16)

Tailwater Channel Data - SITE 16

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 5.00 ft Side Slope (H:V): 1.20 (_:1) Channel Slope: 0.0032 Channel Manning's n: 0.0500 Channel Invert Elevation: 557.97 ft


Roadway Data for Crossing: SITE 16

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 588.68 ft Roadway Surface: Paved Roadway Top Width: 105.00 ft

	pe/Box Dimensio	ons		Flow
		(inch)		(cfs)
Pipe Diameter				
Box Dimension				98
Span (ft)	4	48		58
Height (ft)	6	72		
Length	Width	Ripr	ар	GeoText
Length	Width	Ripr	ар	GeoText
(FHWA HEC-14	4 - Calculated)	Quantity	Class ²	
(ft)	(ft)	(Tons)		(SqYd)
	29	55	В	82

** Riprap Class (D50) as per HEC-14 Eq. 10.4; Tailwater condition assumed (TW=0.4D)

		Ra	ational Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.25	0.90					
Hilly, Over 10%	Side Slopes, Turf	0.66	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Woodland & Forest	1.46	0.15			0.27		
-								
		2.37						
				I				
	County (NOAA-14)		our rainfall [in]					
	Cherokee	:	3.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	7.15%	100	0.8				0.34
Shallow								
Concentrated Shallow	Unpaved	7.15%	201					0.01
Concentrated								
Channel 1		17.39%	150	0.045	22.5	16.195	17.1903	0.00
Channel 2								
Total			451				0.3460	0.36
	-							
			Gaffney					
	Time of Concentra	ation	22					
	(minutes)		22					
		C _f	С	I [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.27	4.618	2.37		3	
	Q ₂₅	1.1	0.27	5.284	2.37		4	

Q50

Q₁₀₀

1.2

1.25

0.27

0.27

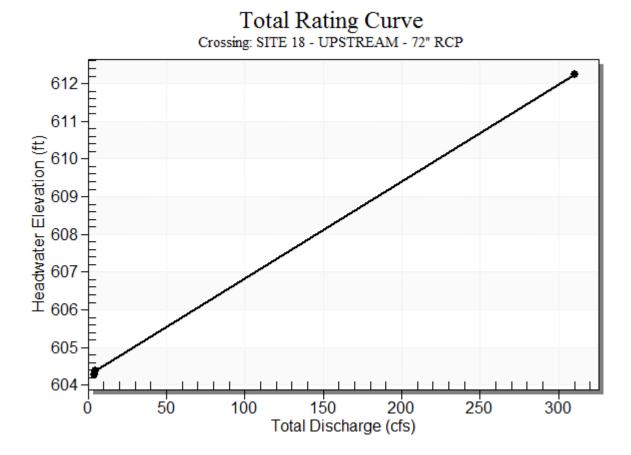
5.804

6.311

2.37

2.37

4


5

Crossing Discharge Data

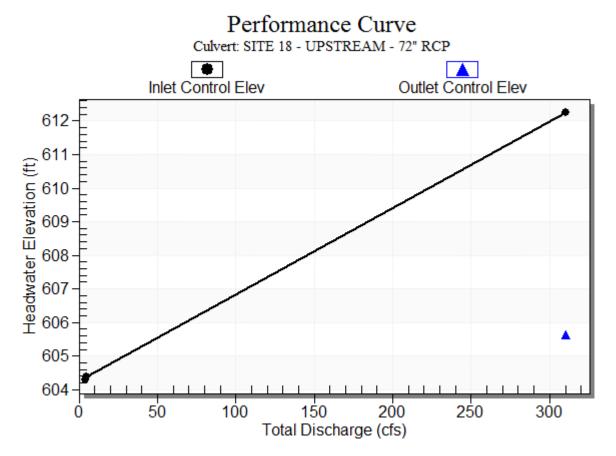
Discharge Selection Method: Recurrence

	Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 18 - UPSTREAM - 72" RCP Discharge (cfs)	Roadway Discharge (cfs)	Iterations
ſ	604.29	50 year	4.00	4.00	0.00	1
ſ	604.39	100 year	5.00	5.00	0.00	1
[612.21	Overtopping	305.73	305.73	0.00	Overtopping

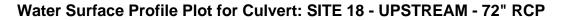
Table 4 - Summary of Culvert Flows at Crossing: SITE 18 - UPSTREAM - 72" RCP

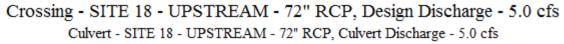
Rating Curve Plot for Crossing: SITE 18 - UPSTREAM - 72" RCP

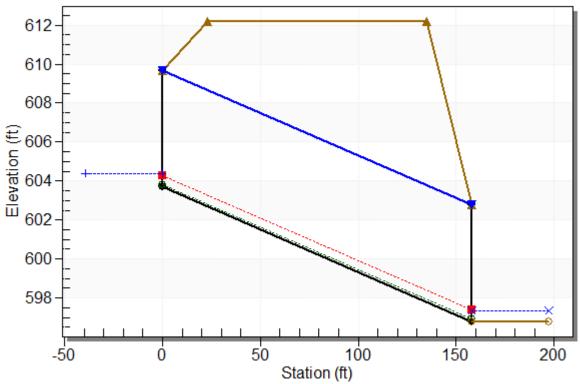
Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	4.00	4.00	604.29	0.599	0.0*	6-FFt	0.107	0.513	0.560	0.560	2.390
100 year	5.00	5.00	604.39	0.701	0.0*	6-FFc	0.133	0.576	0.576	0.560	2.966


Table 5 - Culvert Summary Table: SITE 18 - UPSTREAM - 72" RCP

* Full Flow Headwater elevation is below inlet invert.




Straight Culvert


Inlet Elevation (invert): 603.69 ft, Outlet Elevation (invert): 596.80 ft Culvert Length: 158.15 ft, Culvert Slope: 0.0436

Culvert Performance Curve Plot: SITE 18 - UPSTREAM - 72" RCP

Site Data - SITE 18 - UPSTREAM - 72" RCP

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 603.69 ft Outlet Station: 158.00 ft Outlet Elevation: 596.80 ft Number of Barrels: 1

Culvert Data Summary - SITE 18 - UPSTREAM - 72" RCP

Barrel Shape: Circular Barrel Diameter: 6.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: NONE

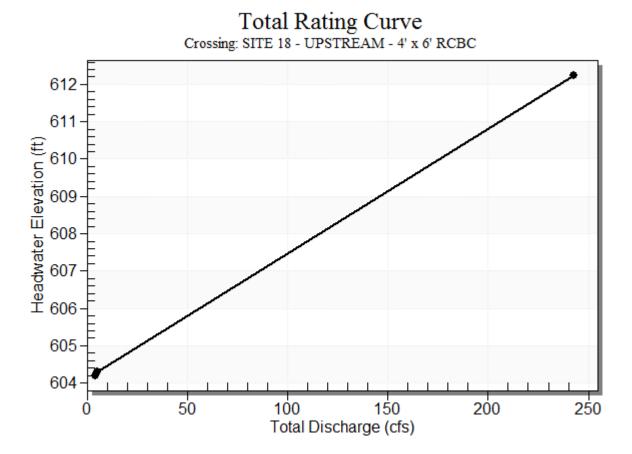
	=		
Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
4.00	597.36	0.56	0.00
5.00	597.36	0.56	0.00

Table 6 - Downstream Channel Rating Curve (Crossing: SITE 18 - UPSTREAM - 72" RCP)

Tailwater Channel Data - SITE 18 - UPSTREAM - 72" RCP

Tailwater Channel Option: Enter Rating Curve Channel Invert Elevation: 596.80 ft

Roadway Data for Crossing: SITE 18 - UPSTREAM - 72" RCP


Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 612.21 ft Roadway Surface: Paved Roadway Top Width: 112.00 ft

Crossing Discharge Data

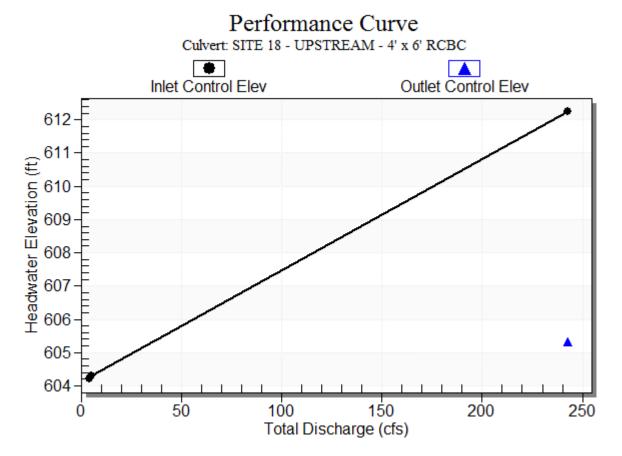
Discharge Selection Method: Recurrence

Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 18 - UPSTREAM - 4' x 6' RCBC Discharge (cfs)	Roadway Discharge (cfs)	Iterations
604.21	50 year	4.00	4.00	0.00	1
604.29	100 year	5.00	5.00	0.00	1
612.21	Overtopping	238.62	238.62	0.00	Overtopping

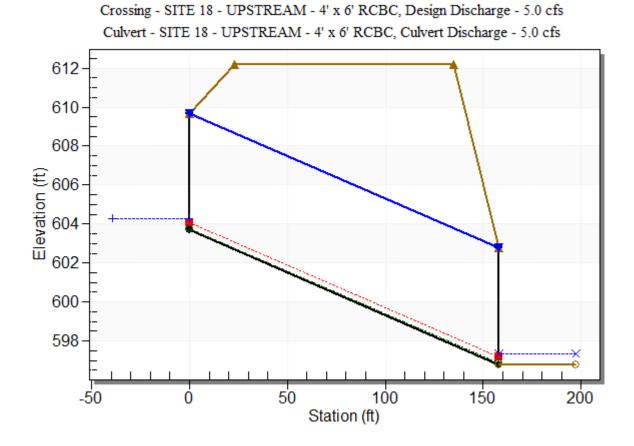
Table 7 - Summary of Culvert Flows at Crossing: SITE 18 - UPSTREAM - 4' x 6' RCBC

Rating Curve Plot for Crossing: SITE 18 - UPSTREAM - 4' x 6' RCBC

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	4.00	4.00	604.21	0.516	0.0*	6-FFt	0.061	0.314	0.061	0.560	16.323
100 year	5.00	5.00	604.29	0.599	0.0*	6-FFt	0.077	0.365	0.077	0.560	16.323


Table 8 - Culvert Summary Table: SITE 18 - UPSTREAM - 4' x 6' RCBC

* Full Flow Headwater elevation is below inlet invert.



Straight Culvert

Inlet Elevation (invert): 603.69 ft, Outlet Elevation (invert): 596.80 ft Culvert Length: 158.15 ft, Culvert Slope: 0.0436

Culvert Performance Curve Plot: SITE 18 - UPSTREAM - 4' x 6' RCBC

Water Surface Profile Plot for Culvert: SITE 18 - UPSTREAM - 4' x 6' RCBC

Site Data - SITE 18 - UPSTREAM - 4' x 6' RCBC

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 603.69 ft Outlet Station: 158.00 ft Outlet Elevation: 596.80 ft Number of Barrels: 1

Culvert Data Summary - SITE 18 - UPSTREAM - 4' x 6' RCBC

Barrel Shape: Concrete Box Barrel Span: 4.00 ft Barrel Rise: 6.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (90°) Headwall Inlet Depression: NONE

Table 9 - Downstream Channel Rating Curve (Crossing: SITE 18 - UPSTREAM - 4' x 6' RCBC)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
4.00	597.36	0.56	0.00
5.00	597.36	0.56	0.00

Tailwater Channel Data - SITE 18 - UPSTREAM - 4' x 6' RCBC

Tailwater Channel Option: Enter Rating Curve Channel Invert Elevation: 596.80 ft

Roadway Data for Crossing: SITE 18 - UPSTREAM - 4' x 6' RCBC

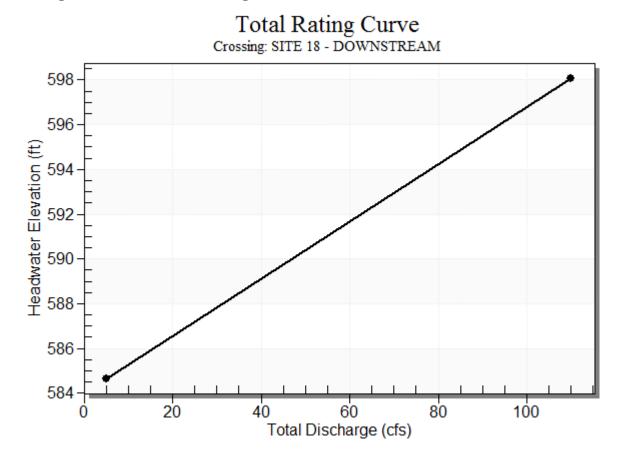
Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 612.21 ft Roadway Surface: Paved Roadway Top Width: 112.00 ft

SITE 18 – Upstream Culvert Tailwater Rating Curve

	Downstrear	m (DS) Culve	ert	Upstream (US) Culvert			
Deturn	Inlet Elevation	584.10		Outlet Elevation	596.80		
Return Event		Headwater			Tailwa	ter	
Lvent		Elevation	Depth		Elevation	Depth	
50-Year		584.66	0.56		597.36	0.56	
100-Year		584.66	0.56		597.36	0.56	
* All elevations a	and depths are in feet.					•	

		Ra	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.28	0.90					
Hilly, Over 10%	Side Slopes, Turf	0.71	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Woodland & Forest	1.46	0.15			0.28		
		2.45		l				
	County (NOAA-14)	2-year 24 H	our rainfall [in]					
	Cherokee		3.73					
						1	1	
Flow Type	Surface	Slope	Length [ft]	Manning' s n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	7.15%	100	0.8				0.347
Shallow								
Concentrated Shallow	Unpaved	7.15%	201					0.013
Concentrated								
Channel 1		17.39%	150	0.045	22.5	16.195	17.1903	0.002
Channel 2								
Total			451				0.3460	0.362

Gaffney									
Time of Concentr (minutes)	22								
	C _f	С	l [in/hr]	AREA (ac)	CFS				
Q ₁₀	1	0.28	4.618	2.45	3				
Q ₂₅	1.1	0.28	5.284	2.45	4				
Q ₅₀	1.2	0.28	5.804	2.45	5				
Q ₁₀₀	1.25	0.28	6.311	2.45	5				


HY-8 Culvert Analysis Report

Crossing Discharge Data

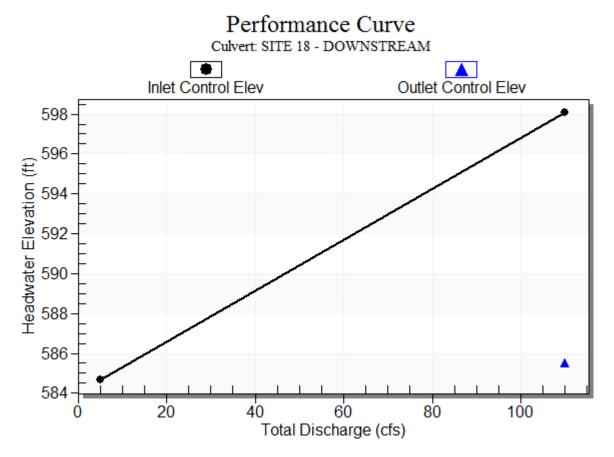
Discharge Selection Method: Recurrence

	Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 18 - DOWNSTREAM Discharge (cfs)	Roadway Discharge (cfs)	Iterations
ſ	584.66	50 year	5.00	5.00	0.00	1
	584.66	100 year	5.00	5.00	0.00	1
	598.07	Overtopping	109.27	109.27	0.00	Overtopping

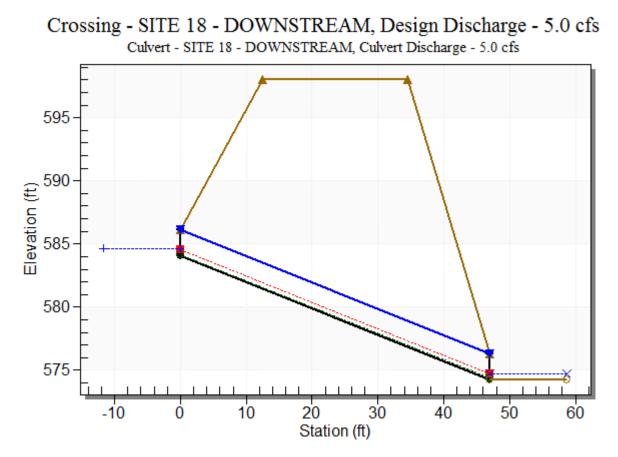
 Table 1 - Summary of Culvert Flows at Crossing: SITE 18 - DOWNSTREAM

Rating Curve Plot for Crossing: SITE 18 - DOWNSTREAM

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	5.00	5.00	584.66	0.564	0.0*	6-FFc	0.088	0.442	0.088	0.400	18.978
100 year	5.00	5.00	584.66	0.564	0.0*	6-FFc	0.088	0.442	0.088	0.400	18.978


Table 2 - Culvert Summary Table: SITE 18 - DOWNSTREAM

* Full Flow Headwater elevation is below inlet invert.


Straight Culvert

Inlet Elevation (invert): 584.10 ft, Outlet Elevation (invert): 574.28 ft Culvert Length: 48.01 ft, Culvert Slope: 0.2089

Culvert Performance Curve Plot: SITE 18 - DOWNSTREAM

Water Surface Profile Plot for Culvert: SITE 18 - DOWNSTREAM

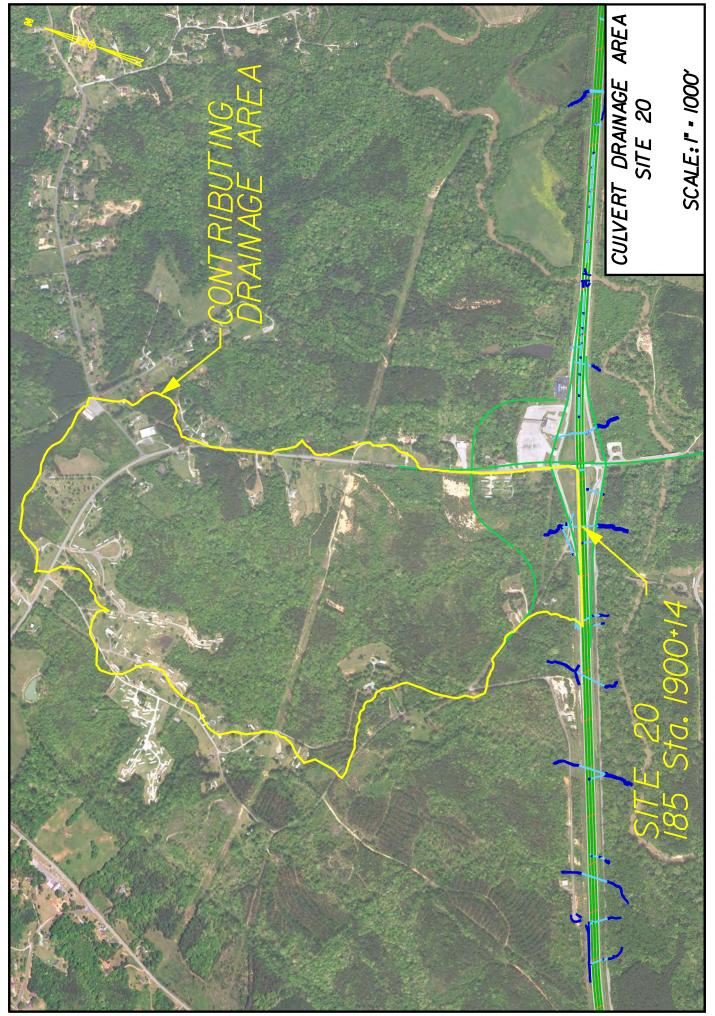
Site Data - SITE 18 - DOWNSTREAM

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 584.10 ft Outlet Station: 47.00 ft Outlet Elevation: 574.28 ft Number of Barrels: 1

Culvert Data Summary - SITE 18 - DOWNSTREAM

Barrel Shape: Concrete Box Barrel Span: 3.00 ft Barrel Rise: 2.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (30-75° flare) Wingwall Inlet Depression: NONE

ĺ	Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
ŀ	5.00	574.68	0.40	1.73	1.42	0.68
	5.00	574.68	0.40	1.73	1.42	0.68


 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 18 - DOWNSTREAM)

Tailwater Channel Data - SITE 18 - DOWNSTREAM

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 18.00 (_:1) Channel Slope: 0.0570 Channel Manning's n: 0.0700 Channel Invert Elevation: 574.28 ft

Roadway Data for Crossing: SITE 18 - DOWNSTREAM

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 598.07 ft Roadway Surface: Paved Roadway Top Width: 22.00 ft

		SCS /	Analysis					
HSG	Land Use	Acres	CN					
В	Impervious	10.42	98.00					
В	Fallow: Bare Soil	4.54	86.00		Area W	eighted C	N	
В	Residential: 1 acre	31.86	68.00			59		
В	Pasture,grassland,or range: Good	27.32	61.00					
В	Meadow	22.57	58.00					
В	Woods:Good	220.78	55.00					
А	Pasture, grassland, or range: Good	0.67	39.00					
А	Woods:Good	2.49	30.00					
		320.65						
		-		,				
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	.73					
				Manning's			Velocity	
Flow Type	Surface	Slope	Length [ft]	n	Area [ft^2]	WP [ft]	[ft/s]	Time [hr]
Sheet	Woods:dense underbrush	6.92%	100	0.8				0.351
Shallow Concentrated	Unpaved	6.92%	1226					0.080
Shallow		0102/0	1110					0.000
Concentrated								
Channel 1		2.88%	3675	0.045	9.45	8.9069	5.849718	0.175
Channel 2								
Total			5001				2.2919	0.606
			1		_			1
	Drainage Area	320.65		Curv	e Number	5	59	
	(acres)							
					Concentration	3	37	
				(m	inutes)			

WinTR-55 Current Data Description

--- Identification Data ---

User: CECS Date: 12/13/2016 Project: I-85 Improvement Proj DB Prep Units: English SubTitle: SITE 20 Areal Units: Acres State: South Carolina County: Cherokee_NOAA_B Filename: S:\Proj\2014\6114 I-85 mm 96-106\Design\Project PIN Number\Drainage\Calculations\CULVERT - POST

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
SITE 20		Outlet	320.65	59	0.620

Total area: 320.65 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.73	4.68	5.44	6.49	7.35	8.24	3.1

Storm Data Source:Cherokee_NRainfall Distribution Type:Type NO_BDimensionless Unit Hydrograph:<standard>

Cherokee_NOAA_B County, SC (NRCS) Type NO_B <standard>

I-85 Improvement Proj DB Prep SITE 20 Cherokee_NOAA_B County, South Carolina

Watershed Peak Table

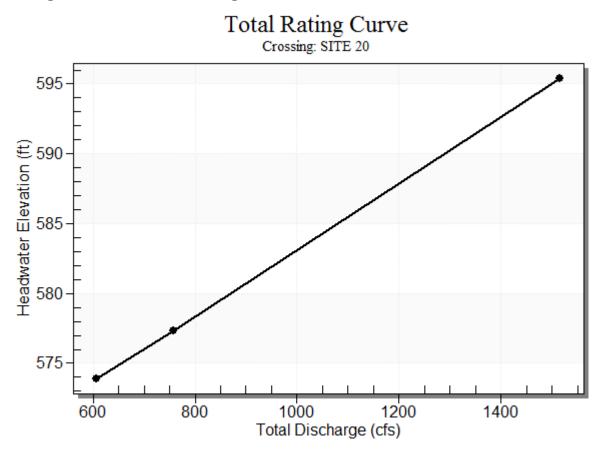
Sub-Area or Reach Identifier	Pea 10-Yr (cfs)	25-Yr	Rainfall 50-Yr (cfs)	Return Period 100-Yr (cfs)	
SUBAREAS SITE 20	307.78	466.00	605.59	757.86	
REACHES					

OUTLET 307.78 466.00 605.59 757.86

CECS

WinTR-55, Version 1.00.10 Page 1 12/13/2016 9:58:12 AM

HY-8 Culvert Analysis Report


Crossing Discharge Data

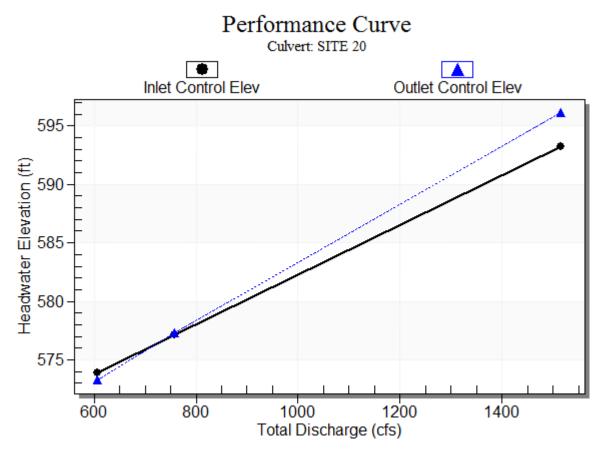
Discharge Selection Method: Recurrence

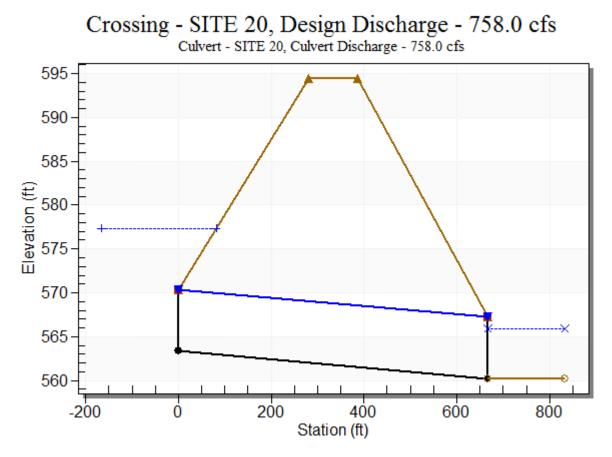
	-				
Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 20 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
573.92	50 year	606.00	606.00	0.00	1
577.35	100 year	758.00	758.00	0.00	1
594.50	Overtopping	1233.28	1233.28	0.00	Overtopping

 Table 1 - Summary of Culvert Flows at Crossing: SITE 20

Rating Curve Plot for Crossing: SITE 20

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	606.00	606.00	573.92	10.582	9.938	6-FFc	6.024	6.151	6.024	5.050	14.372
100 year	758.00	758.00	577.35	13.785	14.010	6-FFc	7.000	7.000	7.000	5.645	15.469


Table 2 - Culvert Summary Table: SITE 20


Straight Culvert

Inlet Elevation (invert): 563.34 ft, Outlet Elevation (invert): 560.24 ft Culvert Length: 667.01 ft, Culvert Slope: 0.0046

Culvert Performance Curve Plot: SITE 20

Water Surface Profile Plot for Culvert: SITE 20

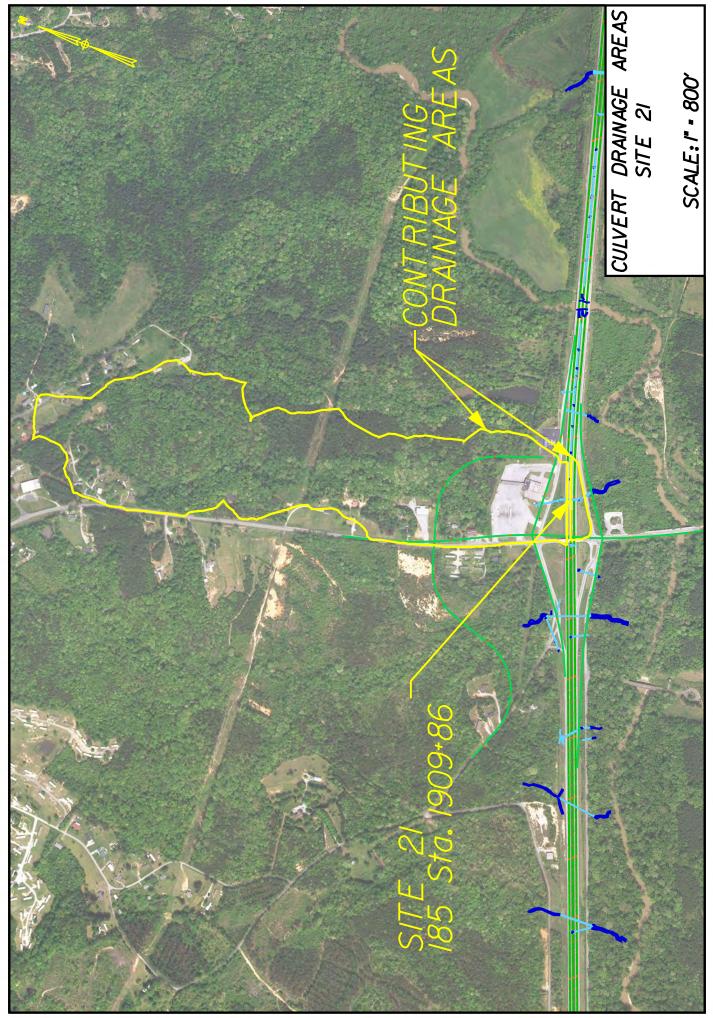
Site Data - SITE 20

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 563.34 ft Outlet Station: 667.00 ft Outlet Elevation: 560.24 ft Number of Barrels: 1

Culvert Data Summary - SITE 20

Barrel Shape: Concrete Box Barrel Span: 7.00 ft Barrel Rise: 7.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (30-75° flare) Wingwall Inlet Depression: NONE

	Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
I	606.00	565.29	5.05	5.43	2.21	0.51
	758.00	565.89	5.65	5.76	2.47	0.52


 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 20)

Tailwater Channel Data - SITE 20

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 12.00 ft Side Slope (H:V): 2.00 (_:1) Channel Slope: 0.0070 Channel Manning's n: 0.0500 Channel Invert Elevation: 560.24 ft

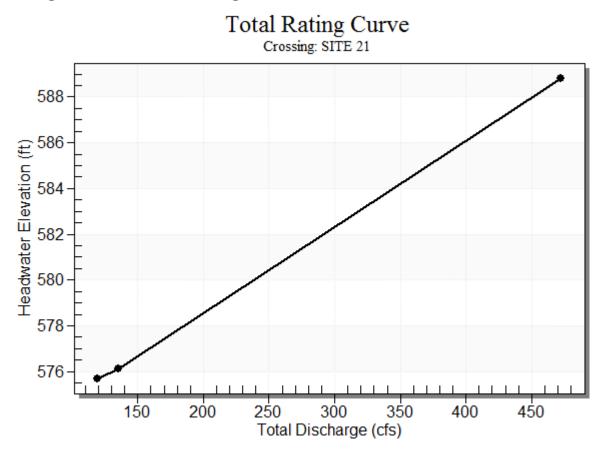
Roadway Data for Crossing: SITE 20

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 594.50 ft Roadway Surface: Paved Roadway Top Width: 105.00 ft

		Ra	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	9.15	0.90					
Rolling, 2%-10%	Gravel Pavements	0.44	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Meadows & Pasture Land	3.10	0.30			0.25		
Rolling, 2%-10%	Side Slopes, Turf	11.52	0.30					
Rolling, 2%-10%	Grass Shoulders	1.14	0.25					
Rolling, 2%-10%	Unimproved Areas	0.58	0.20					
Rolling, 2%-10%	Woodland & Forest	68.21	0.15					
		94.14						
		5						
	County (NOAA-14)	2-year 24 H	our rainfall [in]					
	Cherokee		3.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	4.91%	100	0.8				0.403
Shallow								
Concentrated Shallow	Unpaved	4.91%	3481					0.27
Concentrated								
Channel 1								
Channel 2								
Total			3581				1.4764	0.674
	-	ľ						
			Gaffney					
	Time of Concentra (minutes)	ation	41					
		_						
		C _f	C	I [in/hr]	AREA (ac)		FS	
	Q ₁₀	1 1.1	0.25	3.403	94.14		30 00	
	Q ₂₅	1.1	0.25	3.872 4.234	94.14 94.14		19	
	Q ₅₀	1.2	0.25	4.234	94.14		15 35	
	Q ₁₀₀	1.25	0.25	7.304	54.14			

SITE 21

HY-8 Culvert Analysis Report


Crossing Discharge Data

Discharge Selection Method: Recurrence

Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 21 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
575.70	50 year	119.00	119.00	0.00	1
576.11	100 year	135.00	135.00	0.00	1
588.69	Overtopping	454.38	454.38	0.00	Overtopping

 Table 1 - Summary of Culvert Flows at Crossing: SITE 21

Rating Curve Plot for Crossing: SITE 21

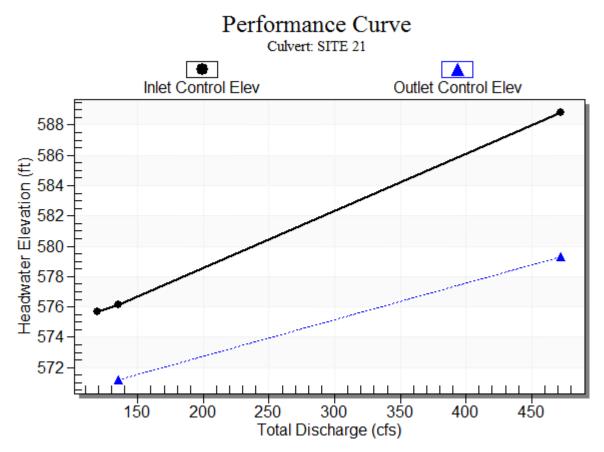
Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	119.00	119.00	575.70	4.569	0.0*	1-S2n	0.000	2.013	2.319	2.319	20.985
100 year	135.00	135.00	576.11	4.984	0.054	1-S2n	0.000	2.013	2.490	2.490	21.497

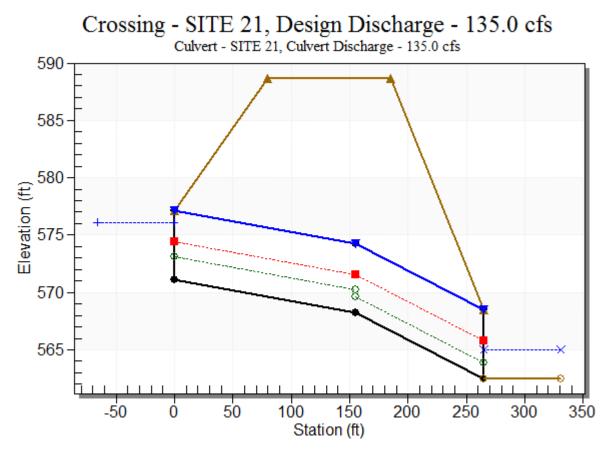
Table 2 - Culvert Summary Table: SITE 21

* Full Flow Headwater elevation is below inlet invert.

Single Broken-back Culvert

Inlet Elevation (invert): 571.13 ft


Break Elevation (invert): 568.26 ft


Culvert Length: 265.14 ft

Upper Culvert Section Slope: 0.0185

Steep Culvert Section Slope: 0.0523

Culvert Performance Curve Plot: SITE 21

Water Surface Profile Plot for Culvert: SITE 21

Site Data - SITE 21

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 571.13 ft Break Station: 155.00 ft Break Elevation: 568.26 ft Outlet Station: 265.00 ft Outlet Elevation: 562.51 ft Number of Barrels: 1

Culvert Data Summary - SITE 21

Barrel Shape: Concrete Box Barrel Span: 4.00 ft Barrel Rise: 6.00 ft Upper Section Material: Concrete Lower Section Material: Concrete Embedment: 0.00 in Upper Section Manning's n: 0.0120 Lower Section Manning's n: 0.0120 Culvert Type: Single Broken-back Inlet Configuration: Square Edge (30-75° flare) Wingwall Inlet Depression: NONE

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
119.00	564.83	2.32	4.36	1.26	0.56
135.00	565.00	2.49	4.52	1.35	0.56

 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 21)

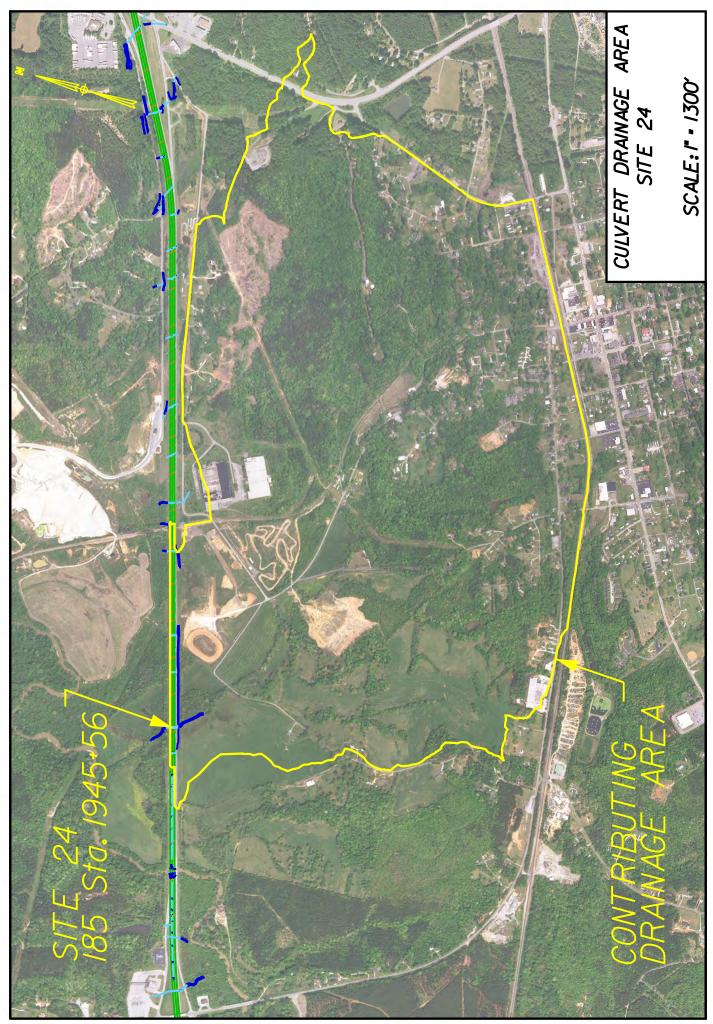
Tailwater Channel Data - SITE 21

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 9.00 ft Side Slope (H:V): 1.20 (_:1) Channel Slope: 0.0087 Channel Manning's n: 0.0450 Channel Invert Elevation: 562.51 ft

Roadway Data for Crossing: SITE 21

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 588.69 ft Roadway Surface: Paved Roadway Top Width: 105.00 ft

PI	pe/Box Dimensio	ns		Flow
		(inch)		(cfs)
Pipe Diameter				
Box Dimension				119
Span (ft)	4	48		119
Height (ft)	6	72		
Longth	Width	Pin		GooToxt
Length	Width	Ripi	-	GeoText
(FHWA HEC-14	4 - Calculated)	Quantity	rap Class ²	
-			-	GeoText (SqYd) 82

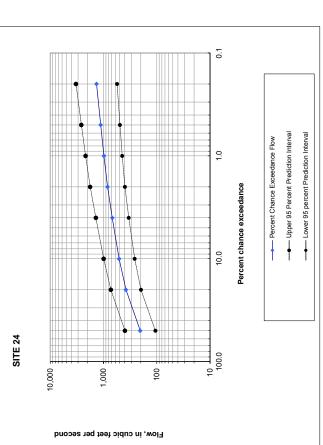

** Riprap Class (D50) as per HEC-14 Eq. 10.4; Tailwater condition assumed (TW=0.4D)

SITE 22

Analysis on the culvert located at Site 22 could not be performed because the crossing was not surveyed. The upstream inlet was not found during the culvert assessment field inspection; while the downstream was located and found to be 80% filled.

RURAL REGRESSION ANALYSIS

This spreadsheet computes the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent chance exceedance flows for an ungaged site in Georgia, South Carolina, and North Carolina. The spreasheet also includes the 95-percent prediction intervals, the minus and plus standard error of prediction intervals, and the average standard error of prediction. To use the spreadsheet, enter requested information in the yellow cells below.


Enter a site-description name:	SITE 24	
Enter the explanatory variables:		
Drainage area in sourare miles	1 40	Annlicable range

Enter the explanatory variables:	
Drainage area, in square miles	1.49
Percent of basin in Hydrologic Region 1	100
Percent of basin in Hydrologic Region 2	0
Percent of basin in Hydrologic Region 3	0
Percent of basin in Hydrologic Region 4	0
Percent of basin in Hydrologic Region 5	0
Sum of region percentages	100

Applicable range of draingage area is 1 to 9,000 square miles. Hydrologic Region 1 corresponds to the USEPA Level III Blue Ridge and Valley and Pledmont ecoregions Hydrologic Region 3 corresponds to the USEPA Level III Blue Ridge accoregion Hydrologic Region 3 corresponds to the USEPA Level IV Sand Hilds ecoregion Hydrologic Region 4 corresponds to the USEPA Level III Southeastern, Middle Atlantic Coastal, and Southern Coastal Plain ecoregions Hydrologic Region 5 corresponds to the USEPA Level III Southeastern, Middle Atlantic Coastal, and Southern Coastal Plain ecoregions Hydrologic Region 5 corresponds to the lower portion of the USEPA Level IV Tifton Uplands ecoregion.

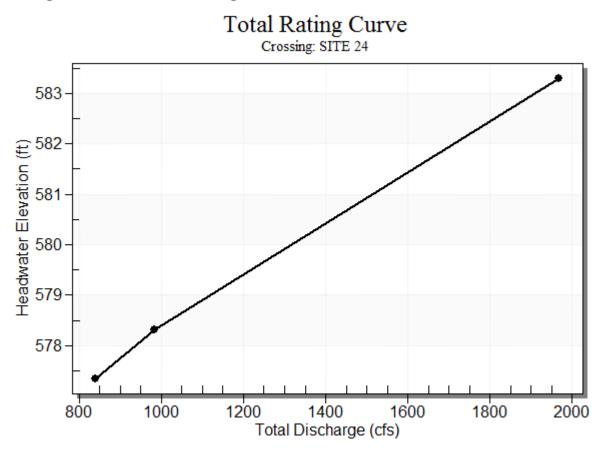
Drainage area check DRAINAGE AREA WITHIN APPLICABLE LIMITS.

		ower 95	Upper 95			
	Percent		percent			
	chance	prediction	prediction			Average
	exceedance	interval flow,	flow,	-S _{P,i}	+S _{P,i}	S _{p,i}
Percent chance exceedance	flow, in ft³/s	in ft³/s	in ft³/s	(percent) (percent)	(percent)	(percent)
20	205	106	396	-28.5	39.9	34.6
20	379	198	726	-28.2	39.3	34.1
10	509	260	966	-29.0	40.8	35.2
4	684	336	1,390	-30.5	43.8	37.6
2	839	396	1,780	-31.8	46.6	
-	984	446	2,170	-33.2	49.7	42.0
0.5	1,130	491	2,600	-34.6	52.9	44.5
0.2	1,350	554	3,290	-36.5	57.5	47.9

UNITS	TOTAL AREA	IMPERVIOUS AREA	% IMPERVIOUS
SQ. METERS	3867300	267230	6.91%
SQ. MILES	1.49	0.10	6.91%

Note: Data derived from NLCD 2006 Impervious Surface, 30-meter resolution

HY-8 Culvert Analysis Report


Crossing Discharge Data

Discharge Selection Method: Recurrence

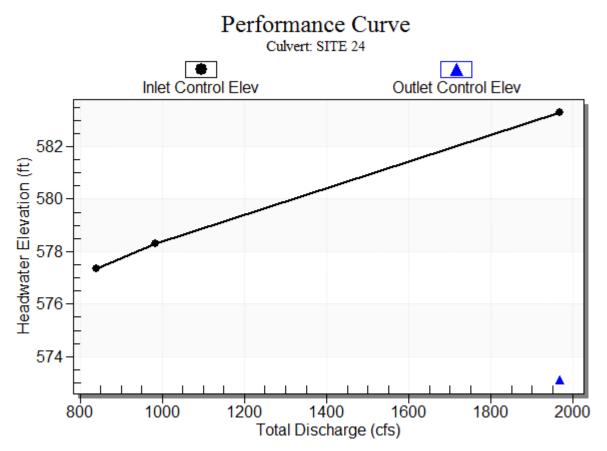
_						
	Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 24 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
	577.35	50 year	839.00	839.00	0.00	1
	578.31	100 year	984.00	984.00	0.00	1
[582.31	Overtopping	1547.63	1547.63	0.00	Overtopping

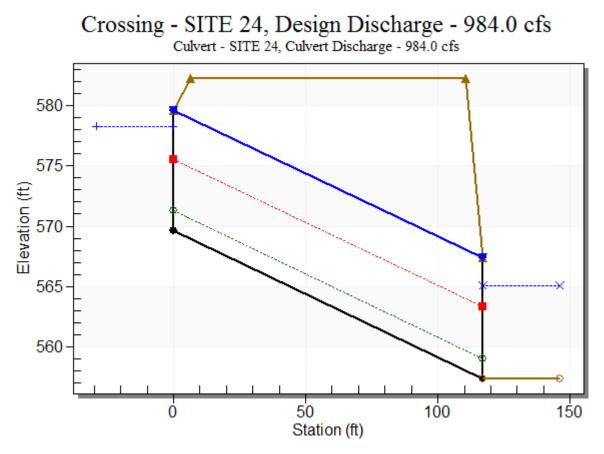
 Table 1 - Summary of Culvert Flows at Crossing: SITE 24

Rating Curve Plot for Crossing: SITE 24

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	839.00	839.00	577.35	7.730	0.0*	6-FFt	1.486	5.335	1.486	7.200	47.041
100 year	984.00	984.00	578.31	8.688	0.0*	6-FFt	1.653	5.933	1.653	7.718	49.601

Table 2 - Culvert Summary Table: SITE 24


* Full Flow Headwater elevation is below inlet invert.


Straight Culvert

Inlet Elevation (invert): 569.62 ft, Outlet Elevation (invert): 557.36 ft Culvert Length: 117.64 ft, Culvert Slope: 0.1048

Culvert Performance Curve Plot: SITE 24

Water Surface Profile Plot for Culvert: SITE 24

Site Data - SITE 24

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 569.62 ft Outlet Station: 117.00 ft Outlet Elevation: 557.36 ft Number of Barrels: 1

Culvert Data Summary - SITE 24

Barrel Shape: Concrete Box Barrel Span: 12.00 ft Barrel Rise: 10.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (30-75° flare) Wingwall Inlet Depression: NONE

	Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
ſ	839.00	564.56	7.20	3.81	2.25	0.33
ſ	984.00	565.08	7.72	3.96	2.41	0.33

 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 24)

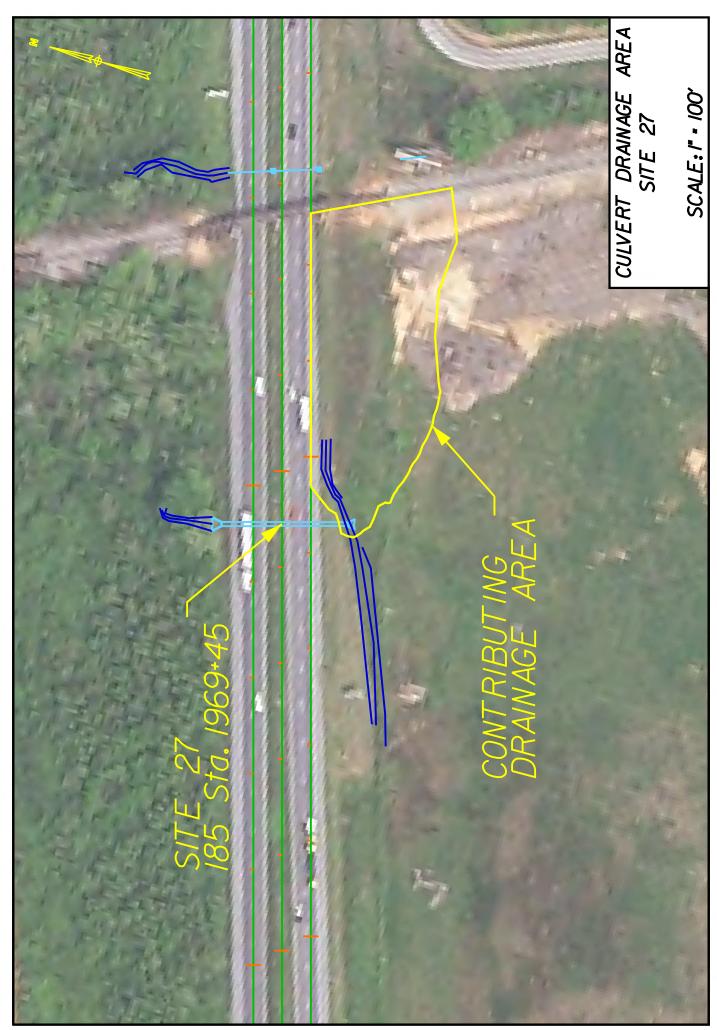
Tailwater Channel Data - SITE 24

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 9.00 ft Side Slope (H:V): 3.00 (_:1) Channel Slope: 0.0050 Channel Manning's n: 0.0700 Channel Invert Elevation: 557.36 ft

Roadway Data for Crossing: SITE 24

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 582.31 ft Roadway Surface: Paved Roadway Top Width: 104.00 ft

(FHWA HEC-14 - Calculated) Quantity Class ² (ft) (ft) (Tons) (SqYd)	Pi	ipe/Box Dimensio	ns		Flow
Box Dimension Span (ft) 12 144 Height (ft) 10 120 839 Length Width Riprap GeoText (FHWA HEC-14 - Calculated) Quantity Class ² (ft) (ft) (Tons) (SqYd)			(inch)		(cfs)
Span (ft)12144Height (ft)10120LengthWidthRipropGeoText(FHWA HEC-14 - Calculated)QuantityClass²(ft)(ft)(Tons)(SqYd)	Pipe Diameter				
Span (ft)12144Height (ft)10120LengthWidthRiprapGeoText(FHWA HEC-14 - Calculated)QuantityClass ² (ft)(ft)(Tons)(SqYd)	Box Dimension				820
LengthWidthRiprapGeoText(FHWA HEC-14 - Calculated)QuantityClass2(ft)(ft)(Tons)(SqYd)	Span (ft)	12	144		639
(FHWA HEC-14 - Calculated) Quantity Class ² (ft) (ft) (Tons) (SqYd)	Height (ft)	10	120		
(ft) (ft) (Tons) (SqYd)					
(ft) (ft) (Tons) (SqYd)	Length	Width	Ripr	ар	GeoText
				•	GeoText
77 88 1222 D 754	(FHWA HEC-1	4 - Calculated)	Quantity	•	


** Riprap Class (D50) as per HEC-14 Eq. 10.4; Tailwater condition assumed (TW=0.4D)

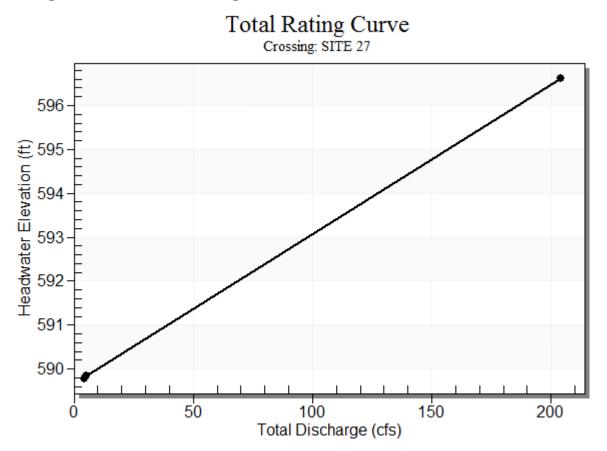
SITE 26

Analysis on the culvert located at Site 26 could not be performed because the crossing was not surveyed. Additionally, the site could not be located during the culvert assessment field inspection.

		Ra	ational Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	0.15	0.90					
Flat, 0%-2%	Earth shoulders	0.62	0.50		Area	Weighted	d C	
Hilly, Over 10%	Gravel Pavements	0.02	0.60			0.53		
Hilly, Over 10%	Side Slopes, Turf	0.17	0.30					
		0.96						
	County (NOAA-14)	2-year 24 H	our rainfall [in]					
	Cherokee		3.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	11.90%	100	0.41				0.166
Shallow	Line averal	11.000/	211					0.011
Concentrated Shallow	Unpaved	11.90%	211					0.011
Concentrated								
Channel 1		10.82%	100	0.045	4.5	9.2221	6.75059	0.004
Channel 2								
Total			411				0.6331	0.180
		_		_	_			
			Gaffney					
	Time of Concentr (minutes)	ation	11					
		C _f	C	l [in/hr]	AREA (ac)	C	FS	
	Q ₁₀	1 C _f	0.53	5.815	0.96		3 3	
	Q ₁₀	1.1	0.53	6.699	0.96		3 4	
	Q ₅₀	1.2	0.53	7.395	0.96		5	
	Q ₁₀₀	1.25	0.53	8.080	0.96		5	

SITE 27

HY-8 Culvert Analysis Report


Crossing Discharge Data

Discharge Selection Method: Recurrence

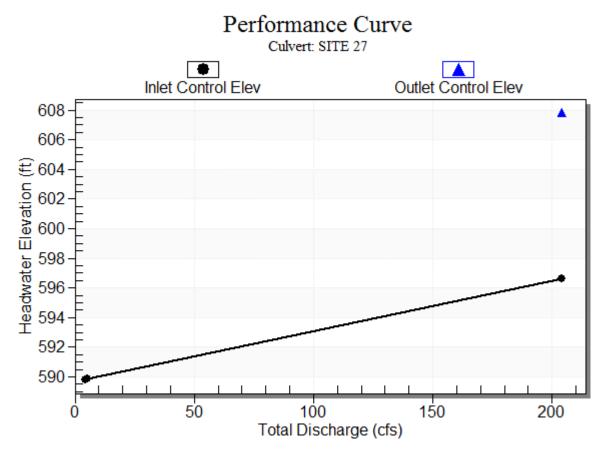
_		-				
	Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 27 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
	589.79	50 year	4.50	4.50	0.00	1
	589.84	100 year	5.10	5.10	0.00	1
	596.56	Overtopping	5.10	5.10	0.00	Overtopping

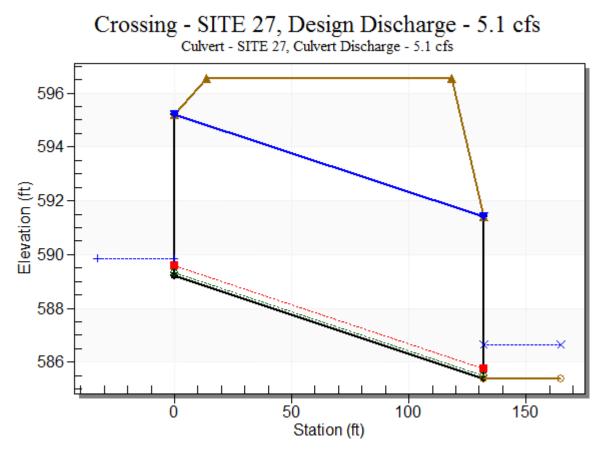
Table 1 - Summary of Culvert Flows at Crossing: SITE 27

Rating Curve Plot for Crossing: SITE 27

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	4.50	4.50	589.79	0.567	0.0*	6-FFt	0.085	0.340	0.085	1.196	13.298
100 year	5.10	5.10	589.84	0.616	0.0*	6-FFt	0.096	0.370	0.096	1.254	13.298

 Table 2 - Culvert Summary Table: SITE 27


* Full Flow Headwater elevation is below inlet invert.


Straight Culvert

Inlet Elevation (invert): 589.22 ft, Outlet Elevation (invert): 585.40 ft Culvert Length: 132.06 ft, Culvert Slope: 0.0289

Culvert Performance Curve Plot: SITE 27

Water Surface Profile Plot for Culvert: SITE 27

Site Data - SITE 27

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 589.22 ft Outlet Station: 132.00 ft Outlet Elevation: 585.40 ft Number of Barrels: 1

Culvert Data Summary - SITE 27

Barrel Shape: Concrete Box Barrel Span: 4.00 ft Barrel Rise: 6.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (90°) Headwall Inlet Depression: NONE

ſ	Flow (cfs)	Water Surface	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
		Elev (ft)				
ſ	4.50	586.60	1.20	1.75	1.57	0.40
	5.10	586.65	1.25	1.80	1.64	0.40

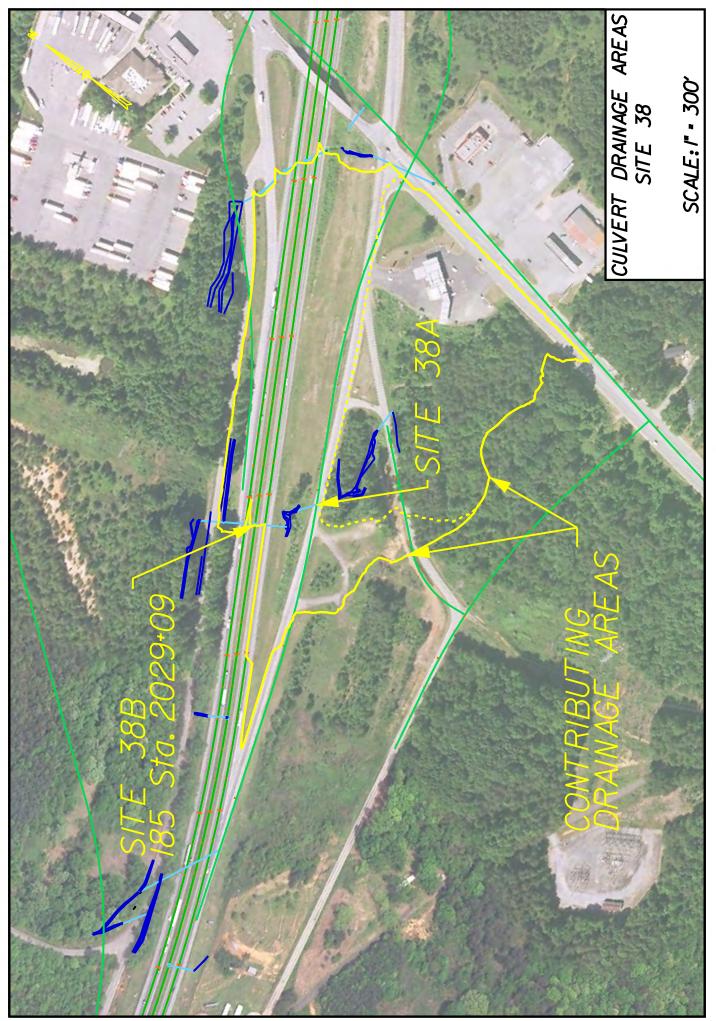

 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 27)

Tailwater Channel Data - SITE 27

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 1.80 (_:1) Channel Slope: 0.0210 Channel Manning's n: 0.0800 Channel Invert Elevation: 585.40 ft

Roadway Data for Crossing: SITE 27

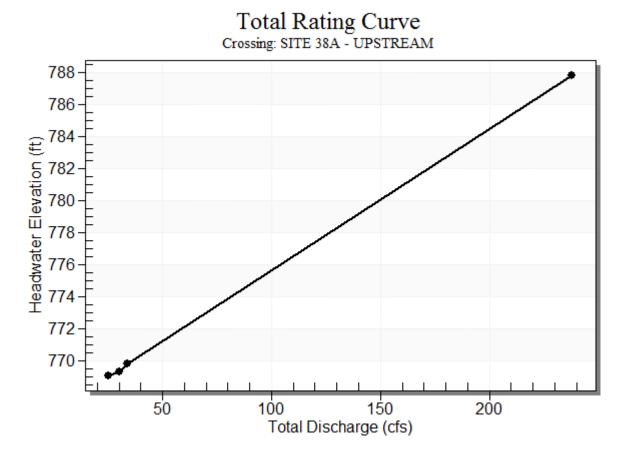
Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 596.56 ft Roadway Surface: Paved Roadway Top Width: 105.00 ft


		Ra	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	5.85	0.90					
Rolling, 2%-10%	Earth shoulders	0.19	0.50		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	15.29	0.30			0.27		
Rolling, 2%-10%	Unimproved Areas	7.49	0.20					
Hilly, Over 10%	Woodland & Forest	41.82	0.20					
Rolling, 2%-10%	Woodland & Forest	3.33	0.15					
Koning, 276-1076		0.00	0.10					
		73.97						ł
				I				
	County (NOAA-14)		our rainfall [in]					
	Cherokee		3.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	6.15%	100	0.8				0.368
Shallow								
Concentrated	Unpaved	6.15%	634					0.044
Shallow								
Concentrated Channel 1								
Channel 2								
Total			724				0.4046	0.412
TOLAT	J	L	734				0.4946	0.412
			Gaffney			_		
	Time of Concentr	ation						
	(minutes)		25					
					1			
		C _f	С	l [in/hr]	AREA (ac)	0	CFS	
	Q ₁₀	1	0.27	4.372	73.97		89	
	Q ₂₅	1.1	0.27	4.996	73.97		.12	
	Q ₅₀	1.2	0.27	5.482	73.97	1	.34	
	Q ₁₀₀	1.25	0.27	5.956	73.97	1	.51	

SITE 36

Analysis of the 36" R.C pipe located at Site 36 (Approx. Station 2018+40) could not be completed because the inlet of the crossing was not surveyed. However, the inlet of the crossing was located during the culvert assessment field inspection.

		Ra	ational Analysis					
			-					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	1.95	0.90					
Rolling, 2%-10%	Side Slopes, Turf	4.11	0.30		Area	Weighte	d C	
Hilly, Over 10%	Woodland & Forest	5.03	0.20			0.36		
		11.09		Į				
	County (NOAA-14)	2-year 24 H	our rainfall [in]					
	Cherokee		3.73					
							N/ 1 11	
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	12.65%	100	0.8				0.276
Shallow Concentrated	Uppound	12.65%	523					0.025
Shallow	Unpaved	12.05%	525					0.025
Concentrated								
Channel 1								
Channel 2								
Total			623				0.5743	0.301
		_		_	_	_		
			Gaffney					
	Time of Concentra	ation	19					
	(minutes)							
		C _f	C	I [in/hr]	AREA (ac)		FS	
	Q ₁₀	1	0.36	4.893	11.09		20 25	
	Q ₂₅	1.1 1.2	0.36 0.36	5.607	11.09 11.09		25 30	
	Q ₅₀	1.2	0.36	6.165 6.711	11.09		30 34	
	Q ₁₀₀	1.25	0.50	0.711	11.09	-		


HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Recurrence

_						
	Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 38A - UPSTREAM Discharge (cfs)	Roadway Discharge (cfs)	Iterations
	769.08	25 year	25.00	25.00	0.00	1
	769.32	50 year	30.00	30.00	0.00	1
	769.81	100 year	34.00	34.01	0.00	6
	787.61	Overtopping	30.00	30.00	0.00	Overtopping

 Table 1 - Summary of Culvert Flows at Crossing: SITE 38A - UPSTREAM

Rating Curve Plot for Crossing: SITE 38A - UPSTREAM

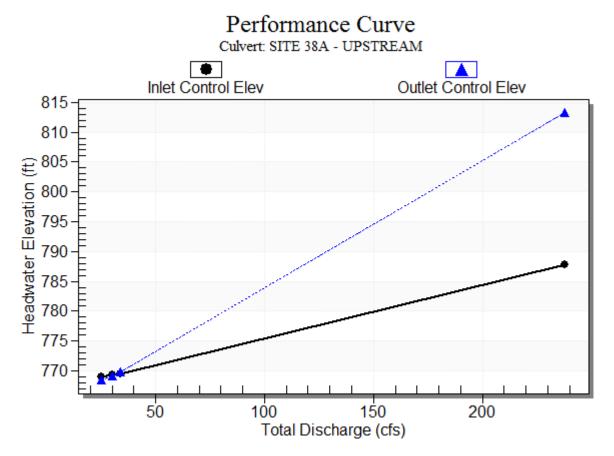
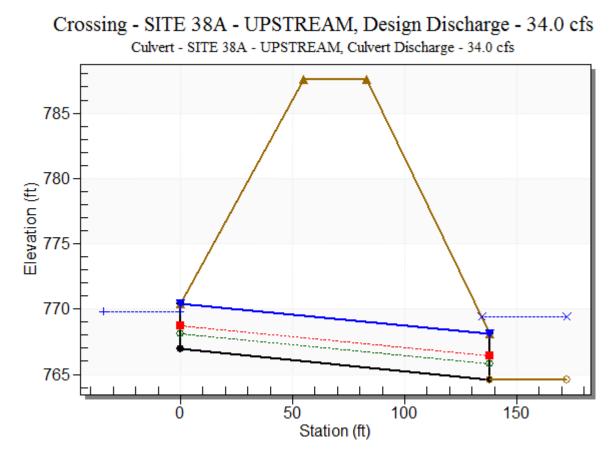

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
25 year	25.00	25.00	769.08	2.143	1.548	4-FFf	0.980	1.537	0.980	3.670	11.246
50 year	30.00	30.00	769.32	2.384	2.245	4-FFf	1.084	1.692	1.084	4.280	11.767
100 year	34.00	34.01	769.81	2.563	2.866	4-FFf	1.168	1.805	3.500	4.820	3.535

Table 2 - Culvert Summary Table: SITE 38A - UPSTREAM


Straight Culvert

Inlet Elevation (invert): 766.94 ft, Outlet Elevation (invert): 764.62 ft Culvert Length: 138.02 ft, Culvert Slope: 0.0168

Culvert Performance Curve Plot: SITE 38A - UPSTREAM

Water Surface Profile Plot for Culvert: SITE 38A - UPSTREAM

Site Data - SITE 38A - UPSTREAM

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 766.94 ft Outlet Station: 138.00 ft Outlet Elevation: 764.62 ft Number of Barrels: 1

Culvert Data Summary - SITE 38A - UPSTREAM

Barrel Shape: Circular Barrel Diameter: 3.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Grooved End Projecting Inlet Depression: NONE

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
25.00	768.29	3.67	0.00
30.00	768.90	4.28	0.00
34.00	769.44	4.82	0.00

 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 38A - UPSTREAM)

Tailwater Channel Data - SITE 38A - UPSTREAM

Tailwater Channel Option: Enter Rating Curve Channel Invert Elevation: 764.62 ft

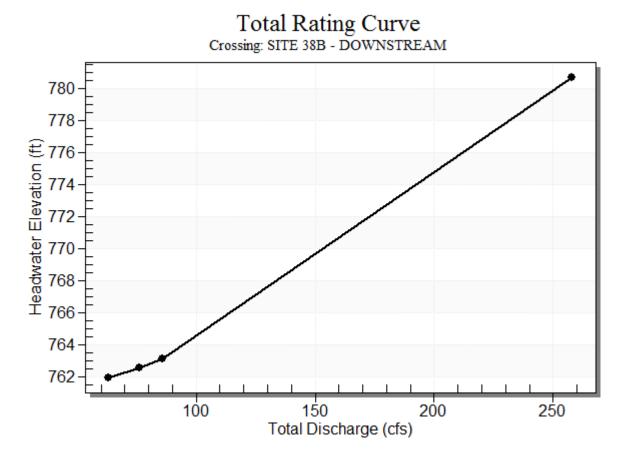
Roadway Data for Crossing: SITE 38A - UPSTREAM

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 787.61 ft Roadway Surface: Paved Roadway Top Width: 28.00 ft

SITE 38 – Upstream Culvert Tailwater Rating Curve

	Downstrea	m (DS) Culve	ert	Upstream (US) Culvert	
Deturn	Inlet Elevation	758.2	28	Outlet Elevation	764.6	2
Return Event		Headwater Elevation Depth			Tailwa	ter
Lvent					Elevation	Depth
25-Year		761.95	3.67		768.29	3.67
50-Year		762.56 4.28			768.90	4.28
100-Year		763.10 4.82			769.44	4.82
* All elevations a	and depths are in feet.					

		Ra	ational Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	6.13	0.90					
Rolling, 2%-10%	Side Slopes, Turf	12.35	0.30		Area	Weighte	d C	
Hilly, Over 10%	Woodland & Forest	5.14	0.20			0.43		
		23.62						
	County (NOAA-14)		our rainfall [in]					
	Cherokee		3.73					
_	1			Manning's			Velocity	
Flow Type	Surface	Slope	Length [ft]	n	Area [ft^2]	WP [ft]	[ft/s]	Time [hr]
Sheet	Woods:dense underbrus	12.65%	100	0.8				0.276
Shallow								
Concentrated	Unpaved	12.65%	523					0.025
Shallow Concentrated								
Channel 1								
Channel 2								
Total			623				0.5743	0.301
	-	L						
	_							
			Gaffney					
	Time of Concentra	ation						
	(minutes)		19					
	, ,							
		C _f	С	l [in/hr]	AREA (ac)	C	:FS	
	Q ₁₀	1	0.43	4.893	23.62	ļ	50	
	Q ₂₅	1.1	0.43	5.607	23.62	(53	
		1.2	0.43	6.165	23.62	-	76	
	Q ₅₀	1.2	0.45	0.105	25.02		36	


HY-8 Culvert Analysis Report

Crossing Discharge Data

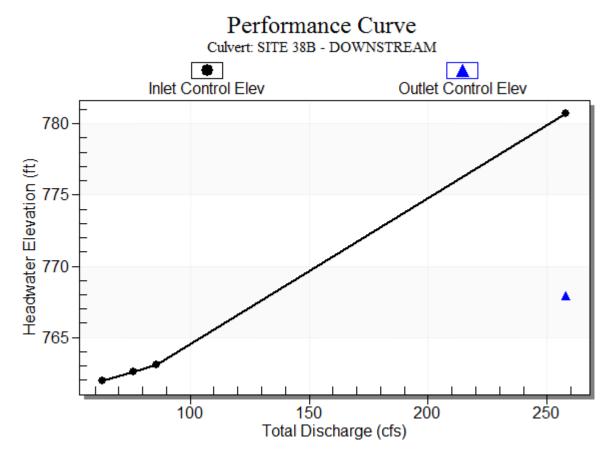
Discharge Selection Method: Recurrence

Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 38B - DOWNSTREAM Discharge (cfs)	Roadway Discharge (cfs)	Iterations
761.95	25 year	63.00	63.00	0.00	1
762.56	50 year	76.00	76.00	0.00	1
763.10	100 year	86.00	86.00	0.00	1
780.56	Overtopping	236.33	236.33	0.00	Overtopping

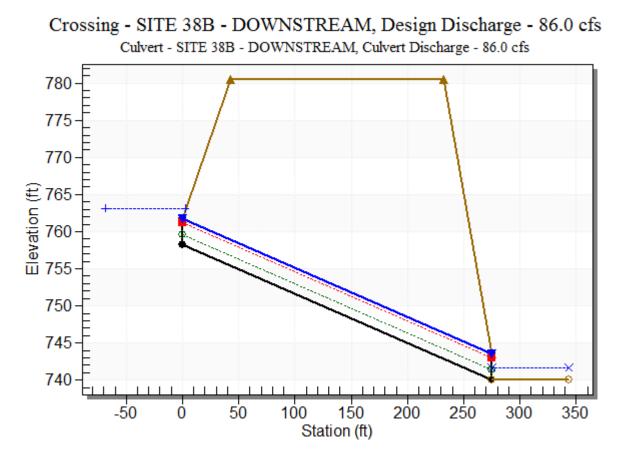
 Table 1 - Summary of Culvert Flows at Crossing: SITE 38B - DOWNSTREAM

Rating Curve Plot for Crossing: SITE 38B - DOWNSTREAM

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
25 year	63.00	63.00	761.95	3.666	0.0*	6-FFc	1.121	2.485	2.485	1.365	8.645
50 year	76.00	76.00	762.56	4.278	0.0*	6-FFc	1.239	2.725	2.725	1.497	9.457
100 year	86.00	86.00	763.10	4.823	0.0*	6-FFc	1.321	2.884	2.884	1.589	10.179


Table 2 - Culvert Summary Table: SITE 38B - DOWNSTREAM

* Full Flow Headwater elevation is below inlet invert.



Straight Culvert

Inlet Elevation (invert): 758.28 ft, Outlet Elevation (invert): 740.11 ft Culvert Length: 275.60 ft, Culvert Slope: 0.0661

Culvert Performance Curve Plot: SITE 38B - DOWNSTREAM

Water Surface Profile Plot for Culvert: SITE 38B - DOWNSTREAM

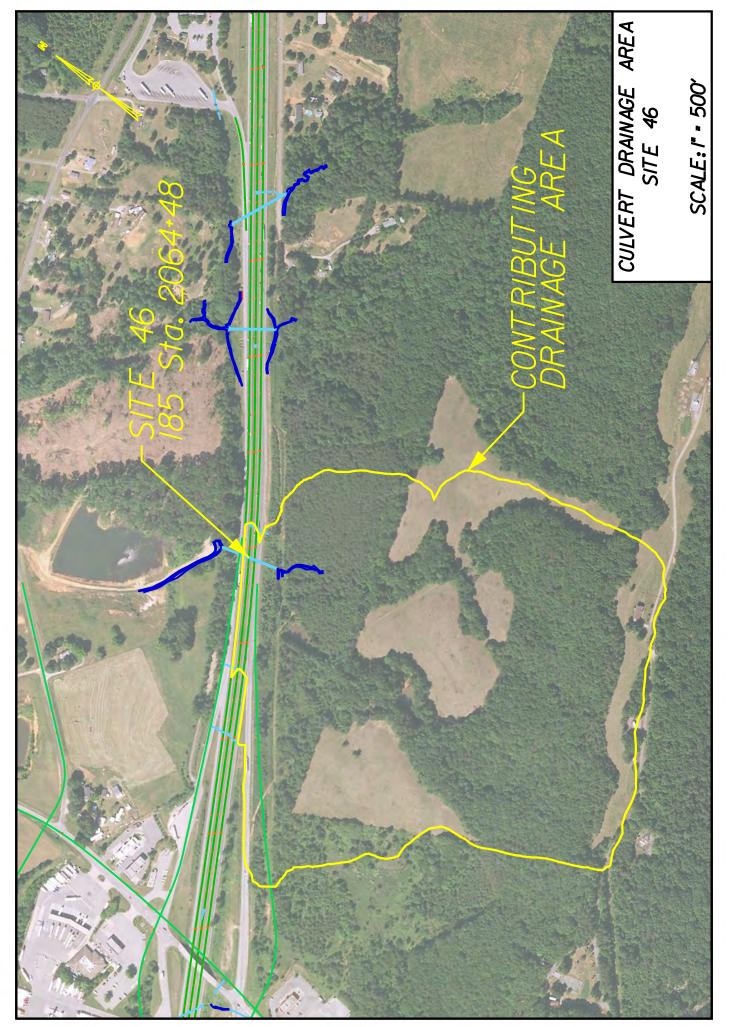
Site Data - SITE 38B - DOWNSTREAM

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 758.28 ft Outlet Station: 275.00 ft Outlet Elevation: 740.11 ft Number of Barrels: 1

Culvert Data Summary - SITE 38B - DOWNSTREAM

Barrel Shape: Circular Barrel Diameter: 3.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Grooved End Projecting Inlet Depression: NONE

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
63.00	741.48	1.37	9.31	1.70	1.72
76.00	741.61	1.50	9.78	1.87	1.74
86.00	741.70	1.59	10.10	1.98	1.75


 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 38B - DOWNSTREAM)

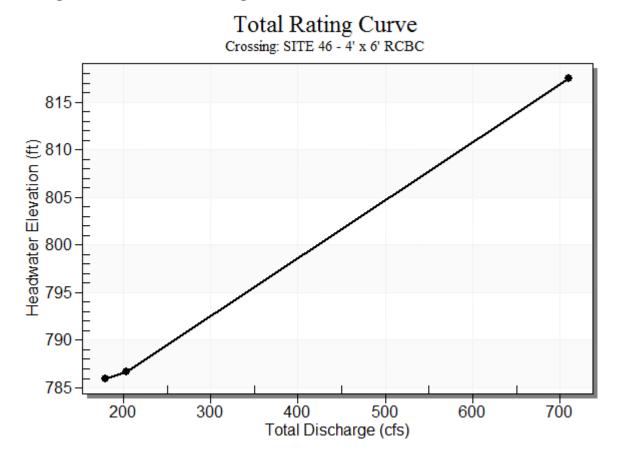
Tailwater Channel Data - SITE 38B - DOWNSTREAM

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 2.50 ft Side Slope (H:V): 1.80 (_:1) Channel Slope: 0.0200 Channel Manning's n: 0.0200 Channel Invert Elevation: 740.11 ft

Roadway Data for Crossing: SITE 38B - DOWNSTREAM

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 780.56 ft Roadway Surface: Paved Roadway Top Width: 190.00 ft

		Ra	ational Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	3.18	0.90					
Rolling, 2%-10%	Side Slopes, Turf	5.26	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Meadows & Pasture Land	7.50	0.30			0.27		
Hilly, Over 10%	Meadows & Pasture Land	19.86	0.35					
Hilly, Over 10%	Woodland & Forest	55.44	0.20					
		91.24						
	County (NOAA-14)	2-year 24 H	lour rainfall [in]					
	Cherokee		3.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	18.93%	100	0.8				0.235
Shallow		10.000						
Concentrated Shallow	Unpaved	18.93%	1485					0.059
Concentrated								
Channel 1		5.72%	1268	0.04	27	19.078	11.2286	0.031
Channel 2								
Total			2853				2.4382	0.325
			_			-		
			Gaffney					
	Time of Concentr (minutes)	ation	20					
	(initiates)							
		C _f	С	l [in/hr]	AREA (ac)	C	FS	
	Q ₁₀	1	0.27	4.798	91.24	1	19	
	Q ₂₅	1.1	0.27	5.495	91.24	1	49	
	Q ₅₀	1.2	0.27	6.040	91.24	1	79	
	Q ₁₀₀	1.25	0.27	6.572	91.24	2	03	


HY-8 Culvert Analysis Report

Crossing Discharge Data

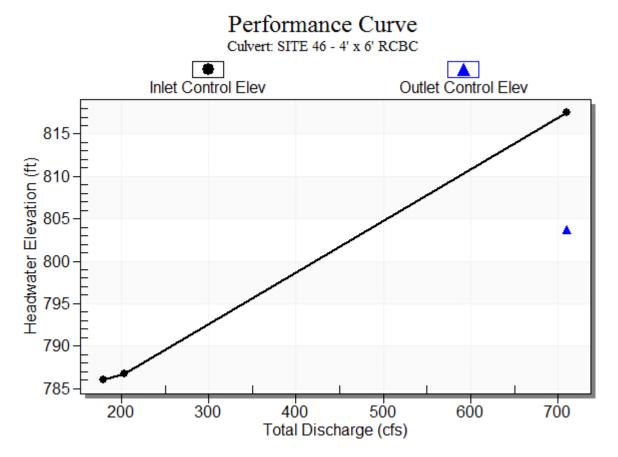
Discharge Selection Method: Recurrence

ſ	Headwater Elevation (ft)	Discharge Names	•	SITE 46 - 4' x 6' RCBC Discharge	Roadway Discharge (cfs)	Iterations
┢	786.00	50 year	179.00	(cfs) 179.00	0.00	1
ľ	786.71	100 year	203.00	203.00	0.00	1
[817.28	Overtopping	666.43	666.43	0.00	Overtopping

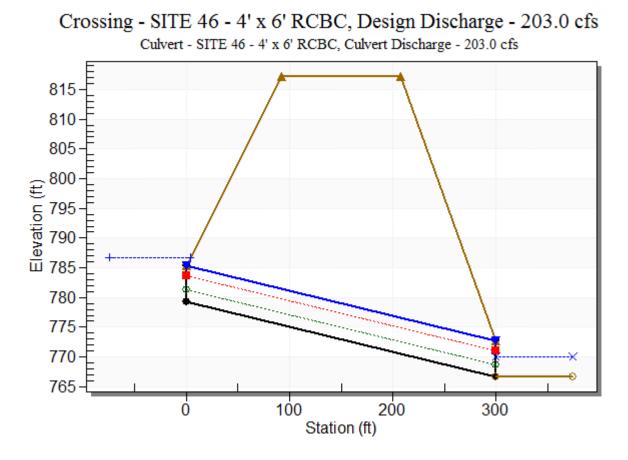
 Table 1 - Summary of Culvert Flows at Crossing: SITE 46 - 4' x 6' RCBC

Rating Curve Plot for Crossing: SITE 46 - 4' x 6' RCBC

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	179.00	179.00	786.00	6.670	0.0*	6-FFc	1.811	3.962	1.811	3.057	24.707
100 year	203.00	203.00	786.71	7.381	0.0*	6-FFc	1.996	4.309	1.996	3.240	25.426


Table 2 - Culvert Summary Table: SITE 46 - 4' x 6' RCBC

* Full Flow Headwater elevation is below inlet invert.



Straight Culvert

Inlet Elevation (invert): 779.33 ft, Outlet Elevation (invert): 766.72 ft Culvert Length: 300.26 ft, Culvert Slope: 0.0420

Culvert Performance Curve Plot: SITE 46 - 4' x 6' RCBC

Water Surface Profile Plot for Culvert: SITE 46 - 4' x 6' RCBC

Site Data - SITE 46 - 4' x 6' RCBC

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 779.33 ft Outlet Station: 300.00 ft Outlet Elevation: 766.72 ft Number of Barrels: 1

Culvert Data Summary - SITE 46 - 4' x 6' RCBC

Barrel Shape: Concrete Box Barrel Span: 4.00 ft Barrel Rise: 6.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (90°) Headwall Inlet Depression: NONE

	Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
	179.00	769.78	3.06	5.79	3.43	0.74
ſ	203.00	769.96	3.24	5.98	3.64	0.74

 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 46 - 4' x 6' RCBC)

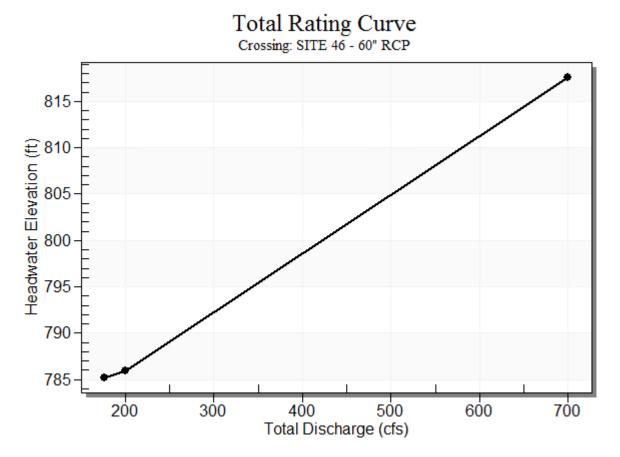
Tailwater Channel Data - SITE 46 - 4' x 6' RCBC

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 4.00 ft Side Slope (H:V): 2.00 (_:1) Channel Slope: 0.0180 Channel Manning's n: 0.0500 Channel Invert Elevation: 766.72 ft

Roadway Data for Crossing: SITE 46 - 4' x 6' RCBC

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 817.28 ft Roadway Surface: Paved Roadway Top Width: 115.00 ft

HY-8 Culvert Analysis Report


Crossing Discharge Data

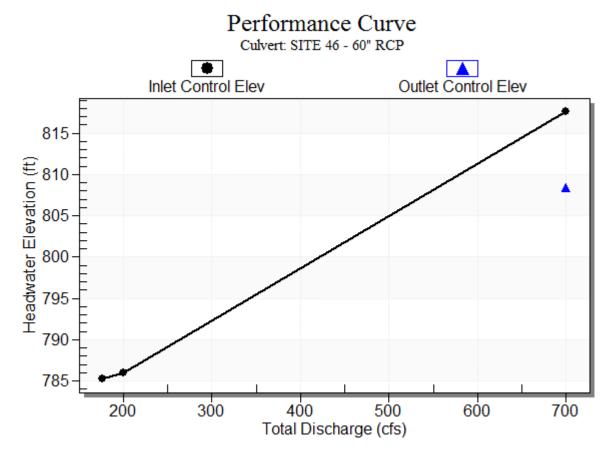
Discharge Selection Method: Recurrence

_		-				
	Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 46 - 60" RCP Discharge (cfs)	Roadway Discharge (cfs)	Iterations
	785.23	50 year	176.00	176.00	0.00	1
	785.96	100 year	200.00	200.00	0.00	1
	817.28	Overtopping	632.10	632.10	0.00	Overtopping

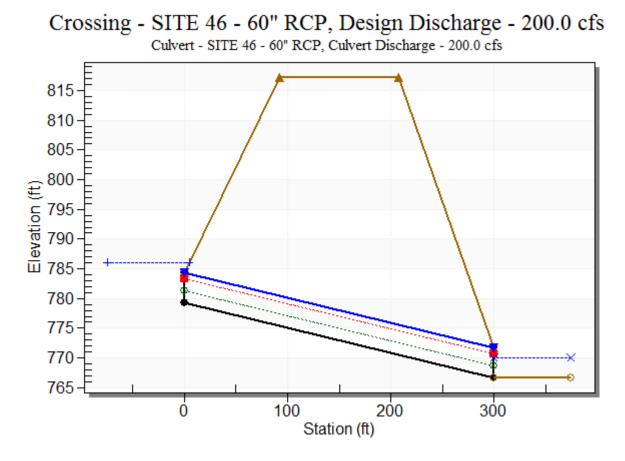
Table 1 - Summary of Culvert Flows at Crossing: SITE 46 - 60" RCP

Rating Curve Plot for Crossing: SITE 46 - 60" RCP

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	176.00	176.00	785.23	5.899	0.0*	6-FFc	1.878	3.796	3.796	3.033	11.019
100 year	200.00	200.00	785.96	6.626	0.0*	6-FFc	2.015	4.036	4.036	3.218	11.814


Table 2 - Culvert Summary Table: SITE 46 - 60" RCP

* Full Flow Headwater elevation is below inlet invert.



Straight Culvert

Inlet Elevation (invert): 779.33 ft, Outlet Elevation (invert): 766.72 ft Culvert Length: 300.26 ft, Culvert Slope: 0.0420

Culvert Performance Curve Plot: SITE 46 - 60" RCP

Water Surface Profile Plot for Culvert: SITE 46 - 60" RCP

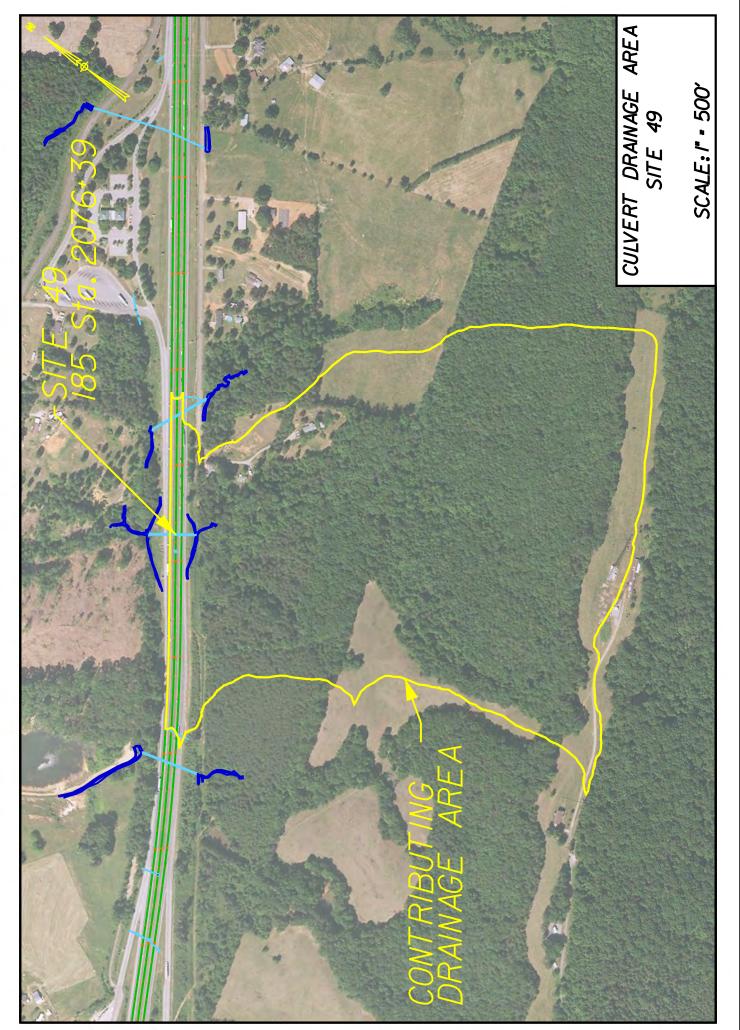
Site Data - SITE 46 - 60" RCP

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 779.33 ft Outlet Station: 300.00 ft Outlet Elevation: 766.72 ft Number of Barrels: 1

Culvert Data Summary - SITE 46 - 60" RCP

Barrel Shape: Circular Barrel Diameter: 5.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Grooved End Projecting Inlet Depression: NONE

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
176.00	769.75	3.03	5.76	3.41	0.74
200.00	769.94	3.22	5.96	3.61	0.74


 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 46 - 60" RCP)

Tailwater Channel Data - SITE 46 - 60" RCP

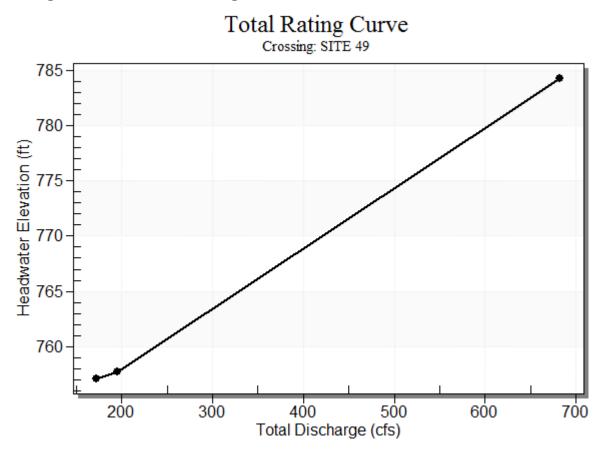
Tailwater Channel Option: Trapezoidal Channel Bottom Width: 4.00 ft Side Slope (H:V): 2.00 (_:1) Channel Slope: 0.0180 Channel Manning's n: 0.0500 Channel Invert Elevation: 766.72 ft

Roadway Data for Crossing: SITE 46 - 60" RCP

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 817.28 ft Roadway Surface: Paved Roadway Top Width: 115.00 ft

		Rati	onal Analysis					
Land Slope	Land Use	Acres	C		_	-	-	
Rolling, 2%-10%	Pavements & Roofs	3.35	0.90					
Hilly, Over 10%	Side Slopes, Turf	2.69	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Meadows & Pasture Land	7.20	0.30			0.25		
Hilly, Over 10%	Meadows & Pasture Land	12.25	0.35			0.25		
Hilly, Over 10%	Woodland & Forest	71.94	0.20					
		, 1.5 1	0.20					
	<u> </u>							
		07.42						
		97.43	_	_	_	-		l
	County (NOAA-14)	2-year 24 H	our rainfall [in]					
	Cherokee	:	3.73					
	T							
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr
Sheet	Woods:dense underbrush	17.41%	100	0.8				0.24
Shallow								
Concentrated Shallow	Unpaved	17.41%	1451					0.0
Concentrated								
Channel 1		3.97%	1724	0.04	12.8	9.9825	8.76106	0.0
Channel 2								
Total			3275				2.5455	0.3
			Gaffney			_		
	Time of Concentrat	tion						
	(minutes)		22					
		C _f	С	l [in/hr]	AREA (ac)	C	:FS	
	Q ₁₀	1	0.25	4.618	97.43		14	
	Q ₂₅	1.1	0.25	5.284	97.43		43	
	-2.5							
	Q ₅₀	1.2	0.25	5.804	97.43	1	72	

HY-8 Culvert Analysis Report


Crossing Discharge Data

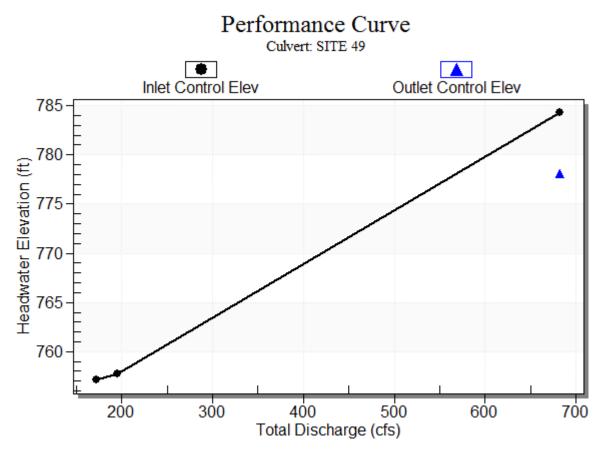
Discharge Selection Method: Recurrence

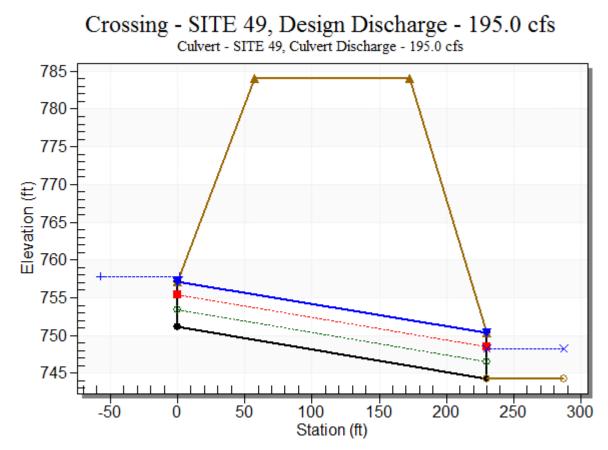
_						
	Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 49 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
	757.12	50 year	172.00	172.00	0.00	1
	757.73	100 year	195.00	195.00	0.00	1
	784.11	Overtopping	651.76	651.76	0.00	Overtopping

 Table 1 - Summary of Culvert Flows at Crossing: SITE 49

Rating Curve Plot for Crossing: SITE 49

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	172.00	172.00	757.12	5.939	0.0*	6-FFc	2.005	3.858	2.005	3.713	21.449
100 year	195.00	195.00	757.73	6.547	0.0*	6-FFc	2.200	4.195	2.200	3.947	22.156


Table 2 - Culvert Summary Table: SITE 49


* Full Flow Headwater elevation is below inlet invert.

Straight Culvert

Inlet Elevation (invert): 751.18 ft, Outlet Elevation (invert): 744.32 ft Culvert Length: 230.10 ft, Culvert Slope: 0.0298

Culvert Performance Curve Plot: SITE 49

Water Surface Profile Plot for Culvert: SITE 49

Site Data - SITE 49

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 751.18 ft Outlet Station: 230.00 ft Outlet Elevation: 744.32 ft Number of Barrels: 1

Culvert Data Summary - SITE 49

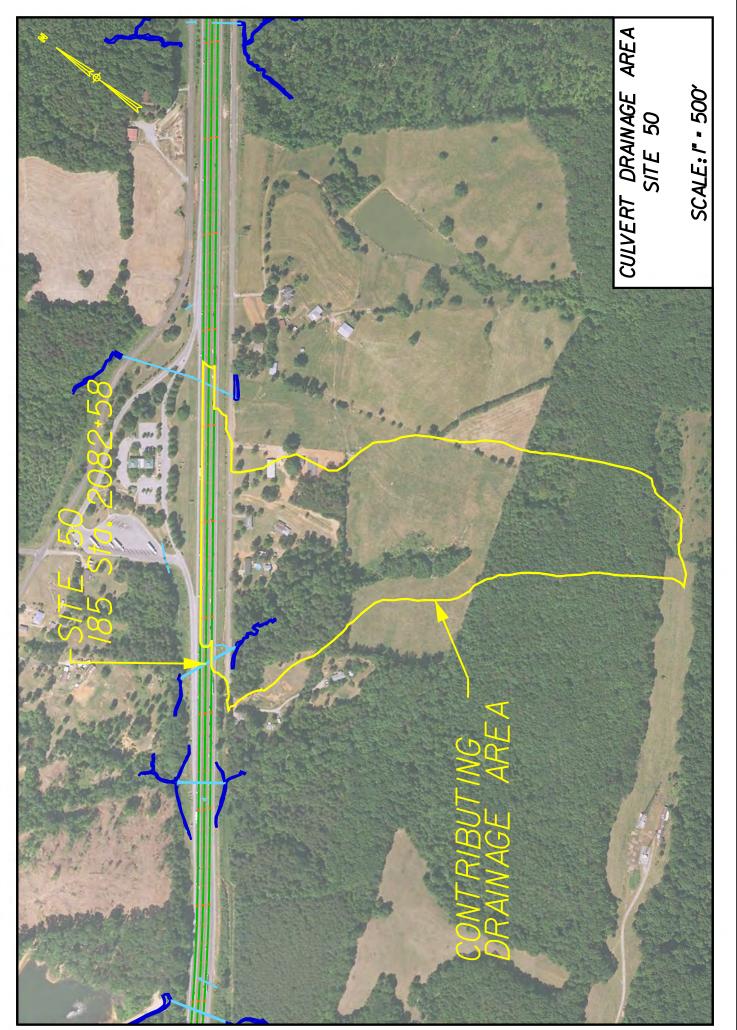
Barrel Shape: Concrete Box Barrel Span: 4.00 ft Barrel Rise: 6.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (30-75° flare) Wingwall Inlet Depression: NONE

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
172.00	748.03	3.71	4.97	6.26	0.56
195.00	748.27	3.95	5.13	6.65	0.56

 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 49)

Tailwater Channel Data - SITE 49

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 4.50 ft Side Slope (H:V): 1.30 (_:1) Channel Slope: 0.0270 Channel Manning's n: 0.0800 Channel Invert Elevation: 744.32 ft


Roadway Data for Crossing: SITE 49

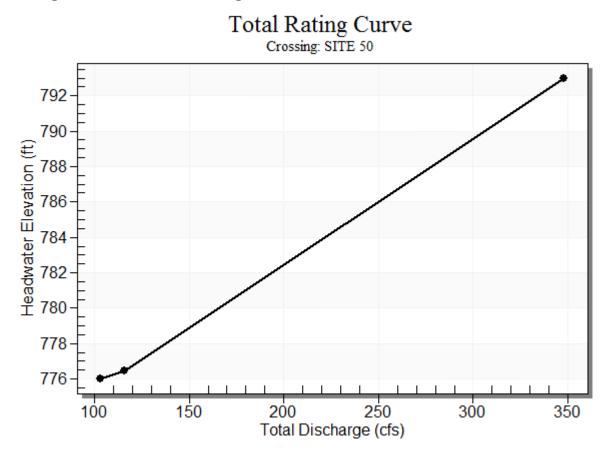
Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 784.11 ft Roadway Surface: Paved Roadway Top Width: 115.00 ft

Р	ipe/Box Dimensio	ons		Flow
		(inch)		(cfs)
Pipe Diameter				
Box Dimension				172
Span (ft)	4	48		1/2
Height (ft)	6	72		
	147 141	D'au		
Length	Width	Ripr	rap	GeoText
Length (FHWA HEC-1	Width 4 - Calculated)	Ripr Quantity		GeoText
		Ripr Quantity (Tons)	rap Class ²	GeoText (SqYd)

** Riprap Class (D50) as per HEC-14 Eq. 10.4; Tailwater condition assumed (TW=0.4D)

		Ra	tional Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	3.46	0.90					
Rolling, 2%-10%	Gravel Pavements	0.03	0.55		Area	Weighteo	d C	
Rolling, 2%-10%	Side Slopes, Turf	1.92	0.30			0.29		
Rolling, 2%-10%	Meadows & Pasture Land	19.01	0.30					
Hilly, Over 10%	Woodland & Forest	21.19	0.20					
Rolling, 2%-10%	Woodland & Forest	1.59	0.15					
		47.20		l				
	_							
	County (NOAA-14)		our rainfall [in]					
	Cherokee	3	3.73					
_			_	Manning's		_	Velocity	_
Flow Type	Surface	Slope	Length [ft]	n	Area [ft^2]	WP [ft]	[ft/s]	Time [hr]
Sheet	Woods:dense underbrus	18.77%	100	0.8				0.236
Shallow								
Concentrated Shallow	Unpaved	18.77%	1145					0.046
Concentrated								
Channel 1		4.85%	1536	0.04	132.5	45.427	16.7428	0.025
Channel 2								
Total			2781				2.5190	0.307
	-							
			Gaffney					
	Time of Concentra	ation						
	(minutes)		19					
		C _f	С	l [in/hr]	AREA (ac)	C	FS	
	Q ₁₀	1	0.29	4.893	47.20	6	58	
	Q ₂₅	1.1	0.29	5.607	47.20	8	36	
	Q ₅₀	1.2	0.29	6.165	47.20		03 16	

HY-8 Culvert Analysis Report


Crossing Discharge Data

Discharge Selection Method: Recurrence

		-				
	Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 50 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
	776.03	50 year	103.00	103.00	0.00	1
	776.47	100 year	116.00	116.00	0.00	1
ſ	792.81	Overtopping	314.66	314.66	0.00	Overtopping

 Table 1 - Summary of Culvert Flows at Crossing: SITE 50

Rating Curve Plot for Crossing: SITE 50

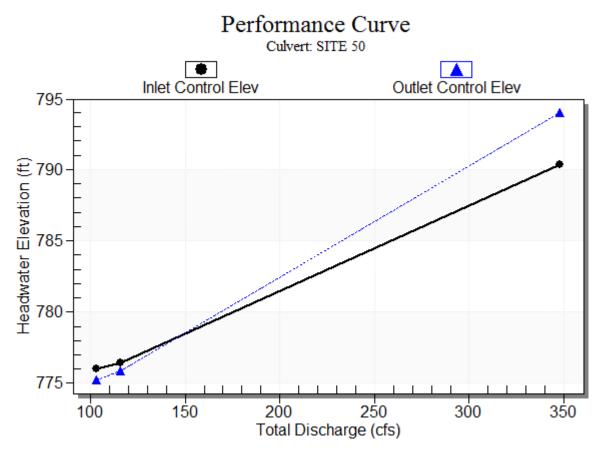
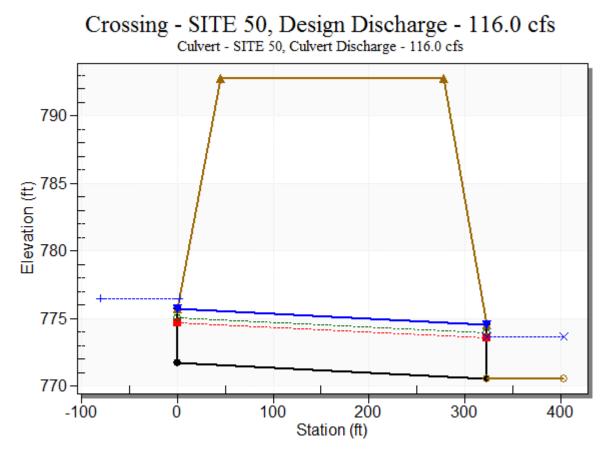

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	103.00	103.00	776.03	4.314	3.515	6-FFt	3.062	2.741	3.062	2.896	8.408
100 year	116.00	116.00	776.47	4.751	4.159	6-FFt	3.366	2.967	3.366	3.065	8.615

Table 2 - Culvert Summary Table: SITE 50


Straight Culvert

Inlet Elevation (invert): 771.72 ft, Outlet Elevation (invert): 770.57 ft Culvert Length: 323.00 ft, Culvert Slope: 0.0036

Culvert Performance Curve Plot: SITE 50

Water Surface Profile Plot for Culvert: SITE 50

Site Data - SITE 50

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 771.72 ft Outlet Station: 323.00 ft Outlet Elevation: 770.57 ft Number of Barrels: 1

Culvert Data Summary - SITE 50

Barrel Shape: Concrete Box Barrel Span: 4.00 ft Barrel Rise: 4.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (30-75° flare) Wingwall Inlet Depression: NONE

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
103.00	773.47	2.90	5.26	7.95	0.68
116.00	773.64	3.07	5.42	8.42	0.68

 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 50)

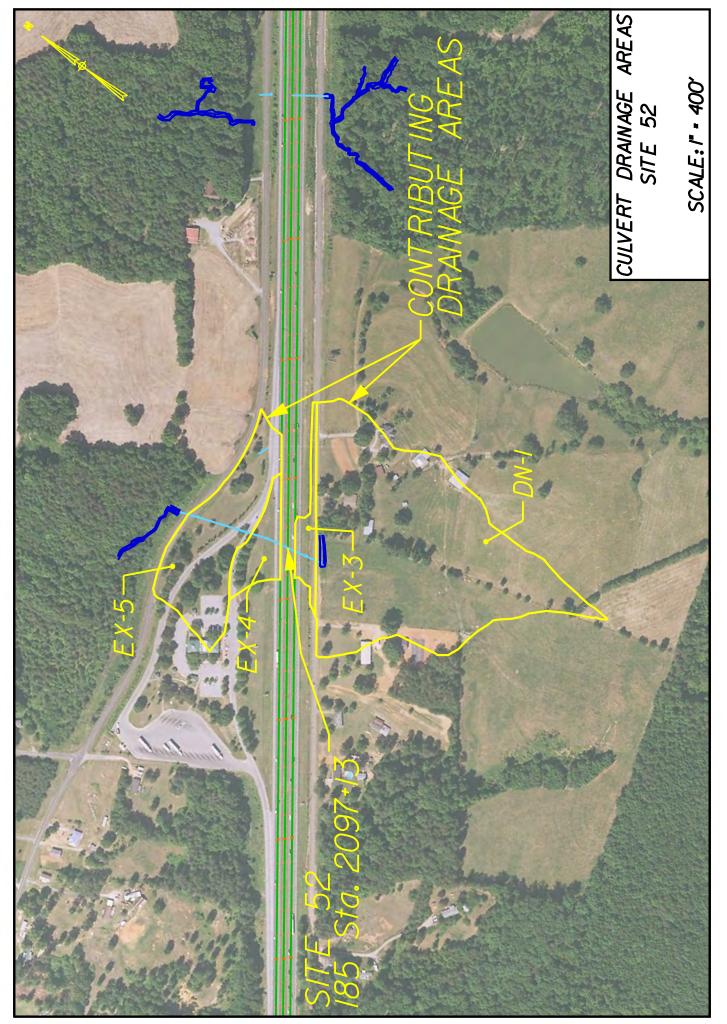
Tailwater Channel Data - SITE 50

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 3.00 ft Side Slope (H:V): 1.30 (_:1) Channel Slope: 0.0440 Channel Manning's n: 0.0800 Channel Invert Elevation: 770.57 ft

Roadway Data for Crossing: SITE 50

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 792.81 ft Roadway Surface: Paved Roadway Top Width: 233.00 ft

Pipe Diameter				Flow
Pipe Diameter		(inch)		(cfs)
Box Dimension				102
Span (ft)	4	48		103
Height (ft)	4	48		
Length	Width	Rip		GeoText
(FHWA HEC-14 -	Calculated)	Quantity	Class ²	
(ft)	(ft)	(Tons)	Class	(SqYd)
	26	73	С	62


- ** Apron length as per HEC-14 Table 10.1, Fig. 10.4; width as per HEC-14 Fig. 10.4.
- ** Riprap Class (D50) as per HEC-14 Eq. 10.4; Tailwater condition assumed (TW=0.4D)

SITE 51

Analysis on the culvert located at Site 51 could not be performed because the crossing was not surveyed. Additionally, the site could not be located during the culvert assessment field inspection.

		Ratio	onal Analysis					
		<u>г. </u>			_			
Land Slope	Land Use	Acres	C					
Rolling, 2%-10%	Pavements & Roofs	1.51	0.90				1.0	
Hilly, Over 10%	Side Slopes, Turf	3.38	0.30		Area	Weighte	d C	
						0.49		
		├						
		4.89						
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	11.21%	100	0.41				0.17
Shallow								
Concentrated	Unpaved	11.21%	137					0.00
Shallow								
Concentrated								
Channel 1								
Channel 2								
Total	J		237				0.3725	0.17
			Gaffney					
	Time of Concentrat (minutes)	tion	11					
		C _f	С	I [in/hr]	AREA (ac)	C	FS	
	Q ₁₀	1	0.49	5.815	4.89	1	L4	
	Q ₂₅	1.1	0.49	6.699	4.89	1	L7	
		++						
	Q ₅₀	1.2	0.49	7.395	4.89		21	

		Ratio	onal Analysis					
					_			
Land Slope	Land Use	Acres	C					
Rolling, 2%-10%	Pavements & Roofs	0.38	0.90				1.0	
Rolling, 2%-10%	Side Slopes, Turf	0.92	0.30		Area	Weighte	d C	
						0.48		
		├						
		1.30						
	County (NOAA-14)	2-year 24 Ho	our rainfall [in]					
	Cherokee	3	3.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	4.03%	100	0.41				0.25
Shallow								
Concentrated	Unpaved	4.03%	83					0.00
Shallow Concentrated								
Concentrated Channel 1						_		
Channel 2			100				0.4000	
Total]	L	183				0.1936	0.26
			Gaffney					
	Time of Concentrat (minutes)	ion	16					
	(minutes)							
		C _f	С	l [in/hr]	AREA (ac)	C	FS	
	Q ₁₀	1	0.48	5.203	1.30		3	
	Q ₂₅	1.1	0.48	5.972	1.30		4	
	Q ₅₀	1.2	0.48	6.575	1.30		5	
	Q ₁₀₀	1.25	0.48	7.166	1.30		6	

		Rati	ional Analysis			
Land Slope	Land Use	Acres	C			
Rolling, 2%-10%	Pavements & Roofs	0.31	0.90			
Rolling, 2%-10%	Side Slopes, Turf	0.53	0.30		Area	Weighted C
						0.52
	L					
				J		
		0.04				
		0.84				
		0.84				
				1		
	County (NOAA-14)	2-year 24 F	Hour rainfall [in]]		
	County (NOAA-14) Cherokee	2-year 24 F	Hour rainfall [in] 3.73]		
		2-year 24 F]		
		2-year 24 F	3.73]		
		2-year 24 F]		
		2-year 24 H	3.73 Gaffney]		
	Cherokee	2-year 24 H	3.73]		
	Cherokee Time of Concent	2-year 24 H	3.73 Gaffney]		
	Cherokee Time of Concent	2-year 24 H	3.73 Gaffney	 [in/hr]	AREA (ac)	CFS
	Cherokee Time of Concent (minutes)	2-year 24 H	3.73 Gaffney 5	I [in/hr] 6.770	AREA (ac) 0.84	CFS 3
	Cherokee Time of Concentr (minutes)	2-year 24 H	3.73 Gaffney 5 C			
	Cherokee Time of Concentu (minutes) Q ₁₀ Q ₂₅	ration	3.73 Gaffney 5 C 0.52	6.770	0.84	3
	Cherokee Time of Concentr (minutes)	2-year 24 H	3.73 Gaffney 5 C 0.52 0.52	6.770 7.845	0.84 0.84	3 4

	Ratio	onal Analysis					
	· · · ·		_	_	_	_	I
				A.r.o.2	Maighta	4.0	
Meadows & Pasture Land	15.51	0.30		Area	-	ac	
					0.32		
	1						
	16.15						
County (NOAA-14)	2-year 24 H	our rainfall [in]					
Cherokee	3	3.73					
Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Grass:bermudagrass	5.27%	100	0.41				0.22
Unpaved	5.27%	1212					0.09
J .	L	1312				1.1377	0.32
		Gaffney					
Time of Concentra	tion						
		20					
(minutes)							
(minutes)							
(minutes)	C	C	l [ip/br]	AREA (ac)		FS	
	C _f	C	l [in/hr]	AREA (ac)		FS	
Q ₁₀	1	0.32	4.798	16.15	2	25	
					2		
	Cherokee Surface Grass:bermudagrass Unpaved	Land UseAcresPavements & Roofs0.64Meadows & Pasture Land15.51Image: Image: Image	Pavements & Roofs 0.64 0.90 Meadows & Pasture Land 15.51 0.30 Image: I	Land Use Acres C Pavements & Roofs 0.64 0.90 Meadows & Pasture Land 15.51 0.30 Image: Image	Land Use Acres C Pavements & Roofs 0.64 0.90 Meadows & Pasture Land 15.51 0.30 Area Image: Imag	Land Use Acres C Pavements & Roofs 0.64 0.90 Meadows & Pasture Land 15.51 0.30 Area Weighter 0 0.32 0.32 0.32 0 0 0.32 0.32 0 0 0.32 0.32 0 0 0.32 0.32 0 0 0.32 0.32 0 0 0.32 0.32 0 0 0.32 0.32 0 0 0 0.32 0 0 0 0.32 0 0 0 0.32 16.15 0 0 0.32 16.15 0 0 0.41 0 0 0 0.41 16.15 0 0.41 0 10 0 0.41 0 10 0 0.41 0 10 0 0 0 0	Land Use Acres C Pavements & Roofs 0.64 0.90 Meadows & Pasture Land 15.51 0.30 Area Weighted C 0 0.32 0.32 0 0 0.32 0 0 0.32 0 0 0.32 0 0 0.32 0 0 0.32 0 0 0.32 0 0 0.32 0 0 0.32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16.15 0 0.41 16.15 0 0.41 16.15 0 0.41 16.15 0 0.41 16.15 0 0.41 16.15 0 0.41 17.2 1.21 1.21 10 0

			ARE	AREA DATA (50 YR)	YR)				
	Tollood	Dirchargo		Composite	site	To	Total	Remainder	Ider
	IC USEU	חוארוומוצב	ווורפוואוא	C Value Area	Area	C Value	C Value Subarea	C Value Area	Area
EX-5	11	21.25	7.39	0.49	4.89	0.00	0.00	0.49	4.89
EX-4	16	4.92	6.57	0.48	1.30	0.00	0.00	0.48	1.30
EX-3	5	4.60	8.70	0.52	0.84	0.30	0.53	06.0	0.31
DN-1	20	37.45	6.04	0.32	16.15	0.00	0.00	0.32	16.15

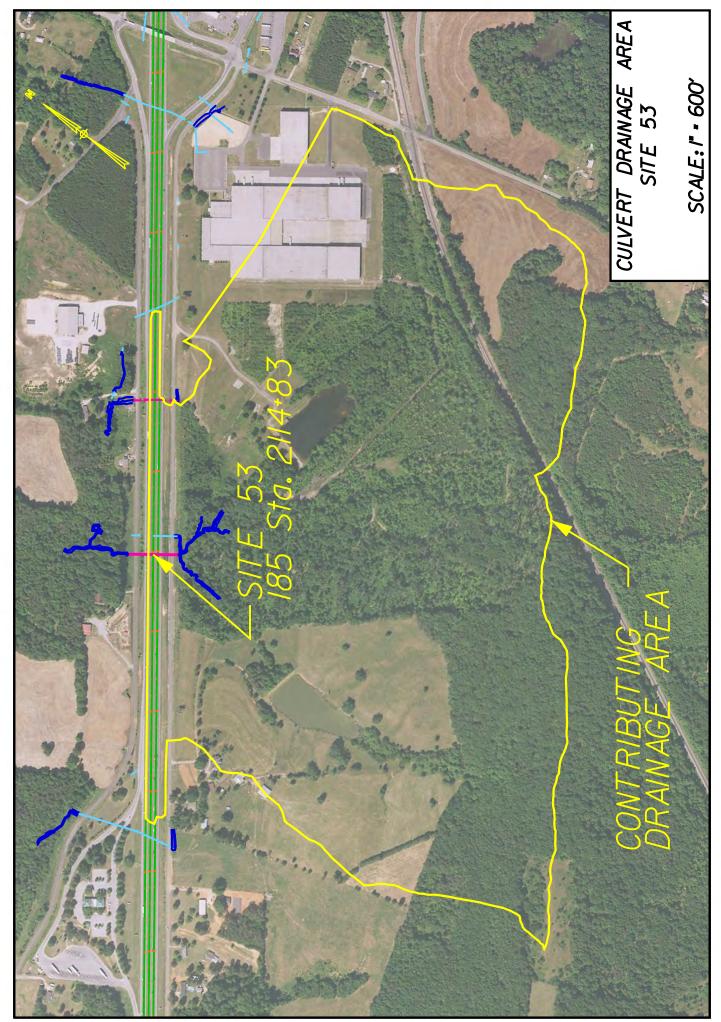
		>							
		Intensity	00.0	5.96	5.96	5.99	6.02	6.04	6.04
	Cumulative	C Value	0.37	0.37	0.37	0.34	0.33	0.32	0.32
	Cumu	Area	23.18	23.18	23.18	18.29	16.99	16.15	16.15
		Discharge	0.00	61.76	61.76	44.83	40.50	37.45	37.45
	Tc	Cumulative	21.00	20.66	20.61	20.37	20.18	20.12	20.00
		Used	0.00	20.61	20.61	20.37	20.18	20.00	20.00
	Junction	Loss	0.00	1.14	0.08	0.11	0.03	0.65	0.00
NODE DATA (50 YR)	Node	Depth	2.33	6.48	9.32	17.00	11.86	3.85	3.54
		Elevation	778.16	793.56	802.44	828.35	828.58	825.00	830.50
	Reference	Elevation	778.16	793.56	802.44	828.35	828.58	825.00	830.50
	Node	Offset	-707.00	-453.50	-376.75	-85.00	78.00	147.00	143.00
		Station	2096+69.00 -707.00	2098+58.50	2098+38.00 -376.75	2097+51.00	2096+77.50	2096+48.00	2097+68.00 143.00
		Reference PGL	185_NB_PGL_CG	185_NB_PGL_CG	I85_NB_PGL_CG	185_NB_PGL_CG	185_NB_PGL_CG	185_NB_PGL_CG	185_NB_PGL_CG
		Library Item Name	OP	DUMMY JOINT	C.B. TYPE 9	EXISTING D.I.	EXISTING D.I.	DUMMY JOINT	DUMMY JOINT
		Type	Outlet	Other	Other	Other	Other	Other	Other
			0P-52	9-NQ	EX-5	EX-4	EX-3	DN-2	DN-1

	Actual Velocity Actual Depth	DS US DS	15.83 1.50 0.71	20.46 2.77 1.33	20.80 2.41 1.03	15.21 2.10 1.21	16.85 2.64 1.06	15.91 2.03 1.21
	Actual	NS	6.31	90.6	7.36	7.66	5.68	5.71
	ert	SQ	775.83	787.08	793.12	811.35	816.72	821.15
	Invert	US	787.08	793.12	811.35	816.72	821.15	826.96
	s	HGL	776.54	788.41	794.15	812.56	817.78	822.36
LINK DATA (50 YR)	DS	Soffit	777.33	790.08	796.12	814.35	819.72	824.15
		HGL	789.72	795.89	813.76	818.82	823.79	828.99
	N	Soffit	788.58	796.12	814.35	819.72	824.15	829.96
	Uniform	Velocity	15.92	24.82	20.99	15.79	19.76	17.09
		Depth	0.71	1.15	1.03	1.17	0.94	1.17
	Capacity		232.32	213.70	191.54	134.70	188.85	460.38
	σ	(cfs)	61.76	61.76	44.83	40.50	37.45	37.45
	Clong	Slope		7.56	6.07	3.00	5.90	4.84
	Actual	Length	316.50	79.91	300.21	178.81	75.04	120.07
	Rise		1.50	3.00	3.00	3.00	3.00	3.00
	No.	Barrels	1.00	1.00	1.00	1.00	1.00	1.00
	Material B		n/a	Concrete	Concrete	Concrete	Concrete	n/a
	Chana	adplic	n/a	Circular	Circular	Circular	Circular	n/a
	e	DS	OP-52	DN-6	EX-5	EX-4	EX-3	DN-2
	Node	NS	DN-6	EX-5	EX-4	EX-3	DN-2	DN-1
	1.14	רוווא - וט	DL-6	EP-5	EP-4	EP-3	EP-2	DL-1

TEGEND	HW ELEVATION	SYSTEM DISCHARGE		LE SY	EGEND M ELEVATION STEM DISCHARGE
--------	--------------	------------------	--	----------	--

	der	Area	4.89	1.30	0.31	16.15
AREA DATA (100 YR)	Remainder	C Value Area	0.49	0.48	06.0	0.32
	tal		0.00	0.00	0.53	0.00
	Total	Area C Value Subarea	0.00	0.00	0:30	0.00
	site	Area	4.89	1.30	0.84	16.15
	Composite	C Value	0.49	0.48	0.52	0.32
	10+001	אוונפוואוול	8.08	7.17	9.55	6.57
	Dirchargo	ulscilaige	24.20	5.59	5.26	42.46
	Area - ID Tc Used Discharge		11	16	5	20
			EX-5	EX-4	EX-3	DN-1

		7								
		Intensity	00.0	6.49	6.49	6.52	6.55	6.57	6.57	
	Cumulative	C Value	0.37	0.37	0.37	0.34	0.33	0.32	0.32	
	Cumi	Area	23.18	23.18	23.18	18.29	16.99	16.15	16.15	
		Discharge	0.00	70.04	70.04	50.84	45.92	42.46	42.46	
	Tc	Cumulative	20.96	20.64	20.59	20.36	20.17	20.11	20.00	
		Used	0.00	20.59	20.59	20.36	20.17	20.00	20.00	
	Junction	Loss	00.0	1.47	0.10	0.13	0.03	0.73	0.00	
		Depth	2.33	6.48	9.32	17.00	11.86	3.85	3.54	
/R)	Node	Elevation Depth	778.16	793.56	802.44	828.35	828.58	825.00	830.50	
NODE DATA (100 YR)	Reference	Elevation	778.16	793.56	802.44	828.35	828.58	825.00	830.50	
	Node	Offset	-707.00	-453.50	-376.75	-85.00	78.00	147.00	143.00	
		Station	2096+69.00 -707.00	2098+58.50 -453.50	2098+38.00 -376.75	2097+51.00	2096+77.50	2096+48.00 147.00	2097+68.00 143.00	
		0	Reference PGL	185_NB_PGL_CG	185_NB_PGL_CG	185_NB_PGL_CG	185_NB_PGL_CG	185_NB_PGL_CG	185_NB_PGL_CG	185_NB_PGL_CG
		Library Item Name	OP	DUMMY JOINT	С.В. ТҮРЕ 9	EXISTING D.I.	EXISTING D.I.	DUMMY JOINT	DUMMY JOINT	
		Туре	Outlet	Other	Other	Other	Other	Other	Other	
	Nodo ID		0P-52	DN-6	EX-5	EX-4	EX-3	DN-2	DN-1	


	1	1						
	Actual Depth	DS	0.77	1.44	1.11	1.30	1.14	1.28
	Actual	SN	1.50	2.91	2.57	2.24	2.85	2.13
	elocity	DS	16.45	20.95	21.49	15.64	17.23	16.26
	Actual Velocity	N	7.16	10.00	7.89	8.12	6.12	5.85
	t	DS	775.83	787.08	793.12	811.35	816.72	821.15
	Invert	US	787.08	793.12	811.35	816.72	821.15	826.96
		HGL	776.60	788.52	794.23	812.65	817.86	822.43
	DS	Soffit	777.33	790.08	796.12	814.35	819.72	824.15
	S	HGL	790.05	796.03	813.92	818.96	824.00	829.09
	SU	Soffit	788.58	796.12	814.35	819.72	824.15	829.96
'R)	nm	Velocity	16.56	25.67	21.72	16.35	20.46	17.61
LINK DATA (100 YR)	Uniform	Depth	0.76	1.23	1.10	1.26	1.00	1.23
LINK D	Casadity.	Capacity		213.70	191.54	134.70	188.85	460.38
	σ	a (cfs) C		70.04	50.84	45.92	42.46	42.46
		adois	3.55	7.56	6.07	3.00	5.90	4.84
	Actual	Length	316.50	79.91	300.21	178.81	75.04	120.07
		RISE	1.50	3.00	3.00	3.00	3.00	3.00
	No.	Barrels	1.00	1.00	1.00	1.00	1.00	1.00
	0.000	Material	e/u	Concrete	Concrete	Concrete	Concrete	e/u
		adpus	n/a	Circular	Circular	Circular	Circular	n/a
	e	DS	OP-52	0-ND	EX-5	EX-4	EX-3	DN-2
	Node	NS	DN-6	EX-5	EX-4	EX-3	DN-2	DN-1
			DL-6	EP-5	EP-4	EP-3	EP-2	DL-1

LEGEND HW ELEVATION SYSTEM DISCHARG

r	ipe/Box Dimensio	ns		Flow
		(inch)		(cfs)
Pipe Diameter		36		
Box Dimension				62
Span (ft)		0		02
Height (ft)		0		
Length	Width	Ripr	ар	GeoText
Length		Ripi	-	GeoText
(FHWA HEC-1	4 - Calculated)	Quantity	ap Class ²	
			-	GeoText (SqYd) 43

** Riprap Class (D50) as per HEC-14 Eq. 10.4; Tailwater condition assumed (TW=0.4D)

		SCS A	Analysis					
_				_	_			1
HSG	Land Use	Acres	CN					
В	Impervious	23.68	98.00					
В	Streets and roads: Gravel	2.27	85.00		Area W	eighted Cl	N	
В	Pasture, grassland, or range: Good	72.90	61.00			62		
В	Woods:Good	131.89	55.00					
А	Pasture,grassland,or range: Good	1.55	39.00					
А	Woods:Good	3.39	30.00					
		235.68						
	County (NOAA-14)		our rainfall [in]					
	Cherokee	3	3.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [h
Sheet	Woods:dense underbrush	4.76%	100	0.8				0.4
Shallow								
Concentrated Shallow	Unpaved	4.76%	2177					0.1
Concentrated	Paved	4.76%	545					0.0
Channel 1		4.00%	1025	0.04	1.5	3.65028	4.11781	0.0
Channel 2								
			3847				1.5649	0.6
otal								
otal	Drainage Area (acres)	235.68		Curve N	lumber	e	62	

WinTR-55 Current Data Description

--- Identification Data ---

User: CECS Date: 12/13/2016 Project: I-85 Improvement Proj DB Prep Units: English SubTitle: SITE 53 Areal Units: Acres State: South Carolina County: Cherokee_NOAA_B Filename: S:\Proj\2014\6114 I-85 mm 96-106\Design\Project PIN Number\Drainage\Calculations\CULVERT - POST

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
SITE 53		Outlet	235.68	62	0.680

Total area: 235.68 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.73	4.68	5.44	6.49	7.35	8.24	3.1

Storm Data Source:Cherokee_NRainfall Distribution Type:Type NO_BDimensionless Unit Hydrograph:<standard>

Cherokee_NOAA_B County, SC (NRCS) Type NO_B <standard>

I-85 Improvement Proj DB Prep SITE 53 Cherokee_NOAA_B County, South Carolina

Watershed Peak Table

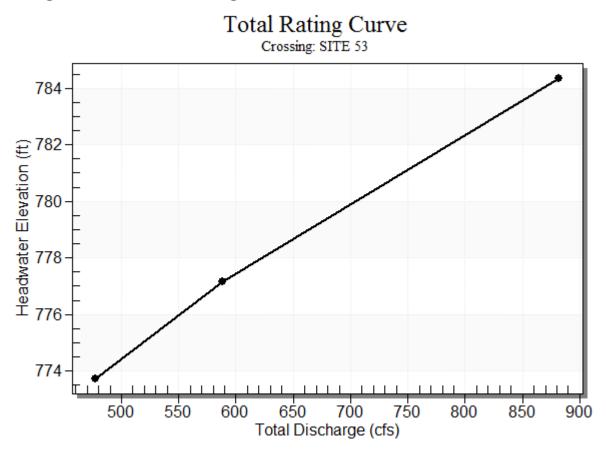
Sub-Area or Reach Identifier	Pea 10-Yr (cfs)	25-Yr	Rainfall 50-Yr (cfs)	Return Period 100-Yr (cfs)	
SUBAREAS SITE 53	255.84	373.62	476.59	587.77	
REACHES					

OUTLET 255.84 373.62 476.59 587.77

CECS

WinTR-55, Version 1.00.10 Page 1 12/13/2016 10:00:37 AM

HY-8 Culvert Analysis Report


Crossing Discharge Data

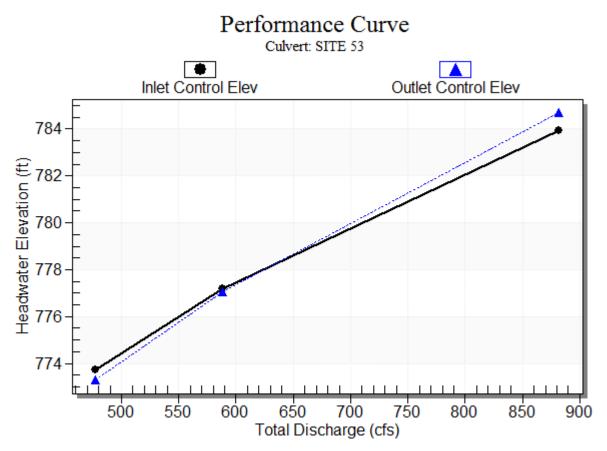
Discharge Selection Method: Recurrence

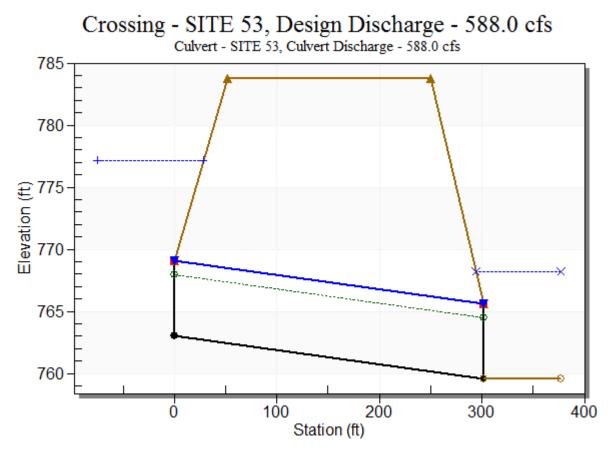
	-				
Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 53 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
773.74	50 year	477.00	477.00	0.00	1
777.17	100 year	588.00	588.00	0.00	1
783.80	Overtopping	751.41	751.41	0.00	Overtopping

 Table 1 - Summary of Culvert Flows at Crossing: SITE 53

Rating Curve Plot for Crossing: SITE 53

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	477.00	477.00	773.74	10.693	10.245	4-FFf	4.147	5.812	4.147	7.866	19.171
100 year	588.00	588.00	777.17	14.124	14.005	4-FFf	4.892	6.000	4.892	8.602	20.033


 Table 2 - Culvert Summary Table: SITE 53


Straight Culvert

Inlet Elevation (invert): 763.05 ft, Outlet Elevation (invert): 759.61 ft Culvert Length: 302.02 ft, Culvert Slope: 0.0114

Culvert Performance Curve Plot: SITE 53

Water Surface Profile Plot for Culvert: SITE 53

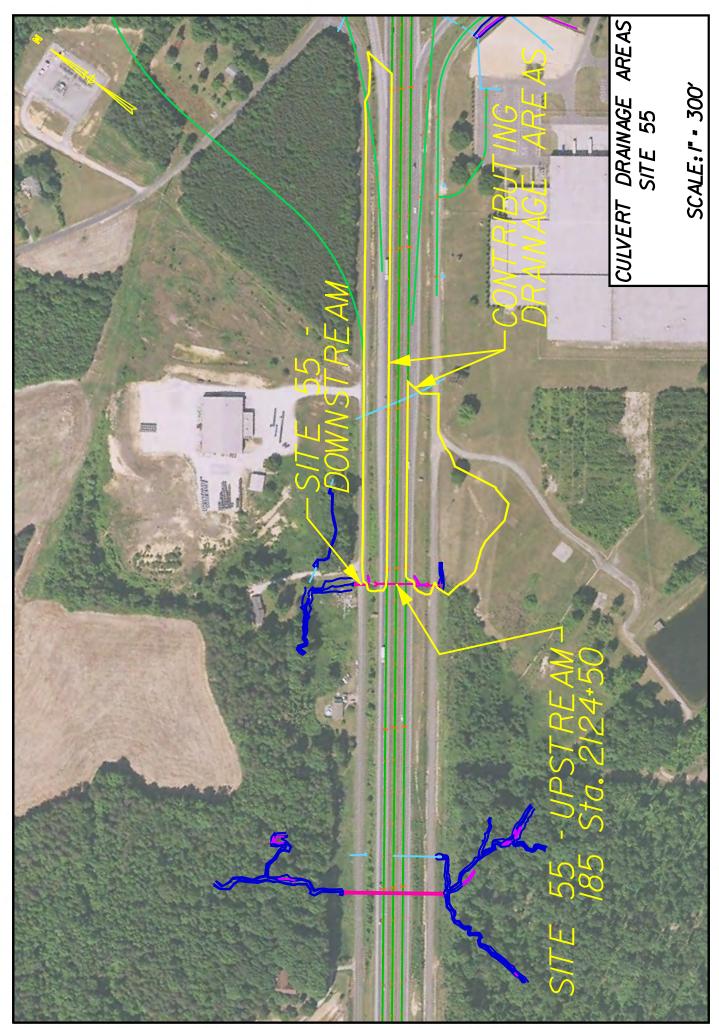
Site Data - SITE 53

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 763.05 ft Outlet Station: 302.00 ft Outlet Elevation: 759.61 ft Number of Barrels: 1

Culvert Data Summary - SITE 53

Barrel Shape: Concrete Box Barrel Span: 6.00 ft Barrel Rise: 6.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (30-75° flare) Wingwall Inlet Depression: NONE

Flow (cfs) Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
477.00	767.48	7.87	3.84	3.48	0.32
588.00	768.21	8.60	4.04	3.81	0.32


 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 53)

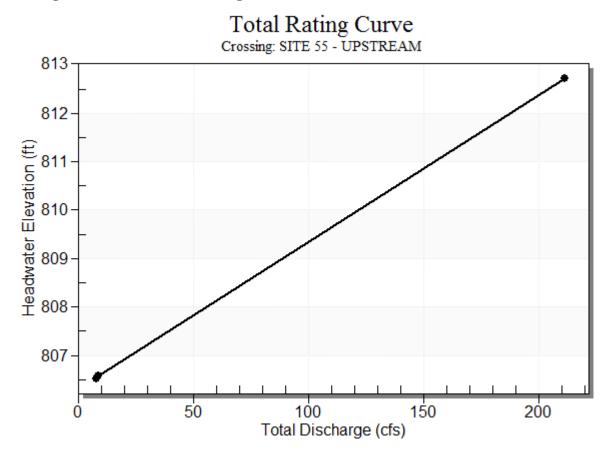
Tailwater Channel Data - SITE 53

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 4.00 ft Side Slope (H:V): 1.50 (_:1) Channel Slope: 0.0071 Channel Manning's n: 0.0800 Channel Invert Elevation: 759.61 ft

Roadway Data for Crossing: SITE 53

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 783.80 ft Roadway Surface: Paved Roadway Top Width: 198.00 ft

		Rati	onal Analysis					
Land Slope	Land Use	Acres 0.57	C 0.90					
Rolling, 2%-10%	Pavements & Roofs						1.0	
Rolling, 2%-10%	Side Slopes, Turf	2.21	0.30		Area	Weighte	d C	
						0.42		
		2.78		-				
		1		1				
	County (NOAA-14)		our rainfall [in]					
	Cherokee		3.73					
Flow Type	Surface	Slope	Length [ft]	Manning's	Area [ft^2]	WP [ft]	Velocity	(I)
			Lengui [it]		Alea [it 2]		FC. ()	Time [nr]
Charat				n	Alea [it 2]	VVP [IL]	[ft/s]	Time [nr]
Sheet Shallow	Grass:bermudagrass	2.27%	100	n 0.41			[ft/s]	Time [nr]
Sheet Shallow Concentrated	Grass:bermudagrass Unpaved						[ft/s]	0.32
Shallow Concentrated Shallow		2.27%	100				[ft/s]	0.32
Shallow Concentrated Shallow Concentrated		2.27%	100 239	0.41				0.32 0.02
Shallow Concentrated Shallow Concentrated Channel 1		2.27%	100		3.5		[ft/s] 7.27954	0.32 0.02
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2		2.27%	100 239 65	0.41			7.27954	0.32 0.02 0.00
Shallow Concentrated Shallow Concentrated Channel 1		2.27%	100 239	0.41				0.32 0.02 0.00
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2		2.27%	100 239 65	0.41			7.27954	0.32 0.02 0.00
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2		2.27%	100 239 65 404	0.41			7.27954	0.32 0.02 0.00
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2		2.27%	100 239 65	0.41			7.27954	0.32 0.02 0.00
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Unpaved	2.27% 2.27% 12.85%	100 239 65 404 Gaffney	0.41			7.27954	0.32 0.02 0.00
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Unpaved	2.27% 2.27% 12.85%	100 239 65 404	0.41			7.27954	0.32 0.02 0.00 0.35
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Unpaved	2.27% 2.27% 12.85%	100 239 65 404 Gaffney 22	0.41	3.5	7.2854	7.27954	0.32 0.02 0.00
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Unpaved	2.27% 2.27% 12.85%	100 239 65 404 Gaffney 22 C	0.41 0.045	3.5	7.2854	7.27954 0.3193	0.32 0.02 0.00
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Unpaved Time of Concentration (minutes)	2.27% 2.27% 12.85%	100 239 65 404 Gaffney 22 22 C 0.42	0.41 0.045	3.5 3.5 AREA (ac) 2.78	7.2854	7.27954 0.3193 FS 5	0.32 0.02 0.00
Shallow Concentrated Shallow Concentrated Channel 1 Channel 2	Unpaved	2.27% 2.27% 12.85%	100 239 65 404 Gaffney 22 C	0.41 0.045	3.5	7.2854	7.27954 0.3193	0.32 0.02 0.00


HY-8 Culvert Analysis Report

Crossing Discharge Data

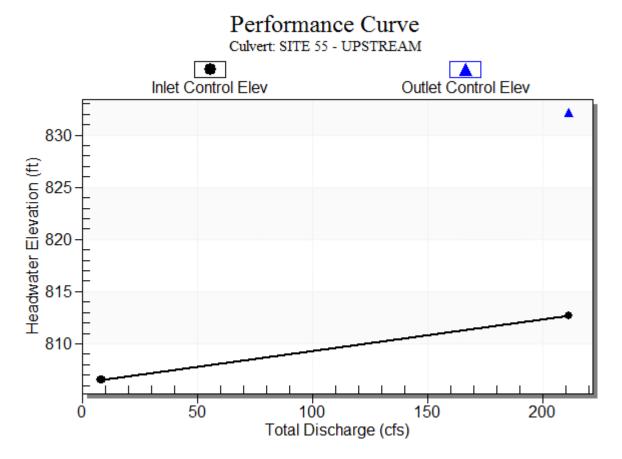
Discharge Selection Method: Recurrence

	-				
Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 55 - UPSTREAM Discharge (cfs)	Roadway Discharge (cfs)	Iterations
806.53	50 year	8.00	8.00	0.00	1
806.59	100 year	9.00	9.00	0.00	1
812.63	Overtopping	9.00	9.00	0.00	Overtopping

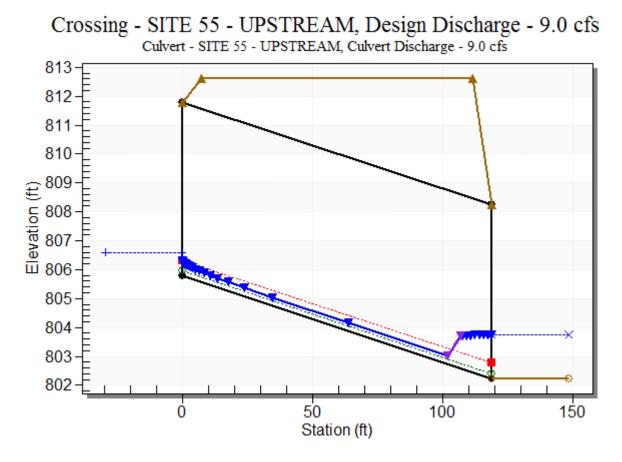
 Table 1 - Summary of Culvert Flows at Crossing: SITE 55 - UPSTREAM

Rating Curve Plot for Crossing: SITE 55 - UPSTREAM

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	8.00	8.00	806.53	0.745	0.0*	1-JS1t	0.148	0.499	1.370	1.370	1.460
100 year	9.00	9.00	806.59	0.806	0.0*	1-JS1t	0.167	0.540	1.500	1.500	1.500


Table 2 - Culvert Summary Table: SITE 55 - UPSTREAM

* Full Flow Headwater elevation is below inlet invert.



Straight Culvert

Inlet Elevation (invert): 805.78 ft, Outlet Elevation (invert): 802.24 ft Culvert Length: 119.05 ft, Culvert Slope: 0.0297

Culvert Performance Curve Plot: SITE 55 - UPSTREAM

Water Surface Profile Plot for Culvert: SITE 55 - UPSTREAM

Site Data - SITE 55 - UPSTREAM

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 805.78 ft Outlet Station: 119.00 ft Outlet Elevation: 802.24 ft Number of Barrels: 1

Culvert Data Summary - SITE 55 - UPSTREAM

Barrel Shape: Concrete Box Barrel Span: 4.00 ft Barrel Rise: 6.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (30-75° flare) Wingwall Inlet Depression: NONE

		• •	
Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
8.00	803.61	1.37	0.00
9.00	803.74	1.50	0.00

Table 3 - Downstream Channel Rating Curve (Crossing: SITE 55 - UPSTREAM)

Tailwater Channel Data - SITE 55 - UPSTREAM

Tailwater Channel Option: Enter Rating Curve Channel Invert Elevation: 802.24 ft

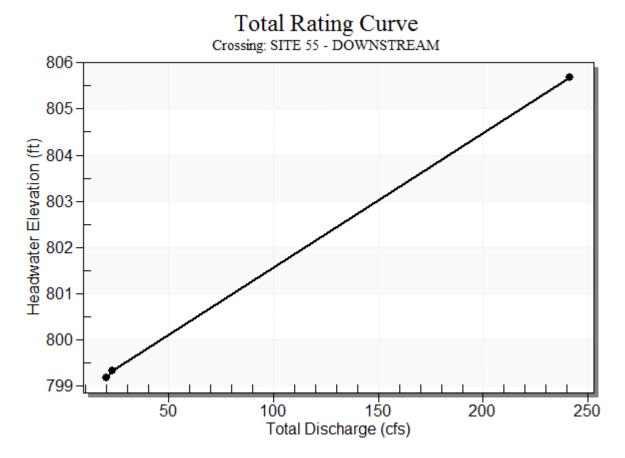
Roadway Data for Crossing: SITE 55 - UPSTREAM

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 812.63 ft Roadway Surface: Paved Roadway Top Width: 104.00 ft

SITE 55 – Upstream Culvert Tailwater Rating Curve

	Downstrea	m (DS) Culve	Upstream (Upstream (US) Culvert							
Deturn	Inlet Elevation	797.82		Outlet Elevation	802.24						
Return Event		Headw	ater		Tailwater						
Lvent		Elevation	Depth		Elevation	Depth					
50-Year		799.19	1.37		803.61	1.37					
100-Year		799.32	1.50		803.74	1.50					
* All elevations	* All elevations and depths are in feet.										

		Rati	onal Analysis					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	2.05	0.90					
Rolling, 2%-10%	Side Slopes, Turf	3.64	0.30		Area	Weighte	d C	
						0.52		
	L							
		5.69						l
	$C_{\text{ounty}}(NOAA, 14)$	2 year 24 H	lour minfall [in]	1				
	County (NOAA-14) Cherokee	1	lour rainfall [in] 3.73					
	Cherokee	·	5.75					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Grass:bermudagrass	2.27%	100	0.41				0.32
Shallow								
Concentrated Shallow	Unpaved	2.27%	239					0.02
Concentrated								
Channel 1		12.85%	65	0.045	3.5	7.2854	7.27954	0.00
Channel 2								
Total			404				0.3193	0.35
			Gaffney					
	Time of Concentrat	ion	22					
	(minutes)		22					
		C _f	С	l [in/hr]	AREA (ac)		:FS	
	Q ₁₀	1	0.52	4.618	5.69		14	
	Q ₂₅	1.1	0.52	5.284	5.69		17	
	Q ₅₀	1.2	0.52	5.804	5.69		20	
	Q ₁₀₀	1.25	0.52	6.311	5.69	-	23	l


HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Recurrence

	Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 55 - DOWNSTREAM Discharge (cfs)	Roadway Discharge (cfs)	Iterations
	799.19	50 year	20.00	20.00	0.00	1
	799.32	100 year	23.00	23.00	0.00	1
ĺ	805.51	Overtopping	23.00	23.00	0.00	Overtopping

 Table 1 - Summary of Culvert Flows at Crossing: SITE 55 - DOWNSTREAM

Rating Curve Plot for Crossing: SITE 55 - DOWNSTREAM

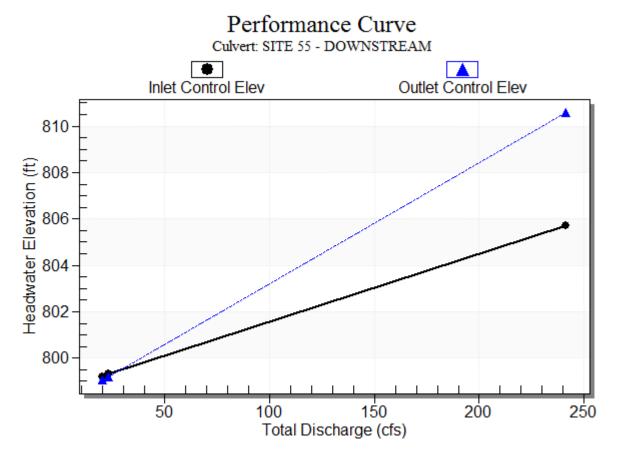
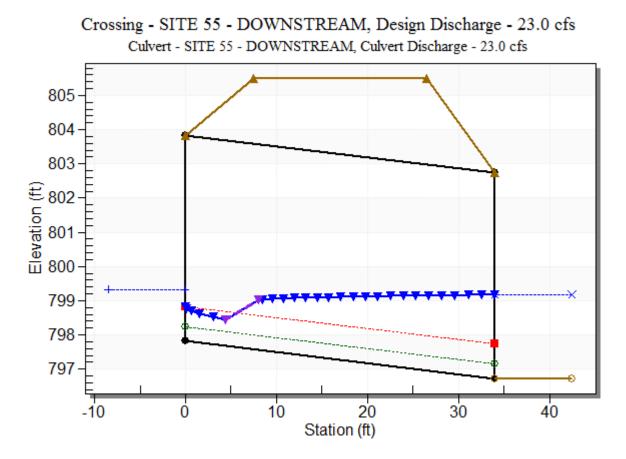

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	20.00	20.00	799.19	1.370	1.238	1-JS1t	0.357	0.919	2.312	2.312	2.163
100 year	23.00	23.00	799.32	1.504	1.368	1-JS1t	0.411	1.009	2.436	2.436	2.360

Table 2 - Culvert Summary Table: SITE 55 - DOWNSTREAM



Straight Culvert

Inlet Elevation (invert): 797.82 ft, Outlet Elevation (invert): 796.73 ft Culvert Length: 34.02 ft, Culvert Slope: 0.0321

Culvert Performance Curve Plot: SITE 55 - DOWNSTREAM

Water Surface Profile Plot for Culvert: SITE 55 - DOWNSTREAM

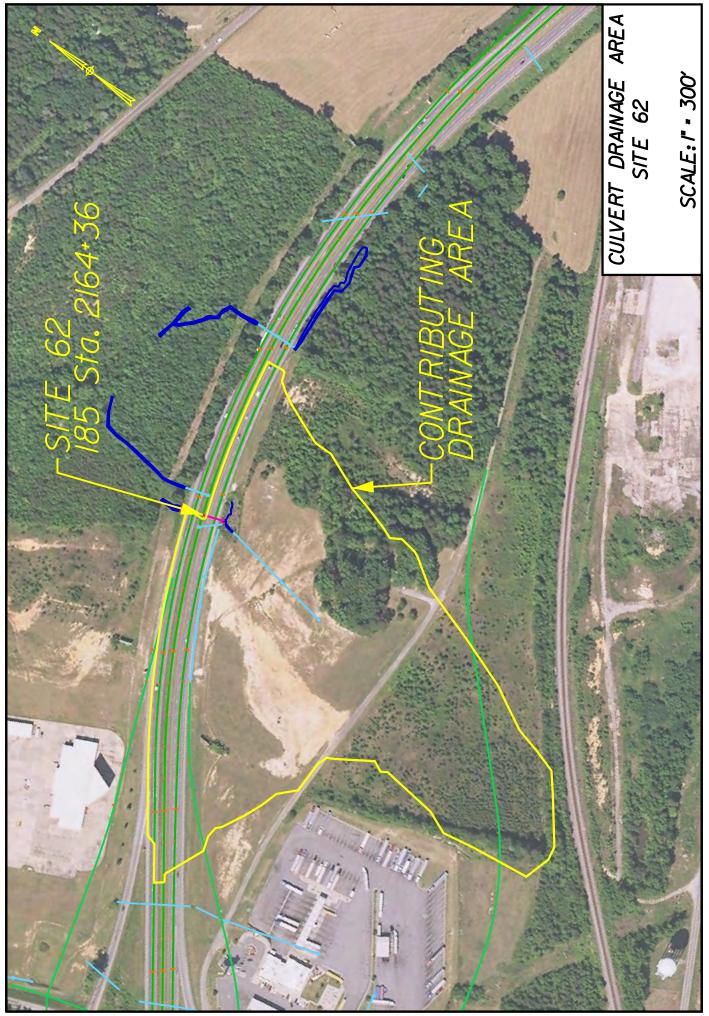
Site Data - SITE 55 - DOWNSTREAM

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 797.82 ft Outlet Station: 34.00 ft Outlet Elevation: 796.73 ft Number of Barrels: 1

Culvert Data Summary - SITE 55 - DOWNSTREAM

Barrel Shape: Concrete Box Barrel Span: 4.00 ft Barrel Rise: 6.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (30-75° flare) Wingwall Inlet Depression: NONE

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
20.00	799.04	2.31	2.88	3.89	0.47
23.00	799.17	2.44	2.98	4.10	0.48


 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 55 - DOWNSTREAM)

Tailwater Channel Data - SITE 55 - DOWNSTREAM

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 1.30 (_:1) Channel Slope: 0.0270 Channel Manning's n: 0.0800 Channel Invert Elevation: 796.73 ft

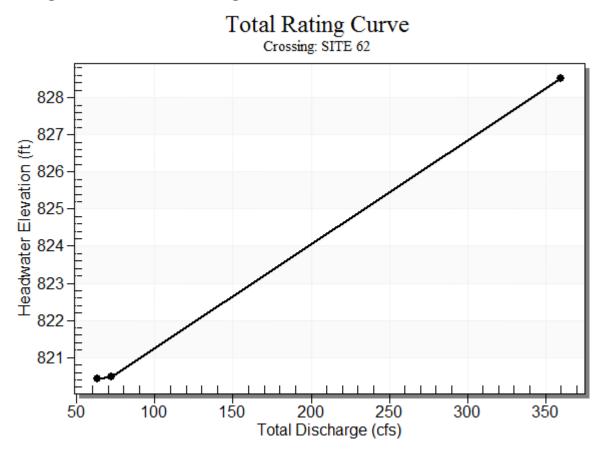
Roadway Data for Crossing: SITE 55 - DOWNSTREAM

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 805.51 ft Roadway Surface: Paved Roadway Top Width: 19.00 ft

		Ratio	onal Analysis					
			0			_	_	1
Land Slope	Land Use	Acres	C					
Rolling, 2%-10%	Pavements & Roofs	4.57	0.90			Maighta	40	
Rolling, 2%-10%	Earth shoulders	2.05	0.50		Area	Weighte	ac	
Rolling, 2%-10%	Side Slopes, Turf	9.98	0.30			0.39		
Rolling, 2%-10%	Unimproved Areas	4.80	0.20					
Rolling, 2%-10%	Woodland & Forest	3.45	0.15					
		24.85						
		24.05						
	County (NOAA-14)	2-year 24 H	our rainfall [in]					
	Cherokee	1	8.73					
	Cherokee	<u> </u>						
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods: light underbrush	2.84%	100	0.4				0.28
Shallow	<u> </u>							
Concentrated	Unpaved	2.84%	1189					0.12
Shallow								
Concentrated								
Channel 1								
Channel 2								
Total		L	1289				0.8747	0.40
								1
			Gaffney					
	Time of Concentra	tion	25					
	(minutes)		25					
		C _f	С	I [in/hr]	AREA (ac)	C	:FS	
	Q ₁₀	1	0.39	4.372	24.85	4	42	
	Q ₂₅	1.1	0.39	4.996	24.85		53	
	Q ₅₀	1.2	0.39	5.482	24.85		53	
	Q ₁₀₀	1.25	0.39	5.956	24.85		72	
	-100							

SITE 62

HY-8 Culvert Analysis Report


Crossing Discharge Data

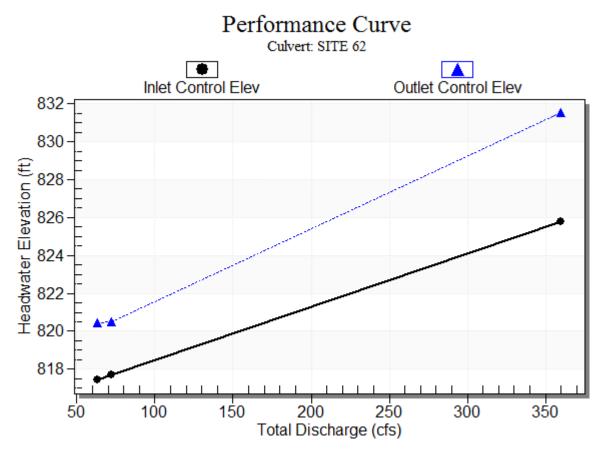
Discharge Selection Method: Recurrence

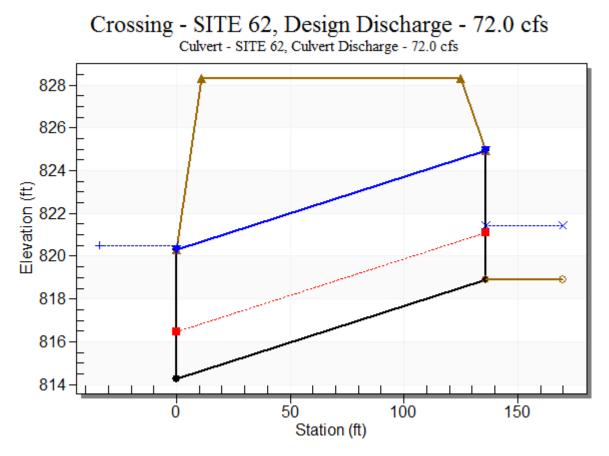
Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 62 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
820.44	50 year	63.00	63.00	0.00	1
820.49	100 year	72.00	72.00	0.00	1
828.33	Overtopping	234.75	234.75	0.00	Overtopping

 Table 1 - Summary of Culvert Flows at Crossing: SITE 62

Rating Curve Plot for Crossing: SITE 62

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	63.00	63.00	820.44	3.140	6.150	9-A2t	-1.000	1.975	2.344	2.344	6.718
100 year	72.00	72.00	820.49	3.431	6.196	9-A2t	-1.000	2.159	2.488	2.488	7.235


Table 2 - Culvert Summary Table: SITE 62


Straight Culvert

Inlet Elevation (invert): 814.29 ft, Outlet Elevation (invert): 818.92 ft Culvert Length: 136.08 ft, Culvert Slope: -0.0340

Culvert Performance Curve Plot: SITE 62

Water Surface Profile Plot for Culvert: SITE 62

Site Data - SITE 62

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 814.29 ft Outlet Station: 136.00 ft Outlet Elevation: 818.92 ft Number of Barrels: 1

Culvert Data Summary - SITE 62

Barrel Shape: Concrete Box Barrel Span: 4.00 ft Barrel Rise: 6.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (30-75° flare) Wingwall Inlet Depression: NONE

ſ	Flow (cfs)	Water Surface	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
	- (0.0)	Elev (ft)	-1-3- (-7		(P)	
	63.00	821.26	2.34	1.52	0.63	0.22
	72.00	821.41	2.49	1.57	0.67	0.23


 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 62)

Tailwater Channel Data - SITE 62

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 6.00 ft Side Slope (H:V): 5.00 (_:1) Channel Slope: 0.0043 Channel Manning's n: 0.0800 Channel Invert Elevation: 818.92 ft

Roadway Data for Crossing: SITE 62

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 828.33 ft Roadway Surface: Paved Roadway Top Width: 114.00 ft

		Ra	ational Analysis					
								1
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	2.70	0.90					
Rolling, 2%-10%	Gravel Pavements	0.92	0.55		Area	Weighte	d C	
Rolling, 2%-10%	Side Slopes, Turf	2.02	0.30			0.28		
Rolling, 2%-10%	Unimproved Areas	2.59	0.20					
Rolling, 2%-10%	Woodland & Forest	13.44	0.15					
		24.67						
		21.67		_	_	_		
	County (NOAA-14)	2 yoar 24 H	our rainfall [in]					
	Cherokee		3.73					
	Cherokee		5.75					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	2.60%	100	0.8				0.52
Shallow								
Concentrated Shallow	Unpaved	2.60%	908					0.09
Concentrated								
Channel 1								
Channel 2								
Total			1008			•	0.4540	0.61
	-							
								1
			Gaffney					
	Time of Concentra	ation	38					
	(minutes)		58					
		C _f	С	l [in/hr]	AREA (ac)	0	CFS	
	Q ₁₀	1	0.28	3.551	21.67		22	
	Q ₁₀ Q ₂₅	1.1	0.28	4.042	21.67		27	
	Q ₅₀	1.1	0.28	4.422	21.67		32	
		1.2	0.20	4.701	21.07		26	

Q₁₀₀

1.25

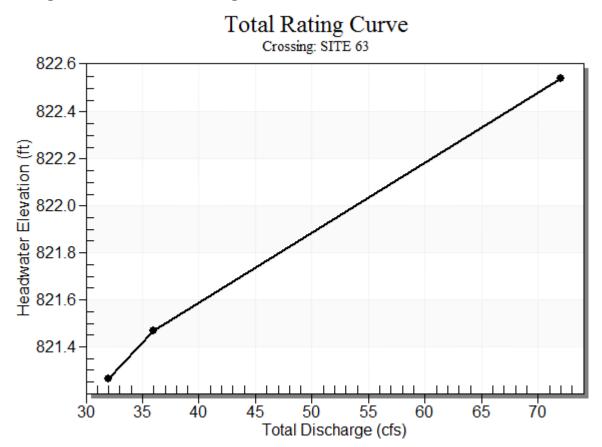
0.28

4.791

21.67

36

HY-8 Culvert Analysis Report


Crossing Discharge Data

Discharge Selection Method: Recurrence

	-				
Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 63 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
821.27	50 year	32.00	32.00	0.00	1
821.47	100 year	36.00	36.00	0.00	1
822.37	Overtopping	51.85	51.85	0.00	Overtopping

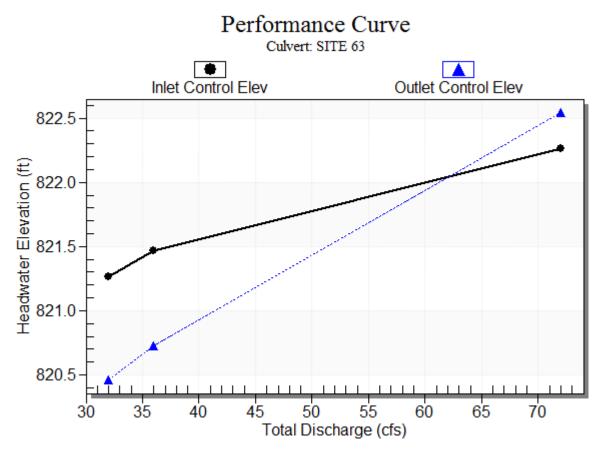
 Table 1 - Summary of Culvert Flows at Crossing: SITE 63

Rating Curve Plot for Crossing: SITE 63

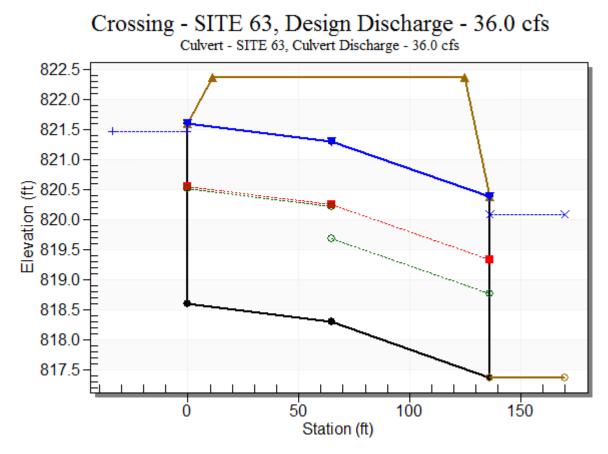
Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	32.00	32.00	821.27	2.666	1.860	1-S2n	0.000	1.095	2.571	2.571	10.015
100 year	36.00	36.00	821.47	2.867	2.128	1-S2n	0.000	1.095	2.704	2.704	10.267

Table 2 - Culvert Summary Table: SITE 63

Single Broken-back Culvert Inlet Elevation (invert): 818.60 ft


Break Elevation (invert): 818.30 ft

Culvert Length: 136.01 ft


Upper Culvert Section Slope: 0.0046

Steep Culvert Section Slope: 0.0130

Culvert Performance Curve Plot: SITE 63

Water Surface Profile Plot for Culvert: SITE 63

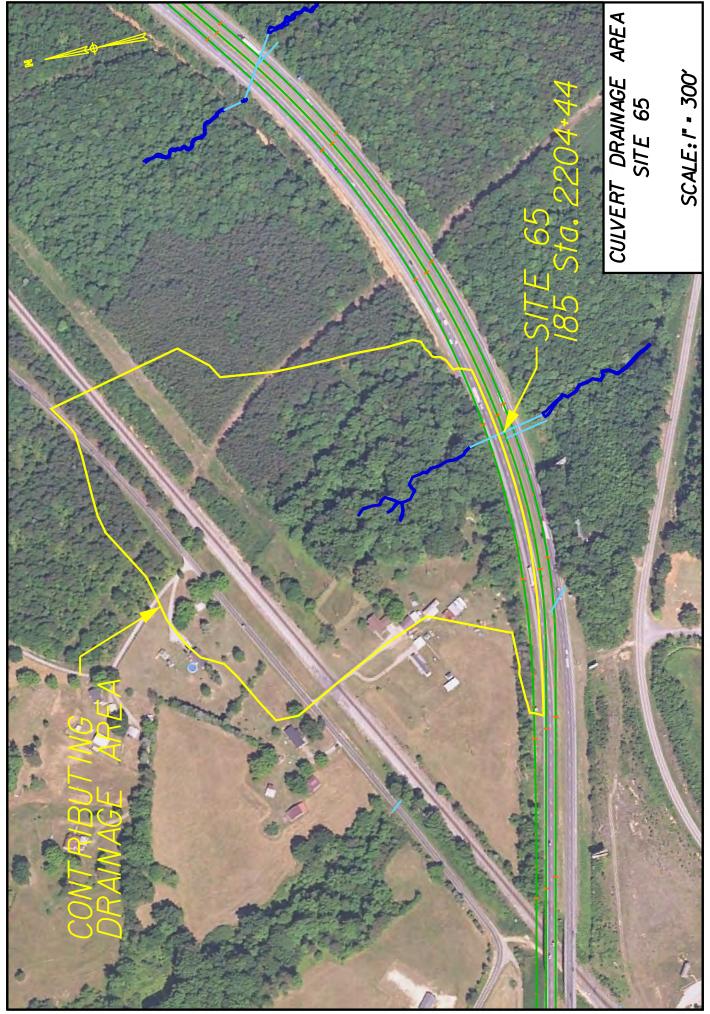
Site Data - SITE 63

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 818.60 ft Break Station: 65.00 ft Break Elevation: 818.30 ft Outlet Station: 136.00 ft Outlet Elevation: 817.38 ft Number of Barrels: 1

Culvert Data Summary - SITE 63

Barrel Shape: Circular Barrel Diameter: 3.00 ft Upper Section Material: Concrete Lower Section Material: Concrete Embedment: 0.00 in Upper Section Manning's n: 0.0120 Lower Section Manning's n: 0.0120 Culvert Type: Single Broken-back Inlet Configuration: Grooved End Projecting Inlet Depression: NONE

	Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
Ī	32.00	819.95	2.57	3.05	3.53	0.44
	36.00	820.08	2.70	3.14	3.71	0.45


 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 63)

Tailwater Channel Data - SITE 63

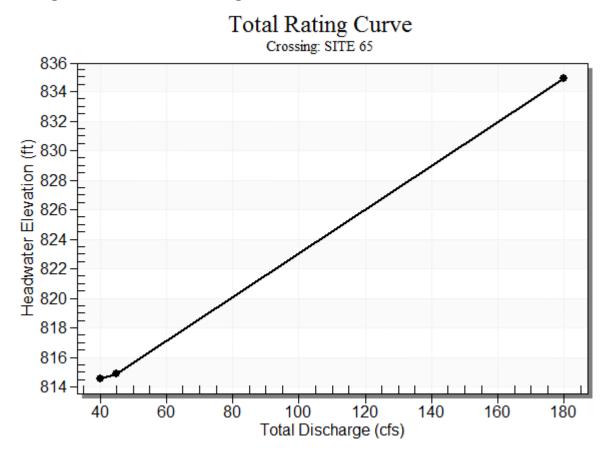
Tailwater Channel Option: Trapezoidal Channel Bottom Width: 1.00 ft Side Slope (H:V): 1.20 (_:1) Channel Slope: 0.0220 Channel Manning's n: 0.0800 Channel Invert Elevation: 817.38 ft

Roadway Data for Crossing: SITE 63

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 822.37 ft Roadway Surface: Paved Roadway Top Width: 114.00 ft

		Rati	onal Analysis					
Land Clana	Land Lies	Aaraa	6		_	-		
Land Slope	Land Use	Acres 2.21	C 0.90					
Rolling, 2%-10%	Pavements & Roofs	9.23	0.30		Aroa	Weighte	40	
Rolling, 2%-10%	Side Slopes, Turf	9.23	0.30		Alea	-	uc	
Rolling, 2%-10%	Rail Yards					0.28		
Hilly, Over 10%	Woodland & Forest	5.09	0.20					
Rolling, 2%-10%	Woodland & Forest	9.25	0.15					
		27.18						J
	County (NOAA-14)	2-year 24 H	our rainfall [in]	1				
	Cherokee	-	3.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrush	5.04%	100	0.8				0.39
Shallow	Line and	5.040/	767					0.05
Concentrated Shallow	Unpaved	5.04%	767					0.05
Concentrated								
Channel 1		1.11%	1480	0.04	2	4.5765	2.25813	0.18
Channel 2								
Total			2347				1.0195	0.63
			Gaffney					
	Time of Concentrat	ion	39					
	(minutes)							
		C _f	С	l [in/hr]	AREA (ac)	C	:FS	
	Q ₁₀	1	0.28	3.500	27.18	2	27	
	Q ₂₅	1.1	0.28	3.984	27.18		33	
	Q ₅₀	1.2	0.28	4.358	27.18		40	
	Q ₁₀₀	1.25	0.28	4.720	27.18	4	45	

HY-8 Culvert Analysis Report


Crossing Discharge Data

Discharge Selection Method: Recurrence

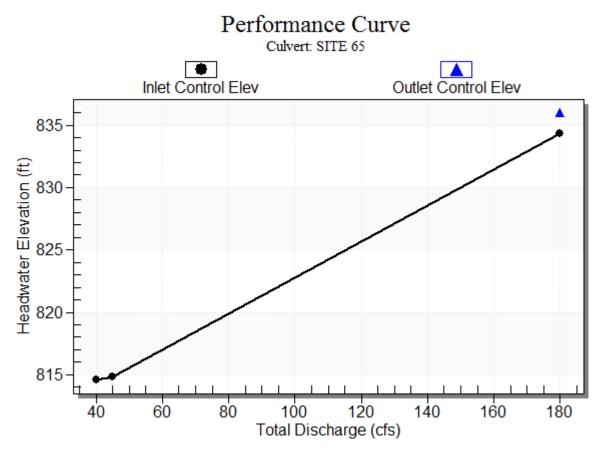
Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 65 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
814.58	50 year	40.00	40.00	0.00	1
814.85	100 year	45.00	45.00	0.00	1
834.86	Overtopping	172.32	172.32	0.00	Overtopping

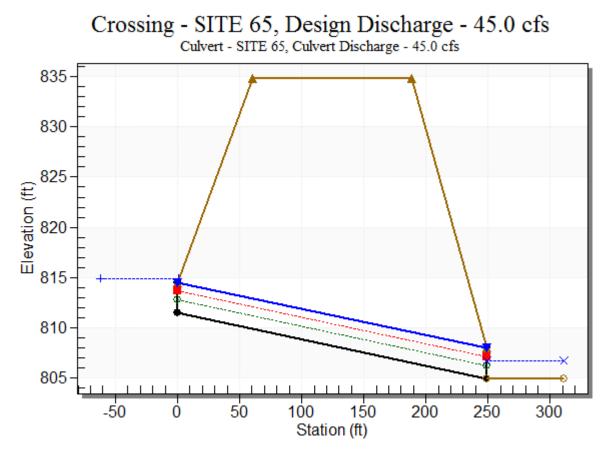
 Table 1 - Summary of Culvert Flows at Crossing: SITE 65

Rating Curve Plot for Crossing: SITE 65

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	40.00	40.00	814.58	3.048	0.0*	6-FFc	1.200	2.057	2.057	1.650	7.754
100 year	45.00	45.00	814.85	3.322	0.0*	6-FFc	1.285	2.183	2.183	1.764	8.189

Table 2 - Culvert Summary Table: SITE 65


* Full Flow Headwater elevation is below inlet invert.


Straight Culvert

Inlet Elevation (invert): 811.53 ft, Outlet Elevation (invert): 804.97 ft Culvert Length: 249.09 ft, Culvert Slope: 0.0263

Culvert Performance Curve Plot: SITE 65

Water Surface Profile Plot for Culvert: SITE 65

Site Data - SITE 65

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 811.53 ft Outlet Station: 249.00 ft Outlet Elevation: 804.97 ft Number of Barrels: 1

Culvert Data Summary - SITE 65

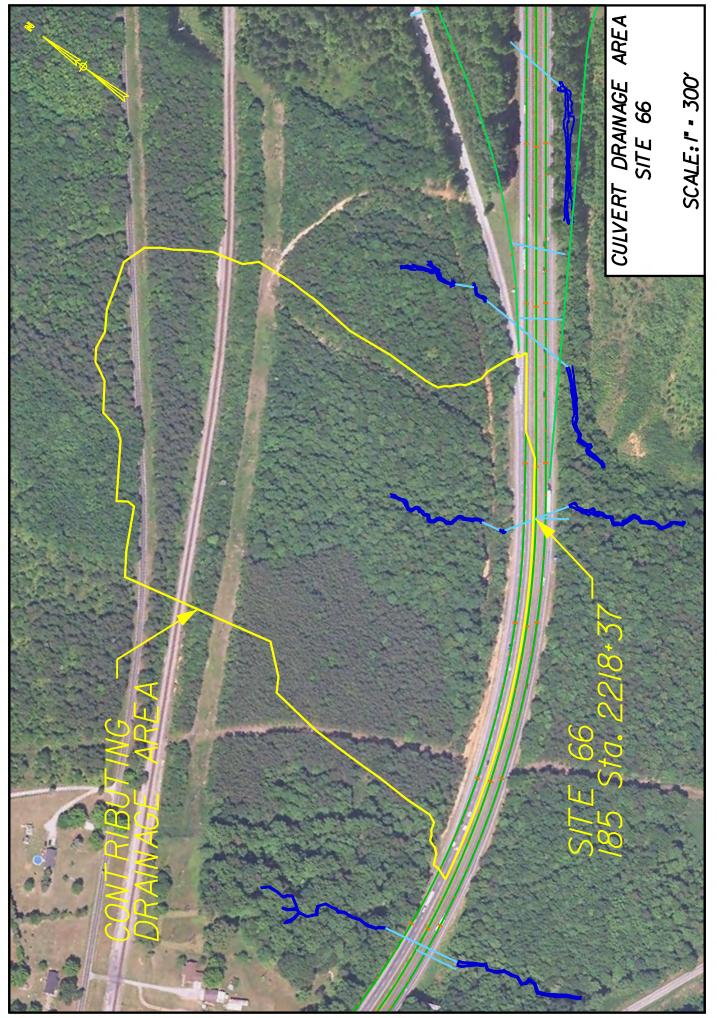
Barrel Shape: Circular Barrel Diameter: 3.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Grooved End Projecting Inlet Depression: NONE

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
40.00	806.62	1.65	4.42	2.99	0.68
45.00	806.73	1.76	4.57	3.19	0.69

 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 65)

Tailwater Channel Data - SITE 65

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 4.00 ft Side Slope (H:V): 0.90 (_:1) Channel Slope: 0.0290 Channel Manning's n: 0.0600 Channel Invert Elevation: 804.97 ft


Roadway Data for Crossing: SITE 65

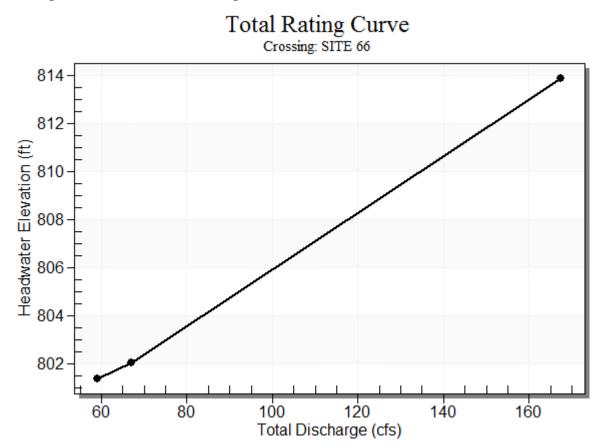
Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 834.86 ft Roadway Surface: Paved Roadway Top Width: 128.00 ft

(inch)(cfPipe Diameter36Box Dimension0Span (ft)0Height (ft)0
Box Dimension 40 Span (ft) 0
Span (ft) 0 40
Span (ft) 0
Height (ft) 0
Length Width Riprap GeoT (FHWA HEC-14 - Calculated) Quantity Class ²
(ft) (ft) (Tons) (Sq)
15 19 22 B 33

** Riprap Class (D50) as per HEC-14 Eq. 10.4; Tailwater condition assumed (TW=0.4D)

		Ra	tional Analysis					
			i					
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Pavements & Roofs	2.45	0.90					
Rolling, 2%-10%	Side Slopes, Turf	4.68	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Rail Yards	1.45	0.30			0.23		
Hilly, Over 10%	Woodland & Forest	4.93	0.20					
Rolling, 2%-10%	Woodland & Forest	23.18	0.15					
		36.69						
	County (NOAA-14)		our rainfall [in]					
	Cherokee		3.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrus	10.42%	100	0.8				0.298
Shallow								
Concentrated Shallow	Unpaved	10.42%	495					0.026
Concentrated								
Channel 1		2.21%	380	0.04	3	6.3246	3.36648	0.031
Channel 2								
Total			975				0.7608	0.356
	_							
		_			_			
			Gaffney					
	Time of Concentration (minutes)		22					
					· ·	-	50	
		C _f	C	I [in/hr]	AREA (ac)		CFS	
	Q ₁₀	1 1.1	0.23	4.618 5.284	36.69 36.69		39 49	
	Q ₂₅ Q ₅₀	1.1	0.23	5.284	36.69		+9 59	
	Q ₁₀₀	1.2	0.23	6.311	36.69		55 57	
	~ 100			0.011				

HY-8 Culvert Analysis Report


Crossing Discharge Data

Discharge Selection Method: Recurrence

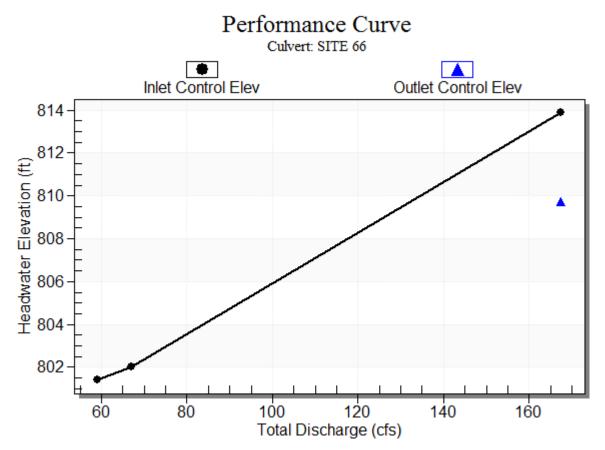
	-				
Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 66 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
801.41	50 year	59.00	59.00	0.00	1
802.04	100 year	67.00	67.00	0.00	1
813.74	Overtopping	148.18	148.18	0.00	Overtopping

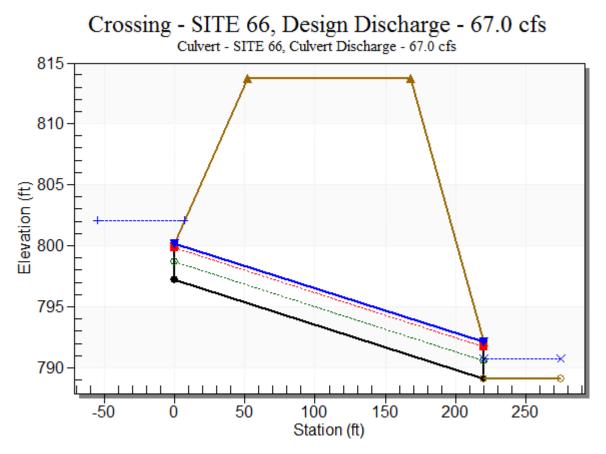
 Table 1 - Summary of Culvert Flows at Crossing: SITE 66

Rating Curve Plot for Crossing: SITE 66

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	59.00	59.00	801.41	4.215	0.0*	6-FFc	1.366	2.481	2.481	1.495	9.474
100 year	67.00	67.00	802.04	4.851	0.0*	6-FFc	1.469	2.615	2.615	1.608	10.269

Table 2 - Culvert Summary Table: SITE 66


* Full Flow Headwater elevation is below inlet invert.


Straight Culvert

Inlet Elevation (invert): 797.19 ft, Outlet Elevation (invert): 789.14 ft Culvert Length: 220.15 ft, Culvert Slope: 0.0366

Culvert Performance Curve Plot: SITE 66

Water Surface Profile Plot for Culvert: SITE 66

Site Data - SITE 66

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 797.19 ft Outlet Station: 220.00 ft Outlet Elevation: 789.14 ft Number of Barrels: 1

Culvert Data Summary - SITE 66

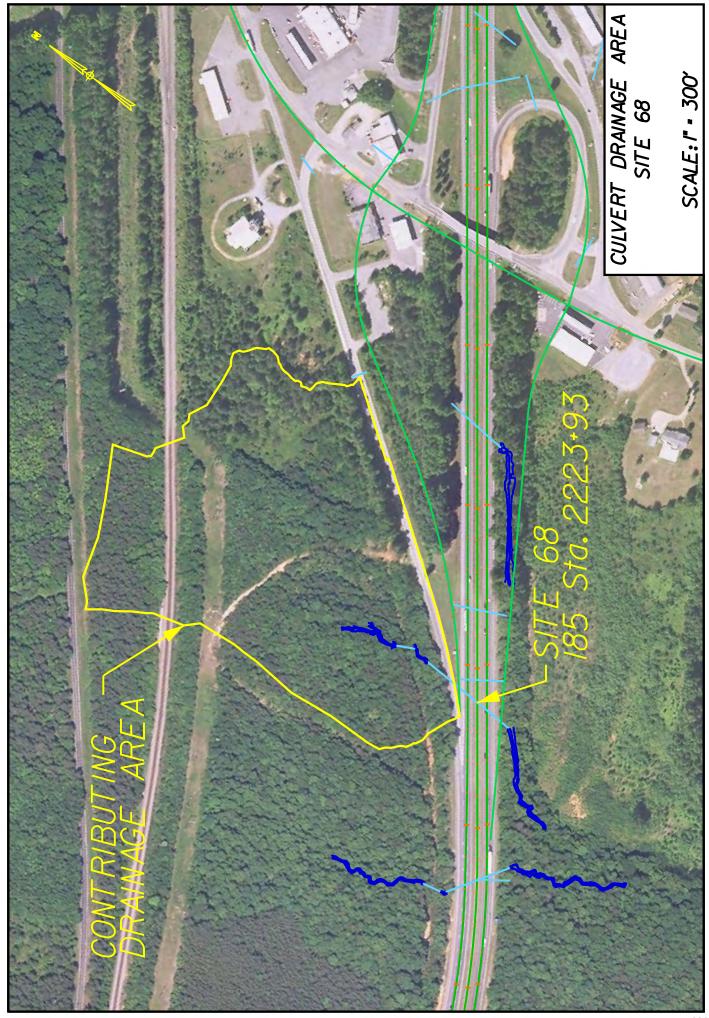
Barrel Shape: Circular Barrel Diameter: 3.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Grooved End Projecting Inlet Depression: NONE

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
59.00	790.64	1.50	4.49	2.61	0.71
67.00	790.75	1.61	4.67	2.81	0.71

 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 66)

Tailwater Channel Data - SITE 66

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 7.00 ft Side Slope (H:V): 1.20 (_:1) Channel Slope: 0.0280 Channel Manning's n: 0.0600 Channel Invert Elevation: 789.14 ft


Roadway Data for Crossing: SITE 66

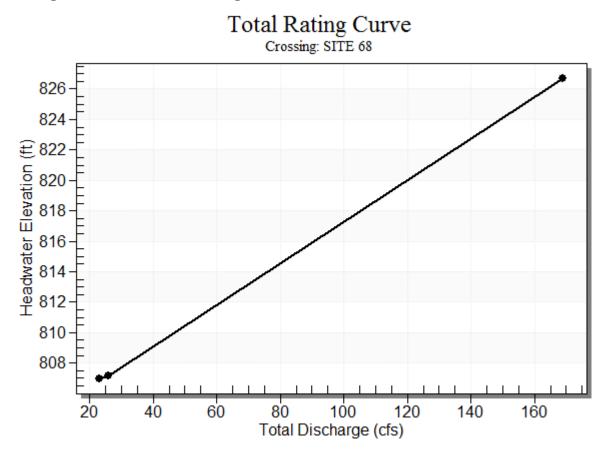
Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 813.74 ft Roadway Surface: Paved Roadway Top Width: 116.00 ft

(inch)(cfPipe Diameter36Box Dimension0Span (ft)0Height (ft)0
Box Dimension 59 Span (ft) 0
Span (ft) 0 5
Span (ft) 0
Height (ft) 0
Length Width Riprap Geo (FHWA HEC-14 - Calculated) Quantity Class ²
(FHWA HEC-14 - Calculated) Quantity Class ⁻ (ft) (ft) (Tons) (Sq
18 21 50 C 4

** Riprap Class (D50) as per HEC-14 Eq. 10.4; Tailwater condition assumed (TW=0.4D)

		Ratio	onal Analysis					
	-	1						
Land Slope	Land Use	Acres	С					
Rolling, 2%-10%	Gravel Pavements	0.96	0.55					
Rolling, 2%-10%	Side Slopes, Turf	3.24	0.30		Area	Weighte	d C	
Rolling, 2%-10%	Woodland & Forest	15.41	0.15			0.19		
		1						
	L							
		19.61						
	County (NOAA-14)	2-year 24 H	our rainfall [in]					
	Cherokee		3.73					
Flow Type	Surface	Slope	Length [ft]	Manning's n	Area [ft^2]	WP [ft]	Velocity [ft/s]	Time [hr]
Sheet	Woods:dense underbrush	5.34%	100	0.8				0.390
Shallow								
Concentrated	Unpaved	5.34%	1132					0.084
Shallow								
Concentrated								
Channel 1								
Channel 2								
Total		L	1232				0.7222	0.474
			Gaffney					
	Time of Concentrat	ion	20					
	(minutes)		29					
		C _f	С	l [in/hr]	AREA (ac)	6	FS	
	0	2 _f	0.19	4.082	19.61		L6	
	Q ₁₀	1.1	0.19		19.61		20	
	Q ₂₅	1.1	0.19	4.658			20	
	Q ₅₀			5.105	19.61		25 26	
	Q ₁₀₀	1.25	0.19	5.541	19.61	4	-0	

HY-8 Culvert Analysis Report


Crossing Discharge Data

Discharge Selection Method: Recurrence

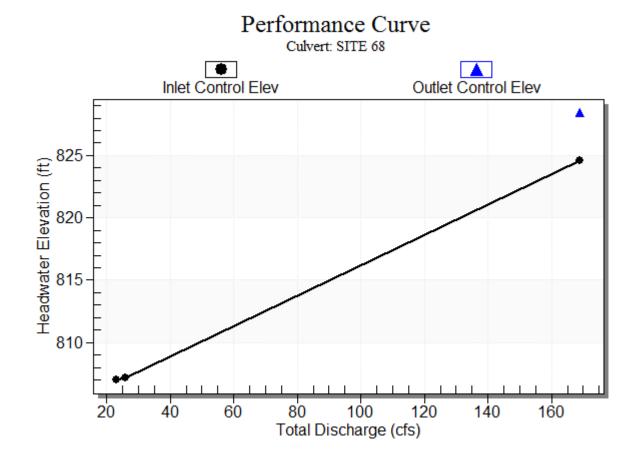
	-				
Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	SITE 68 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
807.00	50 year	23.00	23.00	0.00	1
807.16	100 year	26.00	26.00	0.00	1
826.65	Overtopping	158.14	158.14	0.00	Overtopping

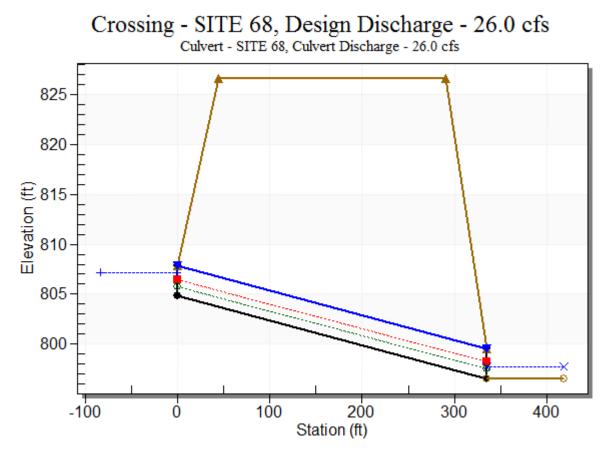
 Table 1 - Summary of Culvert Flows at Crossing: SITE 68

Rating Curve Plot for Crossing: SITE 68

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
50 year	23.00	23.00	807.00	2.178	0.0*	6-FFc	0.905	1.543	1.543	1.088	6.279
100 year	26.00	26.00	807.16	2.338	0.0*	6-FFc	0.972	1.641	1.641	1.168	6.570

Table 2 - Culvert Summary Table: SITE 68


* Full Flow Headwater elevation is below inlet invert.


Straight Culvert

Inlet Elevation (invert): 804.82 ft, Outlet Elevation (invert): 796.57 ft Culvert Length: 335.10 ft, Culvert Slope: 0.0246

Culvert Performance Curve Plot: SITE 68

Water Surface Profile Plot for Culvert: SITE 68

Site Data - SITE 68

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 804.82 ft Outlet Station: 335.00 ft Outlet Elevation: 796.57 ft Number of Barrels: 1

Culvert Data Summary - SITE 68

Barrel Shape: Circular Barrel Diameter: 3.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Grooved End Projecting Inlet Depression: NONE

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
23.00	797.66	1.09	5.38	2.17	1.01
26.00	797.74	1.17	5.58	2.33	1.02

 Table 3 - Downstream Channel Rating Curve (Crossing: SITE 68)

Tailwater Channel Data - SITE 68

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 3.00 ft Side Slope (H:V): 0.85 (_:1) Channel Slope: 0.0320 Channel Manning's n: 0.0400 Channel Invert Elevation: 796.57 ft

Roadway Data for Crossing: SITE 68

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 826.65 ft Roadway Surface: Paved Roadway Top Width: 246.00 ft

P	ipe/Box Dimensio	ns		Flow
		(inch)		(cfs)
Pipe Diameter		36		
Box Dimension				23
Span (ft)		0		23
Height (ft)		0		
Longth	\A/idth	Pipe		CooToxt
Length	Width	Ripr	ар	GeoText
<u> </u>	Width 4 - Calculated)	Ripr Quantity	ap Class ²	
				GeoText (SqYd)

** Riprap Class (D50) as per HEC-14 Eq. 10.4; Tailwater condition assumed (TW=0.4D)

5. Appendix

5.1 Miscellaneous Outfall Analysis Notes

OUTFALL 1830+64 RT

The survey did not establish how the median drainage inlets (DI 15 to DI 10) from station 1828+00 to station 1834+00 drain to an outfall, and was included in this outfall's drainage area.

OUTFALL 1910+64 RT

Survey information was not provided for the upstream headwall of the culvert under the Exit 100 ramp; there is only survey information for the downstream headwall (HW11). Based on the topography, it was assumed the headwall entrance was located behind the Speedway gas station. Therefore, the outfall drainage area includes all water draining to this point, in addition to all water draining to the downstream culvert.

OUTFALL 1916+80 RT

Based on topography and As-Built drawings 11.530.1, it was assumed there is an existing upstream pipe that goes under the Exit 100 ramp.

OUTFALL 1975+08 LT

All roadway drainage systems lead to a common channel, and were combined to one drainage outfall area to determine the overall impact at the outfall point.

OUTFALL 1997+27 LT

No outlet point was picked up for this drainage system. Based on topography, it was assumed that an outlet for the median drainage exists behind the Frontage Road.

OUTFALL 2038+46 LT

Survey does not indicate where the median drainage from station 2044+00 to station 2054+00 outfalls to. As-built drawing 11.530 suggests the median drop inlet at station 2046+00 (DI 57) drains to the left side of I-85 and flows down to the drop inlet at station 2040+00 (DI 55C); ultimately reaching the common outlet point.

OUTFALL 2249+11 RT

The 30" RCP that carries the median drainage to the outlet point only had a surveyed invert elevation. An outlet point was assumed based upon the topography and as-built drawing 11.352.

5.2 Miscellaneous Cross-Line Analysis Notes

GENERAL NOTES:

- Surveyor provided a spreadsheet with revisions to surveyed pipe elevations. A math error (units) pertaining to the conversion between feet and inches for the pipe thickness was found throughout the document. Therefore, SCDOT's published pipe thicknesses were used to calculate pipe inverts.
- A constant water depth through channels was assumed for culverts placed in series. Any drainage structures downstream from the drainage structure of interest were analyzed for capacity. The downstream structures' headwater elevations were used to set the tail water conditions for the upstream culvert.
- Any drainage structures upstream from the drainage structure of interest were not considered during the analysis. In other words, it was assumed that all water from the drainage area entered the culvert of interest; ignoring all upstream pipes. This produces more conservative results because it ignores any upstream restrictions to the flow of water.

SITE 7 CULVERT

- The survey did not establish how the median drainage inlets (DI 15 to DI 10) from station 1828+00 to station 1834+00 drain to an outfall. However, field inspection pictures indicated that the system does not feed into the culvert's structure. Therefore, it was assumed this median drainage system feeds into the outfall of Site 7 and not the infall of Site 7.
- The headwater of the downstream 96" corrugated metal pipe was used to set the tail water condition for the upstream culvert.
- The 96" C.M. pipe adversely impacts the performance of the 8' x 8' R.C. box culvert. With improvement of the 96" C.M.P pipe the upstream 8' x 8' R.C. box culvert will perform adequately.

SITE 13 CULVERT

The analysis for Site 13 does not consider the restriction or ponding caused by the existing 60" corrugated metal pipe upstream of the culvert.

SITE 16 CULVERT

The analysis for Site 16 does not consider the restriction or ponding caused by the existing 36" corrugated metal pipe upstream of the culvert.

SITE 20 CULVERT

The survey did not indicate where the median drainage inlets (DI 18C to STMP 18D) drain to. For a more conservative analysis, it was assumed that the system drains to the infall of the culvert.

SITE 21 CULVERT

Survey information was not provided for the upstream headwall of the culvert under the Exit 100 ramp; there is only survey information for the downstream headwall (HW11). Therefore, all water from the drainage area was summed to the culvert under I-85 (HW 10 to HW 9).

SITE 38 CULVERT

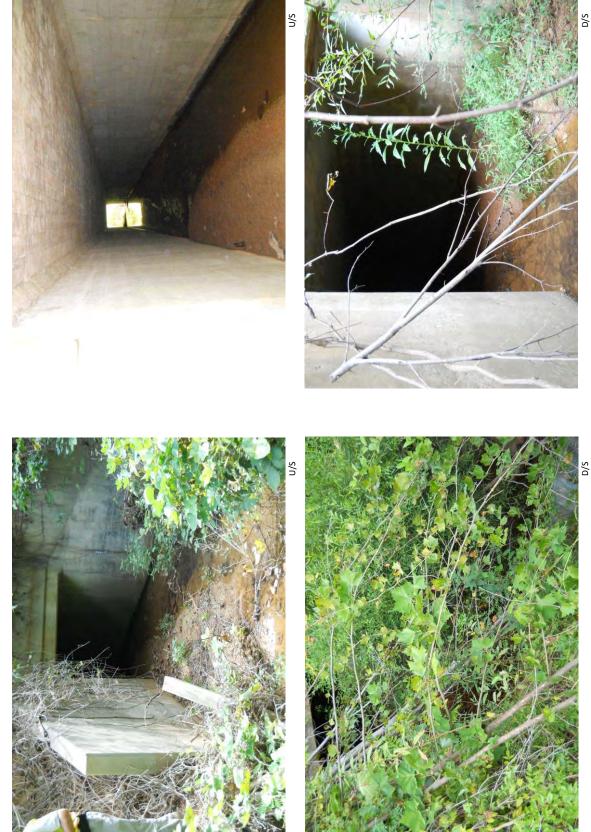
- <u>Site 38A</u> (STMP 54C to STMP 54B) Survey points label the pipe under the Frontage Road as 36" R.C. pipe. It is believed the pipe was mismeasured due to record drawing 11.347 As-Builts, which show an in place 42" R.C. pipe. Analysis assumes a 42" R.C. pipe.
- <u>Site 38B</u> (STMP 54A to STMP 54F) A straight grade was assumed for pipe breaks because 11.347 As-Builts specify two T-joints.
- The headwater for Site 38B was used to set the tail water conditions for Site 38A.
- Roadway drainage on the East side of North Mountain Street was assumed to tie to CB-55.

SITE 46 CULVERT

- As-Built 11.347 states the drainage structure is a 4' x 6' R.C. box culvert; while as-built 11.530 states the drainage structure is a 4' x 4' R.C. box culvert. It is believed the 11.530 As-Built label was a copy over error, and therefore a 4' x 6' R.C. box culvert was used for the analysis.
- There is a 60" R.C. pipe connected at the entrance of the 4' x 6' box from the field investigation. As a result, the system was analyzed as both a 60" R.C. pipe and a 4' x 6' R.C. box culvert. The 4' x 6' R.C. box culvert produced more conservative results as it yielded a higher headwater elevation. Note that due to the structures' size difference, a structure height of five feet was used when calculating Hw/D because the pipe at the entrance of the box creates a restriction in the flow of water.

SITE 62 CULVERT

Survey points indicated the culvert flows from the left side of I-85 to the right side of I-85; although previous as-built plans as well as Stream Stats suggested the culvert outfalls to the left side of I-85. The surveyed points shots were used with the assumption the culvert outfalls to the left side of the highway. In other words, it was assumed the culvert is inverted.


5.3 Culvert Assessment Forms With Site Pictures

Culvert Asse	ssment Form		Site No.	7
Project ID	Work County	Route		Date
	Cherokee	I-85		9/12/2016

Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion Image: Corrosion OUTLET End Section Alignment Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion Image: Corrosion Image: Corrosion COMMENTS Sedimentation inside of culvert. Erosion along slopes of infall. Sedimentation inside of culvert. Erosion along slopes of infall.	CrackedVegetationAlignmentSeparatedBlockedErosionScourCorrosionImage: Scour service		INLET		
Separated Blocked Erosion Scour Corrosion Image: Secont second sec	Separated Blocked Erosion Scour Corrosion Image: Secont second sec	End Section			
Scour Corrosion OUTLET End Section Cracked Vegetation Separated Blocked Scour Corrosion COMMENTS Sedimentation inside of culvert. Erosion along slopes of infall.	Scour Corrosion OUTLET End Section Cracked Vegetation Separated Blocked Scour Corrosion COMMENTS Sedimentation inside of culvert. Erosion along slopes of infall. RECOMMENDATIONS	Cracked	Vegetation	Alignment	
OUTLET End Section Cracked Vegetation Separated Blocked Scour Corrosion	OUTLET End Section Cracked Vegetation Separated Blocked Scour Corrosion	Separated	Blocked	Erosion	
End Section Cracked Vegetation Alignment Separated Blocked Erosion Scour Scour Corrosion Image: Scour state sta	End Section Cracked Vegetation Alignment Separated Blocked Erosion Scour Scour Corrosion Image: Scour state sta	Scour	Corrosion		
End Section Cracked Vegetation Alignment Separated Blocked Erosion Scour Scour Corrosion Image: Scour state sta	End Section Cracked Vegetation Alignment Separated Blocked Erosion Scour Scour Corrosion Image: Scour state sta				
Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion	Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion		OUTLET		
Separated Blocked Erosion Scour Corrosion	Separated Blocked Erosion Scour Corrosion				
Scour Corrosion COMMENTS Seedimentation inside of culvert. Erosion along slopes of infall. RECOMMENDATIONS RECOMMENDATIONS	Scour Corrosion COMMENTS Seedimentation inside of culvert. Erosion along slopes of infall. RECOMMENDATIONS RECOMMENDATIONS				
COMMENTS Sedimentation inside of culvert. Erosion along slopes of infall.	COMMENTS Sedimentation inside of culvert. Erosion along slopes of infall.			Erosion	
Sedimentation inside of culvert. Erosion along slopes of infall.	Sedimentation inside of culvert. Erosion along slopes of infall.	Scour	Corrosion		
			nel.		
			nel.		

Culvert Assessment Form

Project ID	Work County	Route
	Cherokee	I-85

Site No.	8
	Date
	9/12/2016

		INLET				
End Sec	tion	IINLEI				
Cracked		Vogotation	x	Alignment		
		Vegetation	^	Erosion		
Separat	20	Blocked		Erosion		
Scour		Corrosion				
		OUTLET				
End Sec	tion	001221				
Cracked		Vegetation	х	Alignment		
Separat		Blocked	х	Erosion	х	
Scour		Corrosion				
COMMENTS						
/S 60% filled with sedi	فالملما مترم الممرم مر					
RECOMMENDATIONS						
Clean pipe and outfall.						

Site No. 8 PHOTO

C E Civil Engineering C S Consulting Services, Inc

Culvert Asse	ssment Form		Site No.	9
Project ID	Work County	Route		Date
	Cherokee	I-85		9/12/2016

		INLET			
	End Section				
	Cracked	Vegetation		Alignment	
	Separated	Blocked		Erosion	
	Scour	Corrosion			
		OUTLET			
	End Section				
	Cracked	Vegetation	х	Alignment	
	Separated	Blocked	х	Erosion	
	Scour	Corrosion			
	NTS				
RECOMM	IFNDATIONS				
	1ENDATIONS e. Clean Outfall				
	1ENDATIONS e, Clean Outfall.				

Site No. 9 PHOTO

C E Civil Engineering C S Consulting Services, Inc

Culvert Asses	ssment Form		Site No.	10
Project ID	Work County	Route		Date
	Cherokee	I-85		9/12/2016

ction d ced	Vegetation	x	Alignment	
		х	Alignment	
ed			Anginiterit	
	Blocked		Erosion	х
	Corrosion			
	OUTLET			
ction				
k	Vegetation		Alignment	
xed x	Blocked		Erosion	
x	Corrosion			
nd stabilize incomi	ng channel II/S R	anair ioint c	onaration in n	pipe D/S and stabilize
	ig channel 0/5. Re	epan joint s	eparation in p	ipe D/S and Stabilize

Site No. 10 PHOTO

Culvert Asse	ssment Form		Site No.	11
Project ID	Work County	Route		Date
	Cherokee	I-85		9/12/2016

		INLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
		OUTLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
ECOMM	IENDATIONS			
RECOMIN	IENDATIONS			
RECOMM	IENDATIONS			
RECOMIN	IENDATIONS			
RECOMM	IENDATIONS			
RECOMIN	IENDATIONS			
RECOMIN	IENDATIONS			
RECOMM	IENDATIONS			
RECOMIN	IENDATIONS			
ECOMM	IENDATIONS			
ECOMM	IENDATIONS			

Culvert Asse	ssment Form		Site No.	12
Project ID	Work County	Route		Date
	Cherokee	I-85		9/12/2016

			INLET			
	End Section					
	Cracked		Vegetation	х	Alignment	
	Separated		Blocked		Erosion	
	Scour		Corrosion			
			OUTLET			
	End Section					
	Cracked		Vegetation		Alignment	
	Separated	х	Blocked		Erosion	
	Scour	х	Corrosion			
					·	
OMMEN						
	ENDATIONS					
	ENDATIONS I stabilize U/S. Stabilize o	outfall and	repair joint sepa	aration.		
		outfall and	repair joint sepa	aration.		
		outfall and	repair joint sep	aration.		
		outfall and	repair joint sepa	aration.		
		outfall and	repair joint sepa	aration.		
		outfall and	repair joint sep	aration.		
		outfall and	repair joint sep	aration.		
		outfall and	repair joint sepa	aration.		
		outfall and	repair joint sepa	aration.		
		outfall and	repair joint sep	aration.		

Site No. 12 PHOTO

Culvert Asse	ssment Form		Site No.	13
Project ID	Work County	Route		Date
	Cherokee	I-85		9/12/2016

		INLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
		OUTLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	x
	Scour	Corrosion		
RECOMM	ENDATIONS			
	ENDATIONS wnstream scour hole and c	onstruct energy dissipator.		
		onstruct energy dissipator.		
		onstruct energy dissipator.		
		onstruct energy dissipator.		

Site No. 13 PHOTO

Culvert Asses	ssment Form		Site No.	14
Project ID	Work County	Route		Date
	Cherokee	I-85		9/12/2016

		INLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
		OUTLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
ECOMM	ENDATIONS			
RECOMM	ENDATIONS			
RECOMM	ENDATIONS			
ECOMM	ENDATIONS			

Culvert Asse	ssment Form		Site No.	15
Project ID	Work County	Route		Date
	Cherokee	I-85		9/12/2016

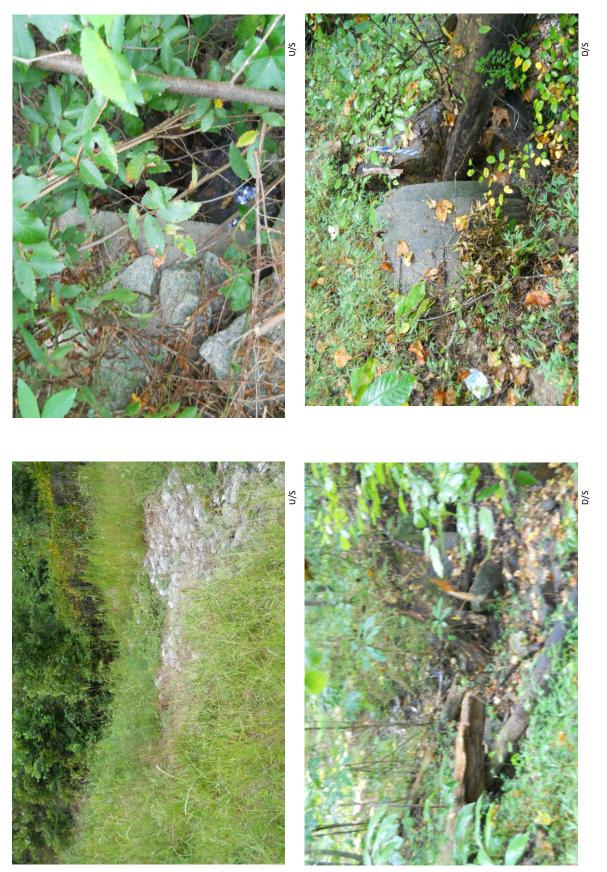
			INLET			
	End Section					
	Cracked		Vegetation	х	Alignment	
	Separated		Blocked		Erosion	х
	Scour		Corrosion			
			OUTLET			
	End Section			1		1
	Cracked		Vegetation		Alignment	
	Separated	x	Blocked		Erosion	х
	Scour		Corrosion			
COMMEN	eparation and scour.					
RECOMME	NDATIONS					
		eparation.				
	NDATIONS utfall and repair joint se	eparation.				
		eparation.				
		eparation.				
		eparation.				
		eparation.				
		eparation.				
		eparation.				
		eparation.				
		eparation.				
		eparation.				

D/S

D/S

Culvert Asses	ssment Form		Site No.	16
Project ID	Work County	Route		Date
	Cherokee	I-85		9/12/2016

	INLET		
End Section			
Cracked	Vegetation	Alignment	
Separated	Blocked	Erosion	
Scour	Corrosion		
	OUTLET		
End Section			
Cracked	Vegetation	Alignment	
Separated	Blocked	Erosion	
Scour	Corrosion		
ENDATIONS			
ENDATIONS wnstream scour hole and co	onstruct energy dissipator		
	onstruct energy dissipator		


Site No. 16 PHOTO

Culvert Asse	ssment Form		Site No.	17
Project ID	Work County	Route		Date
	Cherokee	I-85		9/12/2016

		INLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
	·	OUTLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
RECOMIN	IENDATIONS			
	IENDATIONS 5. Clear D/S debris.			

Site No. 17 PHOTO

Culvert Asses	ssment Form		Site No.	18
Project ID	Work County	Route		Date
	Cherokee	I-85		9/12/2016

End Section Cracked Vegetation Alignment Scour Corrosion Scour OUTLET End Section Cacked Vegetation x Alignment Scour Cracked Vegetation x Alignment Scour Scour <t< th=""><th></th><th></th><th>INLET</th><th></th><th></th></t<>			INLET		
Separated Blocked Erosion Scour Corrosion OUTLET End Section x Alignment Separated Blocked Erosion Scour Corrosion Image: Section and the section					
Scour Corrosion End Section Cracked Vegetation Separated Blocked Scour Corrosion Scour Corrosion OMMENTS ipe goes from 72" RCP-> 4'x6' box culvert-> frontage rd. 3'x2' box culvert. D/S heavily vegetated.					
OUTLET End Section Cracked Vegetation x Alignment Separated Blocked Erosion Second Scour Corrosion Second Second Second OMMENTS ipe goes from 72" RCP-> 4'x6' box culvert-> frontage rd. 3'x2' box culvert. D/S heavily vegetated. ECOMMENDATIONS				Erosion	
End Section Cracked Vegetation x Alignment Separated Blocked Erosion Scour Scour Corrosion OMMENTS OMMENTS ipe goes from 72" RCP-> 4'x6' box culvert-> frontage rd. 3'x2' box culvert. D/S heavily vegetated. ECOMMENDATIONS		Scour	Corrosion		
End Section Cracked Vegetation x Alignment Separated Blocked Erosion Scour Corrosion Corrosion OMMENTS pe goes from 72" RCP-> 4'x6' box culvert-> frontage rd. 3'x2' box culvert. D/S heavily vegetated. ECOMMENDATIONS					
Cracked Vegetation x Alignment Separated Blocked Erosion Scour Corrosion		r	OUTLET		
Separated Blocked Erosion Scour Corrosion					
Scour Corrosion OMMENTS pe goes from 72" RCP-> 4'x6' box culvert-> frontage rd. 3'x2' box culvert. D/S heavily vegetated. ECOMMENDATIONS ECOMMENDATIONS					
OMMENTS pe goes from 72" RCP-> 4'x6' box culvert-> frontage rd. 3'x2' box culvert. D/S heavily vegetated.				Erosion	
pe goes from 72" RCP-> 4'x6' box culvert-> frontage rd. 3'x2' box culvert. D/S heavily vegetated.		Scour	Corrosion		
	ECOMM	1ENDATIONS			

D/S

D/S

Culvert Asse	ssment Form		Site No.	19
Project ID	Work County	Route		Date
	Cherokee	I-85		9/12/2016

End Section Alignment Separated Blocked Erosion Scour Corrosion Image: Corrosion OUTLET End Section Alignment Cracked Vegetation Alignment Separated X Blocked Erosion Cracked Vegetation Alignment Separated Separated X Blocked Erosion X Scour X Corrosion Image: Corrosion Image: Corrosion Image: Corrosion MENTS hole right at inlet (median drainage) Image: Corrosion Image: Corr				INLET		
Separated Blocked Erosion x Scour Corrosion Image:		End Section				
Scour Corrosion OUTLET End Section Cracked Vegetation Alignment Separated Scour x Scour x Corrosion x Scour x MENTS hole right at inlet (median drainage) our hole, channel erosion, and join separation.		Cracked		Vegetation	Alignment	
OUTLET End Section Cracked Vegetation Separated x Blocked Erosion Scour x Corrosion X MENTS hole right at inlet (median drainage) our hole, channel erosion, and join separation.		Separated		Blocked	Erosion	х
End Section Cracked Vegetation Alignment Separated x Blocked Erosion x Scour x Corrosion Image: Corrosion Image: Corrosion Image: Corrosion MENTS hole right at inlet (median drainage) Image: Corrosion Image: Corrosion Image: Corrosion Image: Corrosion our hole, channel erosion, and join separation. Image: Corrosion Image: Corrosion Image: Corrosion Image: Corrosion MMENDATIONS Image: Corrosion Image: Corrosion Image: Corrosion Image: Corrosion Image: Corrosion Image: Corrosion		Scour		Corrosion		
End Section Cracked Vegetation Alignment Separated x Blocked Erosion x Scour x Corrosion Image: Corrosion Image: Corrosion Image: Corrosion MENTS hole right at inlet (median drainage) Image: Corrosion Image: Corrosion Image: Corrosion Image: Corrosion our hole, channel erosion, and join separation. Image: Corrosion Image: Corrosion Image: Corrosion Image: Corrosion MMENDATIONS Image: Corrosion Image: Corrosion Image: Corrosion Image: Corrosion Image: Corrosion Image: Corrosion						
Cracked Vegetation Alignment Separated x Blocked Erosion x Scour x Corrosion Image: Corrosion Image: Corrosion Image: Corrosion MENTS hole right at inlet (median drainage) Image: Corrosion Image: Corrosion Image: Corrosion Image: Corrosion our hole, channel erosion, and join separation. Image: Corrosion Image: Corrosion Image: Corrosion Image: Corrosion MMENDATIONS Image: Corrosion Image: Corrosion Image: Corrosion Image: Corrosion Image: Corrosion				OUTLET		
Separated x Blocked Erosion x Scour x Corrosion MENTS hole right at inlet (median drainage)						
Scour x Corrosion AENTS hole right at inlet (median drainage) our hole, channel erosion, and join separation.		Cracked			Alignment	
Image: A start of the star		Separated	х	Blocked	Erosion	х
hole right at inlet (median drainage) our hole, channel erosion, and join separation. MMENDATIONS		Scour	х	Corrosion		
hole right at inlet (median drainage) our hole, channel erosion, and join separation. MMENDATIONS						
our hole, channel erosion, and join separation. MMENDATIONS	OMMENTS					
				outfall Penair conarat	red nine	
			tabilize D/S o	outfall. Repair separat	ed pipe.	
			tabilize D/S d	outfall. Repair separat	ed pipe.	
			tabilize D/S o	outfall. Repair separat	ed pipe.	
			tabilize D/S d	outfall. Repair separat	ed pipe.	
			tabilize D/S d	outfall. Repair separat	ed pipe.	
			tabilize D/S o	outfall. Repair separat	ed pipe.	
			tabilize D/S d	outfall. Repair separat	ed pipe.	
			tabilize D/S d	outfall. Repair separat	ed pipe.	
			tabilize D/S o	outfall. Repair separat	ed pipe.	
			tabilize D/S d	outfall. Repair separat	ed pipe.	

Site No. 19 PHOTO

Culvert Asses	ssment Form		Site No.	20
Project ID	Work County	Route		Date
	Cherokee	I-85		9/12/2016

		INLET			
End Section					
Cracked		Vegetation	Alignment		
Separated		Blocked	Erosion	х	
Scour	х	Corrosion			
		OUTLET			
End Section				_	
Cracked		Vegetation	Alignment		
Separated		Blocked	Erosion		
Scour		Corrosion			
MENDATIONS					
ИENDATIONS all; stabilize roadway side sl	lopes and p	rotect with riprap.			
	lopes and p	rotect with riprap.			
	lopes and p	rotect with riprap.			
	lopes and p	rotect with riprap.			
	lopes and p	rotect with riprap.			
	lopes and p	rotect with riprap.			
	lopes and p	rotect with riprap.			
	lopes and p	rotect with riprap.			

Site No. 20 PHOTO

Culvert Asse	ssment Form		Site No.	21
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

End Section Alignment Separated Blocked Erosion Scour Corrosion Image: Scour section sec			INLET		
Separated Blocked Erosion Scour Corrosion Image: Corrosion OUTLET End Section Alignment Cracked Vegetation Alignment Separated Blocked Erosion Scour x Corrosion Image: Corrosion COMMENTS U/S receives inflow from another box culvert. Heavily vegetated U/S. D/S large scour hole. Broken PVC pipe crossing just below outlet. D/S large scour hole. Broken PVC pipe crossing just below outlet. ECOMMENDATIONS	End Section				
Scour Corrosion OUTLET End Section Cracked Vegetation Separated Blocked Erosion x Scour x Corrosion	Cracked		Vegetation	Alignment	
OUTLET End Section Cracked Vegetation Alignment Separated Blocked Erosion x Scour x Corrosion	Separated		Blocked	Erosion	
End Section Cracked Vegetation Alignment Separated Blocked Erosion x Scour x Corrosion COMMENTS U/S receives inflow from another box culvert. Heavily vegetated U/S. D/S large scour hole. Broken PVC pipe crossing just below outlet. RECOMMENDATIONS	Scour		Corrosion		
End Section Cracked Vegetation Alignment Separated Blocked Erosion x Scour x Corrosion COMMENTS U/S receives inflow from another box culvert. Heavily vegetated U/S. D/S large scour hole. Broken PVC pipe crossing just below outlet. RECOMMENDATIONS					
Cracked Vegetation Alignment Separated Blocked Erosion x Scour x Corrosion			OUTLET		
Separated Blocked Erosion x Scour x Corrosion x Corrosion x	End Section				
Scour x Corrosion COMMENTS J/S receives inflow from another box culvert. Heavily vegetated U/S. D/S large scour hole. Broken PVC pipe crossing just below outlet. RECOMMENDATIONS	Cracked		Vegetation	Alignment	
COMMENTS J/S receives inflow from another box culvert. Heavily vegetated U/S. D/S large scour hole. Broken PVC pipe crossing just below outlet.	Separated		Blocked	Erosion x	
J/S receives inflow from another box culvert. Heavily vegetated U/S. D/S large scour hole. Broken PVC pipe crossing just below outlet.	Scour	х	Corrosion		
J/S receives inflow from another box culvert. Heavily vegetated U/S. D/S large scour hole. Broken PVC pipe crossing just below outlet.					
		Repair down	actroom cour bolo on		singtor
ciear vegeta		Separated Scour End Section Cracked Separated Scour s inflow from another our hole. Broken PVC	Separated	Separated Blocked Scour Corrosion OUTLET End Section Cracked Cracked Vegetation Separated Blocked Scour x Corrosion Separated Blocked Separated Scour x Corrosion Separated Scour x Scour separated Scour separated Scour separate Scour separate Scour separate Blocked separate End Separate Scour separate Scour separate Scour separate <td>Separated Blocked Erosion Scour Corrosion Image: Corrosion OUTLET End Section Alignment Cracked Vegetation Alignment Separated Blocked Erosion Scour x Corrosion Image: Corrosion Scour Scour Scour Scour<!--</td--></td>	Separated Blocked Erosion Scour Corrosion Image: Corrosion OUTLET End Section Alignment Cracked Vegetation Alignment Separated Blocked Erosion Scour x Corrosion Image: Corrosion Scour Scour Scour Scour </td

Site No. 21 PHOTO

Culvert Asses	ssment Form		Site No.	22
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

	End Continu		INLET				
	End Section	-			Alignment		
	Cracked	_	Vegetation		Alignment		
	Separated	_	Blocked		Erosion		
	Scour		Corrosion				
			OUTLET				
	End Section						
	Cracked		Vegetation		Alignment		
	Separated	x	Blocked	х	Erosion	x	
	Scour	x	Corrosion				
	-				•		
RECOMMEN	DATIONS						

Site No. 22 PHOTO

Culvert Asse	ssment Form		Site No.	23
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

Difficult to find (and rate above). Survey had outfall (of 18" Site 23) at location of Site 22 (48" pipe). And 1 outfall was not located in the area. U/S inlet found, D/S outlet not located.	Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion Image: Corrosion OUTLET End Section Cracked Vegetation Alignment Separated Blocked Erosion Separated Blocked Erosion Separated Blocked Erosion Scour Corrosion Image: Corrosion COMMENTS Difficult to find (and rate above). Survey had outfall (of 18" Site 23) at location of Site 22 (48" pipe). And 1	COMMENTS	Cracked Separated Scour End Section Cracked Separated	Blocked Corrosion OUTLET Vegetation	Erosion	
Separated Blocked Erosion Scour Corrosion Image: Corrosion OUTLET End Section Image: Corrosion Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion Image: Corrosion COMMENTS Difficult to find (and rate above). Survey had outfall (of 18" Site 23) at location of Site 22 (48" pipe). And 1 boutfall was not located in the area. U/S inlet found, D/S outlet not located.	Separated Blocked Erosion Scour Corrosion Image: Corrosion OUTLET End Section Image: Corrosion Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion Image: Corrosion Scour Corrosion Image: Corrosion COMMENTS Scour Corrosion COMMENTS Sinficult to find (and rate above). Survey had outfall (of 18" Site 23) at location of Site 22 (48" pipe). And 1 boutfall was not located in the area. U/S inlet found, D/S outlet not located.		Separated Scour End Section Cracked Separated	Blocked Corrosion OUTLET Vegetation	Erosion	
Scour Corrosion OUTLET End Section Cracked Vegetation Separated Blocked Erosion Scour COMMENTS Difficult to find (and rate above). Survey had outfall (of 18" Site 23) at location of Site 22 (48" pipe). And 1 butfall was not located in the area. U/S inlet found, D/S outlet not located.	Scour Corrosion OUTLET End Section Cracked Vegetation Separated Blocked Scour Corrosion Scour Corrosion Scour Corrosion Scour Corrosion COMMENTS Site 23) at location of Site 22 (48" pipe). And 1 putfall was not located in the area. U/S inlet found, D/S outlet not located.		Scour End Section Cracked Separated	Corrosion OUTLET Vegetation		
OUTLET End Section Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion Image: Scour corrosion Image: Scour corrosion COMMENTS Difficult to find (and rate above). Survey had outfall (of 18" Site 23) at location of Site 22 (48" pipe). And 1 boutfall was not located in the area. U/S inlet found, D/S outlet not located.	OUTLET End Section Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion Image: Corrosion COMMENTS Difficult to find (and rate above). Survey had outfall (of 18" Site 23) at location of Site 22 (48" pipe). And 1 boutfall was not located in the area. U/S inlet found, D/S outlet not located.		End Section Cracked Separated	OUTLET	Alignment	
End Section Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion Image: Composition of Corrosion COMMENTS Difficult to find (and rate above). Survey had outfall (of 18" Site 23) at location of Site 22 (48" pipe). And 1 boutfall was not located in the area. U/S inlet found, D/S outlet not located.	End Section Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion Image: Composition of Corrosion COMMENTS Difficult to find (and rate above). Survey had outfall (of 18" Site 23) at location of Site 22 (48" pipe). And 1 boutfall was not located in the area. U/S inlet found, D/S outlet not located.		Cracked Separated	Vegetation	Alignment	
End Section Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion Image: Composition of Corrosion COMMENTS Difficult to find (and rate above). Survey had outfall (of 18" Site 23) at location of Site 22 (48" pipe). And 1 boutfall was not located in the area. U/S inlet found, D/S outlet not located.	End Section Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion Image: Composition of Corrosion COMMENTS Difficult to find (and rate above). Survey had outfall (of 18" Site 23) at location of Site 22 (48" pipe). And 1 boutfall was not located in the area. U/S inlet found, D/S outlet not located.		Cracked Separated	Vegetation	Alignment	
Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion Corrosion	Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion Corrosion		Cracked Separated		Alignment	
Separated Blocked Erosion Scour Corrosion Corrosion	Separated Blocked Erosion Scour Corrosion Corrosion		Separated		Mugnmont	
Scour Corrosion COMMENTS Difficult to find (and rate above). Survey had outfall (of 18" Site 23) at location of Site 22 (48" pipe). And 1 butfall was not located in the area. U/S inlet found, D/S outlet not located.	Scour Corrosion COMMENTS Difficult to find (and rate above). Survey had outfall (of 18" Site 23) at location of Site 22 (48" pipe). And 1 butfall was not located in the area. U/S inlet found, D/S outlet not located.			Blocked		
COMMENTS Difficult to find (and rate above). Survey had outfall (of 18" Site 23) at location of Site 22 (48" pipe). And 1 butfall was not located in the area. U/S inlet found, D/S outlet not located.	COMMENTS Difficult to find (and rate above). Survey had outfall (of 18" Site 23) at location of Site 22 (48" pipe). And 1 butfall was not located in the area. U/S inlet found, D/S outlet not located.		Scour		Erosion	
Difficult to find (and rate above). Survey had outfall (of 18" Site 23) at location of Site 22 (48" pipe). And 1 butfall was not located in the area. U/S inlet found, D/S outlet not located.	Difficult to find (and rate above). Survey had outfall (of 18" Site 23) at location of Site 22 (48" pipe). And 1 butfall was not located in the area. U/S inlet found, D/S outlet not located.			Corrosion		
	RECOMMENDATIONS					

Site No. 23 PHOTO

Culvert Asses	sment Form		Site No.	24
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

End Section Vegetation Alignment Scour Corrosion OUTLET End Section Alignment Separated Blocked Erosion Separated Blocked Erosion Separated Blocked Erosion Separated Blocked Erosion Scour Corrosion			INLET		
Separated Blocked Erosion Scour Corrosion Image: Scour state		End Section			
Scour Corrosion OUTLET End Section Cracked Vegetation Separated Blocked Scour Corrosion Scour Corrosion Scour Corrosion Scour Corrosion COMMENTS Downstream channel of D/s eroded along first outer curve of creek.		Cracked	Vegetation	Alignment	
OUTLET End Section Cracked Vegetation Separated Blocked Ecomment Erosion Scour Corrosion COMMENTS Downstream channel of D/s eroded along first outer curve of creek. RECOMMENDATIONS		Separated	Blocked	Erosion	
End Section Cracked Vegetation Alignment Separated Blocked Erosion x Scour Corrosion Image: Second		Scour	Corrosion		
End Section Cracked Vegetation Alignment Separated Blocked Erosion x Scour Corrosion Image: Scour sector					
Cracked Vegetation Alignment Separated Blocked Erosion x Scour Corrosion			OUTLET		
Separated Blocked Erosion x Scour Corrosion Image: Scour stress of the second stress of the seco					
Scour Corrosion COMMENTS Downstream channel of D/s eroded along first outer curve of creek. RECOMMENDATIONS RECOMMENDATIONS					
COMMENTS Downstream channel of D/s eroded along first outer curve of creek.				Erosion x	<
Downstream channel of D/s eroded along first outer curve of creek.		Scour	Corrosion		
oownstream channel of D/s eroded along first outer curve of creek.					
Stabilize outfall channel and construct energy dissipator.					
	RECOMM	1ENDATIONS			
			ct energy dissipator.		
			ct energy dissipator.		
			ct energy dissipator.		
			ct energy dissipator.		
			ct energy dissipator.		
			ct energy dissipator.		
			ct energy dissipator.		
			ct energy dissipator.		
			ct energy dissipator.		

Culvert Asse	ssment Form		Site No.	25
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

		INLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
	50001	corresion		
		OUTLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
COMMEN	TS			
RECOMMI	ENDATIONS			

Culvert Asses	ssment Form		Site No.	26
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

		INLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
	00001	corresion		
		OUTLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
COMMENT	rs			
Not survey	ed. Could not locate U/S c	or D/S		
tot survey				
RECOMME				
RECOMME	NDATIONS			
RECOMME	INDATIONS			
RECOMME	NDATIONS			
RECOMME	INDATIONS			
RECOMME	NDATIONS			
RECOMME	ENDATIONS			
RECOMME	ENDATIONS			
RECOMME	INDATIONS			
RECOMME	ENDATIONS			
RECOMME	ENDATIONS			
RECOMME	NDATIONS			

Culvert Asse	ssment Form		Site No.	27
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

		INLET			
End Sec	tion				
Cracked		Vegetation	х	Alignment	
Separat	ed	Blocked		Erosion	
Scour		Corrosion			
		OUTLET			
End Sec	tion				
Cracked		Vegetation		Alignment	
Separat	ed	Blocked		Erosion	
Scour		Corrosion			
COMMENDATIONS					

Site No. 27 PHOTO

C E Civil Engineering C S Consulting Services, Inc

Culvert Asse	ssment Form		Site No.	28
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

			INLET			
	End Section					
	Cracked		Vegetation		Alignment	
	Separated		Blocked		Erosion	
	Scour		Corrosion			
	·		OUTLET			
	End Section					
	Cracked		Vegetation	х	Alignment	
	Separated		Blocked		Erosion	
	Scour	х	Corrosion			
OMMEN	hole with debris and ve					
RECOMMI	ENDATIONS					
	ENDATIONS vegetation and debris,	stabilize ch	annel.			
		stabilize ch	annel.			
		stabilize cha	annel.			
		stabilize cha	annel.			
		stabilize ch	annel.			
		stabilize cha	annel.			
		stabilize ch	annel.			
		stabilize ch	annel.			
		stabilize cha	annel.			
		stabilize ch	annel.			

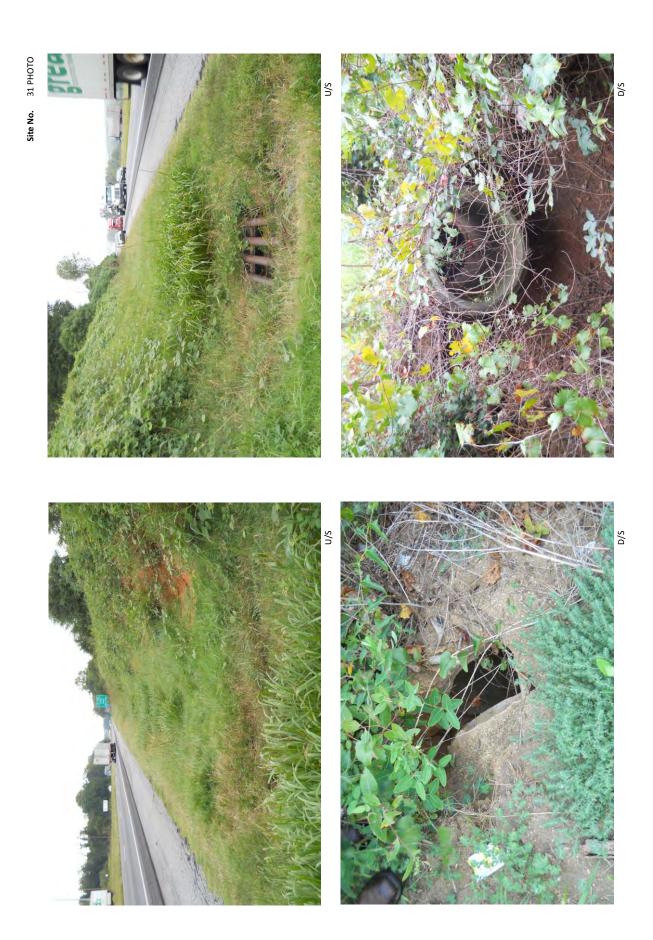
Culvert Asse	ssment Form		Site No.	29
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

End Section Cracked Separated Scour End Section Cracked Separated Scour Scour	INLET Vegetation Blocked Corrosion OUTLET Vegetation Blocked Corrosion Hin apparent Clear Zou	x x x x	Alignment Erosion Alignment Erosion	x x
Cracked Separated Scour End Section Cracked Separated Scour	Blocked Corrosion OUTLET Vegetation Blocked Corrosion		Erosion Alignment	
Separated Scour End Section Cracked Separated Scour	Blocked Corrosion OUTLET Vegetation Blocked Corrosion		Erosion Alignment	
Scour End Section Cracked Separated Scour	Corrosion OUTLET Vegetation Blocked Corrosion	x	Alignment	
End Section Cracked Separated Scour	OUTLET Vegetation Blocked Corrosion	X		x
Cracked Separated Scour	Vegetation Blocked Corrosion	x		x
Cracked Separated Scour	Blocked Corrosion	X		x
Separated Scour	Blocked Corrosion	X		x
Scour	Blocked Corrosion			х
Scour				
egetated, Type 9 CB wit	hin apparent Clear Zo			
egetated, Type 9 CB wit	hin apparent Clear Zo			
e and debris filled chanı	nel.			
DATIONS etation, convert Type 9	to DI type 112. Repair	· D/S scou	ur hole, clear and	l stabilize outfa
	convert Type 9	convert Type 9 to DI type 112. Repair	convert Type 9 to DI type 112. Repair D/S scou	convert Type 9 to DI type 112. Repair D/S scour hole, clear and

Culvert Asses	sment Form		Site No.	30
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

		INLET			
	End Section				
	Cracked	Vegetation	х	Alignment	
	Separated	Blocked		Erosion	x
	Scour	Corrosion			•
		OUTLET			
	End Section	- r			
	Cracked	Vegetation	х	Alignment	
	Separated	Blocked	_	Erosion	
	Scour	Corrosion			
COMMEN	ITS				
RECOMM	ENDATIONS				
RECOMM Clean out					

Site No. 30 PHOTO



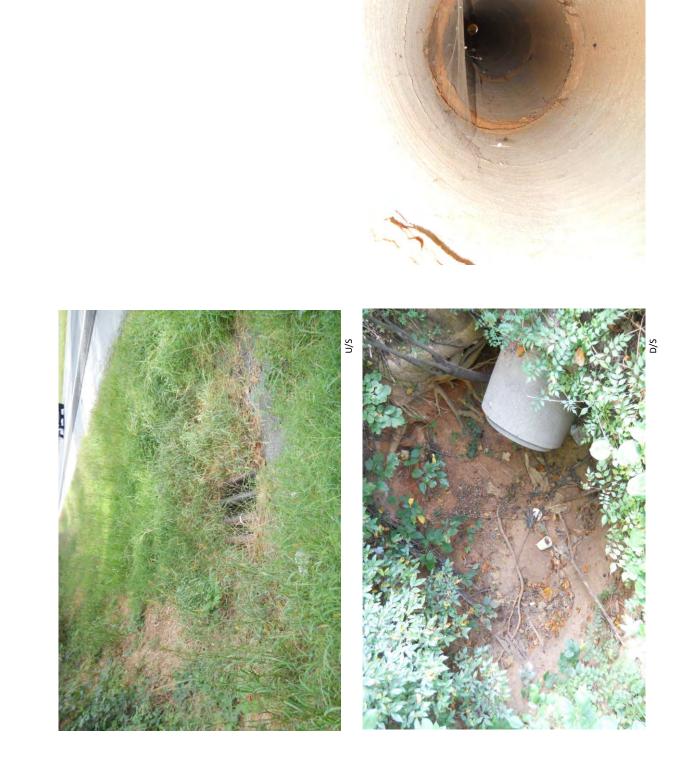
C E Civil Engineering C S Consulting Services, Inc.

D/S

Culvert Asse	ssment Form		Site No.	31
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

			INLET			
	End Section					
	Cracked		Vegetation	х	Alignment	
	Separated		Blocked		Erosion	х
	Scour		Corrosion			
			OUTLET			
	End Section			-		_
	Cracked		Vegetation	х	Alignment	
	Separated	х	Blocked		Erosion	х
	Scour	S	Corrosion			
COMMENT	S					
D/S scour h	ole and joint separat	ion.				
D/S scour h	ole and joint separat	ion.				
		ion.				
RECOMME	NDATIONS					
RECOMME						
RECOMME	NDATIONS					
RECOMME	NDATIONS					
RECOMME	NDATIONS					
RECOMME	NDATIONS					
RECOMME	NDATIONS					
RECOMME	NDATIONS					
RECOMME	NDATIONS					
RECOMME	NDATIONS					
RECOMME	NDATIONS					

Culvert Asse	ssment Form		Site No.	32
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016


		INLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	х
	Scour	Corrosion		
		OUTLET		
	End Section			
	Cracked	Vegetation x	Alignment	
	Separated	Blocked	Erosion	х
	Scour	Corrosion		
COMMEN	ITS			
	ENDATIONS			
RECOMM Clear ove				

Culvert Asse	ssment Form		Site No.	33
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

			INLET			
	End Section					
	Cracked		Vegetation	х	Alignment	
	Separated		Blocked		Erosion	
	Scour		Corrosion		· ·	
			OUTLET			
	End Section					
	Cracked		Vegetation		Alignment	
	Separated	х	Blocked		Erosion	
	Scour	х	Corrosion			
	NTS					
RECOMM	IENDATIONS					
	IENDATIONS putfall and repair joint s	separation.				
	IENDATIONS outfall and repair joint s	separation.				
		separation.				
		separation.				
		eparation.				
		separation.				
		eparation.				
		separation.				
		eparation.				
		separation.				
		separation.				

C E Civil Engineering C S Consulting Services, Inc.

Culvert Asses	ssment Form		Site No.	34
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

		INLET				_
	End Section					
	Cracked	Vegetation		Alignment		
	Separated	Blocked		Erosion		
	Scour	Corrosion				
	End Section	OUTLET				7
	Cracked	Vegetation		Alignmont	<u> </u>	
		Vegetation Blocked	x x	Alignment Erosion		_
	Separated		X	ELOSIOLI		_
	Scour	Corrosion				
	тс					
COMMEN						
'/S 20% t	illed with sediment. Outfall	overgrown				
RECOMM	FNDATIONS					
	ENDATIONS					
	ENDATIONS e and clean outfall.					

Site No. 34 PHOTO

Culvert Asses	ssment Form		Site No.	35
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

	INLET		
End Section			
Cracked	Vegetation	Alignment	
Separated	Blocked	Erosion	
Scour	Corrosion		
	OUTLET		
End Section			
Cracked	Vegetation x	Alignment	
Separated	Blocked x	Erosion	
Scour	Corrosion		
NTS			
IENDATIONS			
IENDATIONS e and clean outfall.			

Site No. 35 PHOTO

D/S

Culvert Asses	ssment Form		Site No.	36
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

End Section Cracked Vegetation x Alignment Separated Blocked Erosion x Scour Corrosion Image: Scour corrosion Image: Scour corrosion OUTLET End Section Cracked Vegetation Alignment Cracked Vegetation Alignment Scour Cracked Vegetation Alignment Scour Scour Corrosion Image: correct corrosion Image: correct corrosion COMMENTS D/S has a paved ditch outfall, joint separation. Erosion D/S. Adjacent driveway pipes outfall at same location. U/S is difficult to locate. Survey does not show true pipe end. RECOMMENDATIONS Stabilize U/S and D/S channels. Repair joint separation.	End Section Cracked Vegetation x Alignment Separated Blocked Erosion x Scour Corrosion Image: Corrosion Image: Corrosion OUTLET End Section Cracked Vegetation Alignment Cracked Vegetation Alignment Image: Corrosion Separated x Blocked Erosion Image: Corrosion Scour Corrosion Corrosion Image: Corrosion				INLET			
Cracked Vegetation x Alignment Separated Blocked Erosion x Scour Corrosion Image: Corrosion Image: Corrosion x OUTLET End Section Cracked Vegetation Alignment Separated X Blocked Erosion X Separated x Blocked Erosion Image: Corrosion Image:	Cracked Vegetation x Alignment Separated Blocked Erosion x Scour Corrosion Image: Corrosion Image: Corrosion x OUTLET End Section Cracked Vegetation Alignment Separated X Blocked Erosion X Separated x Blocked Erosion Image: Corrosion Image:		End Section					
Separated Blocked Erosion x Scour Corrosion OUTLET End Section Cracked Vegetation Alignment Separated x Blocked Erosion Separated Scour Corrosion Corrosion Corrosion Separated Separated x Blocked Erosion Separated Separated Separated Corrosion Corrosion Separated Separated<	Separated Blocked Erosion x Scour Corrosion OUTLET End Section Alignment Separated Separated x Blocked Erosion Scour Corrosion Image: Scour				Vegetation	х	Alignment	
Scour Corrosion OUTLET End Section Cracked Vegetation Separated x Blocked Erosion Scour Corrosion Scour Corrosion COMMENTS D/S has a paved ditch outfall, joint separation. Erosion D/S. Adjacent driveway pipes outfall at same location. U/S is difficult to locate. Survey does not show true pipe end. RECOMMENDATIONS	Scour Corrosion OUTLET End Section Cracked Vegetation Separated x Blocked Erosion Scour Corrosion COMMENTS D/S has a paved ditch outfall, joint separation. Erosion D/S. Adjacent driveway pipes outfall at same location. U/S is difficult to locate. Survey does not show true pipe end. RECOMMENDATIONS		Separated					x
End Section Cracked Vegetation Alignment Separated x Blocked Erosion Scour Corrosion	End Section Cracked Vegetation Alignment Separated x Blocked Erosion Scour Corrosion				Corrosion			•
End Section Cracked Vegetation Alignment Separated x Blocked Erosion Scour Corrosion Corrosion Scour COMMENTS D/S has a paved ditch outfall, joint separation. Erosion D/S. Adjacent driveway pipes outfall at sam ocation. U/S is difficult to locate. Survey does not show true pipe end. RECOMMENDATIONS	End Section Cracked Vegetation Alignment Separated x Blocked Erosion Scour Corrosion Corrosion Scour COMMENTS D/S has a paved ditch outfall, joint separation. Erosion D/S. Adjacent driveway pipes outfall at sam ocation. U/S is difficult to locate. Survey does not show true pipe end. RECOMMENDATIONS							
Cracked Vegetation Alignment Separated x Blocked Erosion Scour Corrosion	Cracked Vegetation Alignment Separated x Blocked Erosion Scour Corrosion				OUTLET			
Separated x Blocked Erosion Scour Corrosion Corrosion Corrosion COMMENTS D/S has a paved ditch outfall, joint separation. Erosion D/S. Adjacent driveway pipes outfall at sam location. U/S is difficult to locate. Survey does not show true pipe end. RECOMMENDATIONS	Separated x Blocked Erosion Scour Corrosion Corrosion Corrosion COMMENTS D/S has a paved ditch outfall, joint separation. Erosion D/S. Adjacent driveway pipes outfall at sam location. U/S is difficult to locate. Survey does not show true pipe end. RECOMMENDATIONS		End Section			_		-
Scour Corrosion COMMENTS D/S has a paved ditch outfall, joint separation. Erosion D/S. Adjacent driveway pipes outfall at sam ocation. U/S is difficult to locate. Survey does not show true pipe end. RECOMMENDATIONS	Scour Corrosion COMMENTS D/S has a paved ditch outfall, joint separation. Erosion D/S. Adjacent driveway pipes outfall at sam ocation. U/S is difficult to locate. Survey does not show true pipe end. RECOMMENDATIONS		Cracked				Alignment	
COMMENTS D/S has a paved ditch outfall, joint separation. Erosion D/S. Adjacent driveway pipes outfall at sam location. U/S is difficult to locate. Survey does not show true pipe end.	COMMENTS D/S has a paved ditch outfall, joint separation. Erosion D/S. Adjacent driveway pipes outfall at sam location. U/S is difficult to locate. Survey does not show true pipe end.		Separated	х			Erosion	
D/S has a paved ditch outfall, joint separation. Erosion D/S. Adjacent driveway pipes outfall at sam location. U/S is difficult to locate. Survey does not show true pipe end.	D/S has a paved ditch outfall, joint separation. Erosion D/S. Adjacent driveway pipes outfall at sam location. U/S is difficult to locate. Survey does not show true pipe end.		Scour		Corrosion			
D/S has a paved ditch outfall, joint separation. Erosion D/S. Adjacent driveway pipes outfall at sam location. U/S is difficult to locate. Survey does not show true pipe end.	D/S has a paved ditch outfall, joint separation. Erosion D/S. Adjacent driveway pipes outfall at sam location. U/S is difficult to locate. Survey does not show true pipe end.							
		U/S is diffio	cult to locate. Survey d	loes not sho	ow true pipe end	d.		
		U/S is diffic	cult to locate. Survey d	loes not sho	ow true pipe end	J.		
		U/S is diffic	cult to locate. Survey d	loes not sho	ow true pipe end	J.		
				loes not sho	ow true pipe end	d.		
		RECOMME	NDATIONS			J.		
		RECOMME	NDATIONS			d.		
		RECOMME	NDATIONS			J.		
		RECOMME	NDATIONS			J.		
		RECOMME	NDATIONS			J.		

Site No. 36 PHOTO

Culvert Asse	ssment Form		Site No.	37
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

		INLET		
	End Section			
	Cracked	Vegetation x	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
			-	
		OUTLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
OMMEN	TS			
/S outfal	I has a paved flume toward	ls frontage road.		
o outrai		is noncage routin		
ECOMM	ENDATIONS			
ECOMME	ENDATIONS			
ECOMM	ENDATIONS			
ECOMMI	ENDATIONS			

Culvert Asses	ssment Form		Site No.	38A
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

		INLET			
	End Section				
	Cracked	Vegetation	х	Alignment	
	Separated	Blocked		Erosion	
	Scour	Corrosion			
		OUTLET			
	End Section				
	Cracked	Vegetation	х	Alignment	
	Separated	Blocked		Erosion	
	Scour	Corrosion			
			÷		
	TS				
Vooded b	out stable. Downstream hea	avily vegetated.			
RECOMM	ENDATIONS				
	ENDATIONS etation; stabilize channel				

Site No. 38A PHOTO

C E Civil Engineering C S Consulting Services, Inc

Culvert Asse	ssment Form		Site No.	38B
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

Section ked arated ur Section ked arated ur d channel outfall.	Vegetation Blocked Corrosion OUTLET Vegetation Blocked Corrosion	Alignment Erosion Alignment Erosion	500 yards D/S re	sulti
arated ur Section Section ked arated ur d channel outfall.	Blocked Corrosion OUTLET Vegetation Blocked Corrosion	Erosion Alignment Erosion	500 yards D/S re	sulti
ur Section ked arated ur d channel outfall.	Corrosion OUTLET Vegetation Blocked Corrosion	Alignment Erosion	500 yards D/S re	sulti
Section ked arated ur d channel outfall.	OUTLET Vegetation Blocked Corrosion	Erosion	500 yards D/S re	sultir
ked arated ur d channel outfall.	Vegetation Blocked Corrosion	Erosion	500 yards D/S re	sultir
ked arated ur d channel outfall.	Vegetation Blocked Corrosion	Erosion	500 yards D/S re	sultir
ked arated ur d channel outfall.	Blocked Corrosion	Erosion	500 yards D/S re	sultir
arated ur d channel outfall.	Blocked Corrosion	Erosion	500 yards D/S re	sultir
ur d channel outfall.	Corrosion		500 yards D/S re	sultir
d channel outfall.		ved channel failure ~5	500 yards D/S re	sultir
	Very large erosion and pa	ived channel failure ~5	500 yards D/S re	sultir
	Very large erosion and pa	ved channel failure ~5	500 yards D/S re	sultir
	nel.			
	NS bilize outfall chanr	NS bilize outfall channel.		

Site No. 38B PHOTO

Culvert Asses	sment Form		Site No.	39
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

		INLET			
	End Section				
	Cracked	Vegetation	х	Alignment	
	Separated	Blocked		Erosion	х
	Scour	Corrosion			
		OUTLET			
	End Section				
	Cracked	Vegetation		Alignment	
	Separated	Blocked		Erosion	х
	Scour	Corrosion			
MMEN	TS				
OMMI	ENDATIONS				
COMMI	ENDATIONS				
COMMI	ENDATIONS				
ECOMMI	ENDATIONS				
COMMI	ENDATIONS				
ECOMMI	ENDATIONS				
COMMI	ENDATIONS				
ECOMMI	ENDATIONS				
COMMI	ENDATIONS				
COMMI	ENDATIONS				
ECOMMI	ENDATIONS				

Culvert Asses	sment Form		Site No.	40
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

	INLET		
End Section			
Cracked	Vegetation	Alignment	
Separated	Blocked	Erosion	х
Scour	Corrosion		
	OUTLET		
End Section			
Cracked	Vegetation	Alignment	
Separated	Blocked	Erosion	
Scour	Corrosion		

RECOMMENDATIONS Repair U/S spillway if necessary. Stabilize inlet.

N/S

Culvert Asse	ssment Form		Site No.	41
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

End Section Cracked Vegetation x Alignment Separated Blocked Erosion Section Scour Corrosion Image: Corrosion Image: Corrosion OUTLET End Section X Alignment Separated Separated X Blocked Erosion xxxx Scour x Corrosion Image: Corros			INLET			
Separated Blocked Erosion Scour Corrosion OUTLET End Section Cracked Vegetation x Alignment Separated Separated x Blocked Erosion xxxx Scour x Corrosion Corrosion xxx Scour Scour x Corrosion xxx Scour x Corrosion Image: Scour X Corrosion Image: Scour X Scour	End Section					
Scour Corrosion OUTLET End Section Cracked Vegetation Separated x Blocked Erosion Scour x Corrosion xxx Scour x COMMENTS Massive scour and erosion D/S. Some riprap has been placed and has failed. D/S pipes outfall into this eroded channel. A paved channel may have existed at some time.	Cracked		Vegetation	х	Alignment	
OUTLET End Section Cracked Vegetation Separated x Blocked Erosion Scour x COMMENTS Massive scour and erosion D/S. Some riprap has been placed and has failed. D/S pipes outfall into this proded channel. A paved channel may have existed at some time.	Separated		Blocked		Erosion	
End Section Cracked Vegetation x Alignment Separated x Blocked Erosion xxx Scour x Corrosion Image: Common state of the state	Scour		Corrosion			
End Section Cracked Vegetation x Alignment Separated x Blocked Erosion xxx Scour x Corrosion Image: Commercial stress of the second stress of the						
Cracked Vegetation x Alignment Separated x Blocked Erosion xxx Scour x Corrosion COMMENTS Assive scour and erosion D/S. Some riprap has been placed and has failed. D/S pipes outfall into this roded channel. A paved channel may have existed at some time. EECOMMENDATIONS			OUTLET			
Separated x Blocked Erosion xxx Scour x Corrosion xxx				1		
Scour x Corrosion COMMENTS Massive scour and erosion D/S. Some riprap has been placed and has failed. D/S pipes outfall into this eroded channel. A paved channel may have existed at some time.				х		
COMMENTS Massive scour and erosion D/S. Some riprap has been placed and has failed. D/S pipes outfall into this eroded channel. A paved channel may have existed at some time.					Erosion	XXX
Massive scour and erosion D/S. Some riprap has been placed and has failed. D/S pipes outfall into this eroded channel. A paved channel may have existed at some time.	Scour	Х	Corrosion			

C E Civil Engineering C S Consulting Services, Inc.

Culvert Asse	ssment Form		Site No.	42
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

			INLET				
	End Section						
	Cracked		Vegetation	хх	Alignment		
	Separated		Blocked		Erosion		
	Scour		Corrosion				
			OUTLET				
	End Section						
	Cracked		Vegetation	хх	Alignment		
	Separated		Blocked	х	Erosion	х	
	Scour		Corrosion				
		•					
OMMEN	TS						
	ENDATIONS						
	ENDATIONS II. Clear D/S pipe and outfa						
		11.					
		11.					
		11.					
		11.					
		II.					
		11.					
		II.					

Site No. 42 PHOTO

C E Civil Engineering C S Consulting Services, Inc

D/S

Culvert Asses	ssment Form		Site No.	43
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

		INLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
		OUTLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
ECOMN	/ENDATIONS			
ECOMN	/ENDATIONS			
ECOMN	/ENDATIONS			
ECOMN	/IENDATIONS			
ECOMN	/IENDATIONS			
ECOMN	/ENDATIONS			
ECOMN	/ENDATIONS			
ECOMN	<i>I</i>ENDATIONS			
ECOMN	/IENDATIONS			

Culvert Asses	ssment Form		Site No.	44
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

		INLET			
	End Section				
	Cracked	Vegetation	х	Alignment	
	Separated	Blocked		Erosion	
	Scour	Corrosion			
		OUTLET			_
	End Section				
	Cracked	Vegetation		Alignment	
	Separated	Blocked	х	Erosion	x
	Scour	Corrosion			
COMMEN					
	aved channel upstream. 1/2				
	% filled. Outfall channel is n		pe.		
			be.		
			be.		
D/S is 80% RECOMM	% filled. Outfall channel is no	ot evident beyond pip	be.		
D/S is 80% RECOMM	% filled. Outfall channel is n	ot evident beyond pip	be.		
D/S is 80% RECOMM	% filled. Outfall channel is no	ot evident beyond pip	be.		
D/S is 80% RECOMM	% filled. Outfall channel is no	ot evident beyond pip	be.		
D/S is 80% RECOMM	% filled. Outfall channel is no	ot evident beyond pip	be.		
D/S is 80% RECOMM	% filled. Outfall channel is no	ot evident beyond pip	be.		
D/S is 80% RECOMM	% filled. Outfall channel is no	ot evident beyond pip	be.		
D/S is 80% RECOMM	% filled. Outfall channel is no	ot evident beyond pip	pe.		
D/S is 80% RECOMM	% filled. Outfall channel is no	ot evident beyond pip	be.		
D/S is 80% RECOMM	% filled. Outfall channel is no	ot evident beyond pip	pe.		
D/S is 80% RECOMM	% filled. Outfall channel is no	ot evident beyond pip	pe.		

Site No. 44 PHOTO

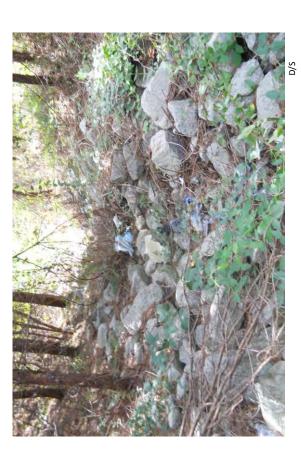
Culvert Assessment Form			Site No.	45
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

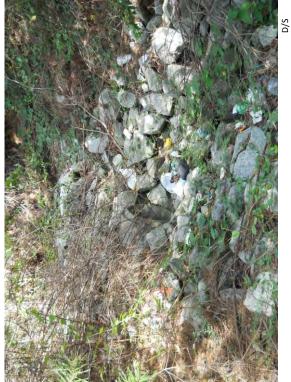
		INLET						
End Section								
Cracked		Vegetation		Alignment				
Separated		Blocked		Erosion				
Scour		Corrosion						
		OUTLET						
End Section								
Cracked	х	Vegetation	х	Alignment				
Separated		Blocked	х	Erosion				
Scour		Corrosion						
	-							
ENDATIONS								
ENDATIONS e and outfall.								

D/S

Culvert Asse	ssment Form		Site No.	46
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

	INLET				1
End Section				-	
Cracked	Vegetation		Alignment		
Separated	Blocked		Erosion		
Scour	Corrosion				J
	OUTLET				
End Section	OUTLET				1
Cracked	Vegetation		Alignment		
Separated	Blocked	x	Erosion	x	1
Scour	Corrosion	Â			
<u>k</u>	<u> </u>	1			3
1ΕΝΠΑΤΙΩΝS					
1ENDATIONS wnstream culvert and outfa	ll. Stabilize downstrean	n channe	·····		
1ENDATIONS wnstream culvert and outfa	ll. Stabilize downstrean	n channe	·I.		
	ll. Stabilize downstrean	n channe	:I.		
	ll. Stabilize downstrean	n channe	!I.		
	ll. Stabilize downstrean	n channe			
	ll. Stabilize downstrean	n channe	!I.		
	ll. Stabilize downstrean	n channe	:I.		
	ll. Stabilize downstrean	n channe	<u>ا</u> .		
	ll. Stabilize downstrean	n channe			


Site No. 46 PHOTO



Culvert Asse	ssment Form		Site No.	47
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

		INLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
		OUTLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
COMMENT	S			
J/S in med	lian.			
D/S has lot	s of rip rap with collection	of debris. Outfall is vegetate	d.	
		of debris. Outfall is vegetate	d.	
ECOMME	NDATIONS	of debris. Outfall is vegetate	d.	
ECOMME	NDATIONS	of debris. Outfall is vegetate	d.	
ECOMME	NDATIONS	of debris. Outfall is vegetate	d.	
ECOMME	NDATIONS	of debris. Outfall is vegetate	d.	
ECOMME	NDATIONS	of debris. Outfall is vegetate	d.	
ECOMME	NDATIONS	of debris. Outfall is vegetate	d.	
ECOMME	NDATIONS	of debris. Outfall is vegetate	d.	
RECOMME	NDATIONS	of debris. Outfall is vegetate	d.	
	NDATIONS	of debris. Outfall is vegetate	d.	
RECOMME	NDATIONS	of debris. Outfall is vegetate	d.	
RECOMME	NDATIONS	of debris. Outfall is vegetate	d.	
RECOMME	NDATIONS	of debris. Outfall is vegetate	d.	

Culvert Asses	ssment Form		Site No.	48
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

		INLET				
End Section						
Cracked		Vegetation		Alignment		
Separated		Blocked		Erosion		
Scour		Corrosion				
		OUTLET				
End Section						
Cracked		Vegetation	х	Alignment		
Separated	x	Blocked		Erosion	x	
Scour	x	Corrosion				
<u>.</u>		•		•		
ENDATIONS						
ENDATIONS butfall and repair joint s	eparation.					
	eparation.					
	eparation.					
	eparation.					
	eparation.					
	eparation.					
	eparation.					
	eparation.					
	eparation.					
	eparation.					
	eparation.					

Site No. 48 PHOTO

C E Civil Engineering C S Consulting Services, Inc

Culvert Asses	sment Form		Site No.	49
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

	INLET		
End Section			
Cracked	Vegetation	Alignment	
Separated	Blocked	Erosion	
Scour	Corrosion		
	OUTLET		
End Section			
Cracked	Vegetation	Alignment	
Separated	Blocked	Erosion	
Scour	Corrosion		
ENDATIONS our hole and construct ener	gy dissipator.		

Site No. 49 PHOTO

Culvert Asses	ssment Form		Site No.	50
Project ID	Work County	Route		Date
	Cherokee	I-85		9/13/2016

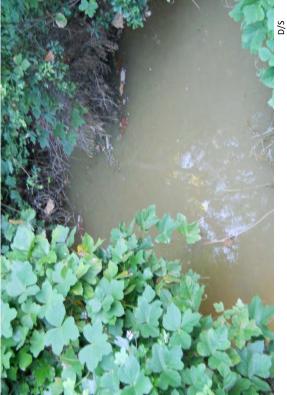
		INLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
		OUTLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
RECOMM				
	1ENDATIONS	nd downstroom shownals. St		t optropos with
Remove	vegetation from upstream a	Ind downstream channels. St		t entrance with
Remove	vegetation from upstream a	nd downstream channels. St e and construct energy dissip		t entrance with
Remove	vegetation from upstream a			t entrance with
Remove	vegetation from upstream a			t entrance with
Remove	vegetation from upstream a			t entrance with
Remove	vegetation from upstream a			t entrance with
Remove	vegetation from upstream a			t entrance with
Remove	vegetation from upstream a			t entrance with
Remove	vegetation from upstream a			t entrance with

Culvert Asse	ssment Form		Site No.	51
Project ID	Work County	Route		Date
	Cherokee	I-85		9/14/2016

		INLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
		OUTLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion		
RECOMM	IENDATIONS			
RECOMM	ENDATIONS			
RECOMM	IENDATIONS			
RECOMM	IENDATIONS			
RECOMM	ENDATIONS			
RECOMM	IENDATIONS			
RECOMM	IENDATIONS			
RECOMM	ENDATIONS			
RECOMM	IENDATIONS			

Project ID	Work County	Route	
	Cherokee	I-85	

			INLET		
	End Section				
	Cracked		Vegetation	Alignment	
	Separated		Blocked	Erosion	
	Scour		Corrosion		
			OUTLET		
	End Section				
	Cracked		Vegetation	Alignment	
	Separated	х	Blocked	Erosion	
	Scour	х	Corrosion		
RECOMME	NDATIONS				
Clean outfa	all. Stabilize downstre	am outlet a	nd construct energy d	lissipator. Repair joint s	separation.



D/S

C E Civil Engineering C S Consulting Services, Inc

Project ID	Work County	Route
	Cherokee	I-85

Site No.	53
	Date
	9/14/2016

		INLET			
	End Section				
	Cracked	Vegetation	х	Alignment	
	Separated	Blocked		Erosion	
	Scour	Corrosion			
		OUTLET			
	End Section		-		
	Cracked	Vegetation	х	Alignment	
	Separated	Blocked		Erosion	
	Scour	Corrosion			
FCOMMF	NDATIONS				

Site No. 53 PHOTO

Culvert Assessment Form

Project ID	Work County	Route	
	Cherokee	I-85	

Site No.	54
	Date
	9/14/2016

			INLET			
	End Section					
	Cracked		Vegetation	х	Alignment	
	Separated		Blocked		Erosion	
	Scour		Corrosion			
			OUTLET			
	End Section					
	Cracked		Vegetation	х	Alignment	
	Separated		Blocked		Erosion	x
	Scour	х	Corrosion			
OMMEN	TS					
PECONIM						
	ENDATIONS					
RECOMM Clear outf						

C E Civil Engineering C S Consulting Services, In

Project ID	Work County	Route	
	Cherokee	I-85	

ches.	Vegetation Blocked Corrosion OUTLET Vegetation Blocked Corrosion aved channels in betwo pe running through cu		Alignment Erosion Alignment Erosion erts with paved c	x
eparated cour ad Section racked eparated cour r frontage roads. Pa ches.	Blocked Corrosion OUTLET Vegetation Blocked Corrosion	x een culve	Erosion Alignment Erosion	
nd Section racked eparated rour r frontage roads. Pa ches.	Blocked Corrosion OUTLET Vegetation Blocked Corrosion	een culve	Erosion Alignment Erosion	
nd Section acked eparated cour r frontage roads. Pa ches.	OUTLET Vegetation Blocked Corrosion aved channels in betwo	een culve	Erosion	hannels comin
racked eparated cour r frontage roads. Pa ches.	Vegetation Blocked Corrosion	een culve	Erosion	hannels comin
racked eparated cour r frontage roads. Pa ches.	Vegetation Blocked Corrosion	een culve	Erosion	hannels comin
racked eparated cour r frontage roads. Pa ches.	Blocked Corrosion	een culve	Erosion	hannels comin
eparated our r frontage roads. Pa ches.	Blocked Corrosion	een culve	Erosion	hannels comin
our r frontage roads. Pa ches.	Corrosion aved channels in betwo			hannels comin
r frontage roads. Pa ches.	aved channels in betw		erts with paved c	hannels comin
ches.			erts with paved c	hannels comin
ches.			erts with paved c	hannels comin
ONS	atuana and dawartur	-		
etween culverts up	ostream and downstre	am.		

Site No. 55 PHOTO

C E Civil Engineering C S Consulting Services, In

Culvert Assessment Form			Site No.	56
Project ID	Work County	Route		Date
	Cherokee	I-85		9/14/2016

			INLET				
End	Section						1
Crac			Vegetation		Alignment		
	rated		Blocked		Erosion		
Scou			Corrosion				
5000	•		corrosion				1
			OUTLET				
End	Section						
Crac			Vegetation	х	Alignment		
	rated		Blocked		Erosion		
Scou		x	Corrosion			ļ	
	-	ļ	1	ļ	_		I
COMMENTS							
Type 9 U/S, two junc	tion hoxes						
rype 5 0/5, two june	cion boxes						
RECOMMENDATION	5						
Clear outfall and stal							
Ciedi Outidii dhu Sta							

Culvert Assessment Form				
Project ID	Work County	Route		
	Cherokee	I-85		

			INLET			
	End Section					
	Cracked		-	Х	Alignment	
	Separated		Blocked		Erosion	
	Scour		Corrosion			
	r		OUTLET			
	End Section					
	Cracked		Vegetation		Alignment	
	Separated		Blocked		Erosion	x
	Scour	х	Corrosion			
OMMEN	IS					
D/S half su	ubmerged outlet					
D/S half sı	ubmerged outlet					
	ubmerged outlet					
RECOMM	ENDATIONS					
RECOMM						
RECOMM	ENDATIONS					
RECOMM	ENDATIONS					
RECOMM	ENDATIONS					
RECOMM	ENDATIONS	·				
RECOMM	ENDATIONS					
RECOMM	ENDATIONS					
RECOMM	ENDATIONS					
RECOMM	ENDATIONS					
RECOMM	ENDATIONS					

C E Civil Engineering C S Consulting Services, Inc

Culvert Assessment Form

Project ID	Work County	Route
	Cherokee	I-85

Site No.	58
	Date
	9/14/2016

		INLET			
	End Section				
	Cracked	Vegetation	х	Alignment	
	Separated	Blocked		Erosion	
	Scour	Corrosion			
		OUTLET			
	End Section				
	Cracked	Vegetation	х	Alignment	
	Separated	Blocked	х	Erosion	
	Scour	Corrosion			
COMMENTS	5				
)/S has hea	vy vegetation and blocke	d			
	NDATIONS utlet pipe and outfall.				
RECOMMEN Clear D/S ou					

Project ID	Work County	Route
	Cherokee	I-85

	End Section Cracked Separated Scour	Vegetation Blocked Corrosion		Alignment Erosion		
	Cracked Separated	Blocked				
		Blocked				
		Corrosion				
		OUTLET				
	End Section					
	Cracked	Vegetation	х	Alignment		
	Separated	Blocked		Erosion	х	
	Scour	Corrosion				
		•				
D/S heavily v	repetatea.					
RECOMMEN						
	on box median drains. Cle	ar D/S pipe and outrail.				

Site No. 59 PHOTO

Project ID	Work County	Route
	Cherokee	I-85

			INLET			
	End Section			-		
	Cracked	х	Vegetation	х	Alignment	
	Separated		Blocked		Erosion	
	Scour		Corrosion			
	End Section		OUTLET]
			Vecetation	1	Alignment	
	Cracked	х	Vegetation		Alignment	
	Separated		Blocked	х	Erosion	
	Scour		Corrosion			
J/S has da	maged edge					
ys nas da	imaged edge					

Project ID	Work County	Route
	Cherokee	I-85

Site No.	61
	Date
	9/14/2016

End Section Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion OUTLET End Section Cracked Vegetation x Alignment Cracked Vegetation x Alignment Separated Separated Blocked Erosion x Separated Separated Blocked Erosion x Separated Scour Corrosion Image: Separated Separated D/S rip rap placed and overgrown. Sideline drainage converges at this outfall just upstream of Site 6 outfall. Separate Separated RECOMMENDATIONS Separate Separate Separate	End SectionVegetationAlignmentCrackedVegetationAlignmentSeparatedBlockedErosionScourCorrosionImage: Section state of the section state of th		INLET		
Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion OUTLET End Section Cracked Vegetation x Cracked Vegetation x Alignment Separated Blocked Erosion x Separated Blocked Erosion x Scour Corrosion Image: Scour im	Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion OUTLET End Section Cracked Vegetation x Alignment Cracked Vegetation x Alignment Separated Separated Blocked Erosion x Scour Corrosion Scour Corrosion x Scour Corrosion Scour Scour Scour Scour COMMENTS D/S rip rap placed and overgrown. Sideline drainage converges at this outfall just upstream of Site 6 outfall. Site 6 outfall.	End Section			
Separated Blocked Erosion Scour Corrosion Image:	Separated Blocked Erosion Scour Corrosion OUTLET End Section X Alignment Separated Blocked Erosion Scour Corrosion Image: Scour separate	Cracked	Vegetation	Alignment	
OUTLET End Section Cracked Vegetation Separated Blocked Erosion x Scour Corrosion COMMENTS D/S rip rap placed and overgrown. Sideline drainage converges at this outfall just upstream of Site 6 outfall. RECOMMENDATIONS	OUTLET End Section Cracked Vegetation x Alignment Separated Blocked Erosion x Scour Corrosion Corrosion Image: converges at this outfall just upstream of Site 6 outfall. COMMENTS D/S rip rap placed and overgrown. Sideline drainage converges at this outfall just upstream of Site 6 outfall. RECOMMENDATIONS	Separated			
End Section Cracked Vegetation x Alignment Separated Blocked Erosion x Scour Corrosion Image: Scour state s	End Section Cracked Vegetation x Alignment Separated Blocked Erosion x Scour Corrosion Image: Scour state s	Scour	Corrosion		
End Section Cracked Vegetation x Alignment Separated Blocked Erosion x Scour Corrosion Image: Scour state s	End Section Cracked Vegetation x Alignment Separated Blocked Erosion x Scour Corrosion Image: Scour state s				
Cracked Vegetation x Alignment Separated Blocked Erosion x Scour Corrosion COMMENTS D/S rip rap placed and overgrown. Sideline drainage converges at this outfall just upstream of Site 6 outfall. RECOMMENDATIONS	Cracked Vegetation x Alignment Separated Blocked Erosion x Scour Corrosion COMMENTS D/S rip rap placed and overgrown. Sideline drainage converges at this outfall just upstream of Site 6 outfall. RECOMMENDATIONS		OUTLET		
Separated Blocked Erosion x Scour Corrosion Image: Conversion Image: Conversinge: Conversion	Separated Blocked Erosion x Scour Corrosion Image: Conversion Image: Conversing: Conversion	End Section			
Scour Corrosion COMMENTS D/S rip rap placed and overgrown. Sideline drainage converges at this outfall just upstream of Site 6 butfall. Second Action Structure Second Structure RECOMMENDATIONS Second Structure	Scour Corrosion COMMENTS D/S rip rap placed and overgrown. Sideline drainage converges at this outfall just upstream of Site 6 butfall. Second Action Structure Second Structure RECOMMENDATIONS Second Structure	Cracked	Vegetation x		
COMMENTS D/S rip rap placed and overgrown. Sideline drainage converges at this outfall just upstream of Site 6 outfall.	COMMENTS D/S rip rap placed and overgrown. Sideline drainage converges at this outfall just upstream of Site 6 outfall.	Separated	Blocked	Erosion	x
D/S rip rap placed and overgrown. Sideline drainage converges at this outfall just upstream of Site 6 outfall. RECOMMENDATIONS	D/S rip rap placed and overgrown. Sideline drainage converges at this outfall just upstream of Site 6 outfall. RECOMMENDATIONS	Scour	Corrosion		
D/S rip rap placed and overgrown. Sideline drainage converges at this outfall just upstream of Site 6 outfall. RECOMMENDATIONS	D/S rip rap placed and overgrown. Sideline drainage converges at this outfall just upstream of Site 6 outfall. RECOMMENDATIONS				
Clear of replace outrail riprap. Clear outrail.	Clear or replace outrail riprap. Clear outrail.				
			outfall.		
			outfall.		
			outfall.		

Culvert Asse	ssment Form		Site No.	62
Project ID	Work County	Route		Date
	Cherokee	I-85		9/14/2016

End Section Cracked Vegetation Alignment Separated Blocked Erosion Scour x Corrosion OUTLET OUTLET End Section Cracked Vegetation Alignment Cracked Vegetation Alignment Separated Separated Blocked Erosion Separated Separated Blocked Erosion Separated Scour Corrosion Separated Separated Separated D/S 6 inches - 1 foot of sediment deposition inside culvert. Tree growing through headwall weep Separated Separated				INLET		
Separated Blocked Erosion Scour x Corrosion Image: Corrosion OUTLET End Section Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion Image: Corrosion		End Section				
Scour x Corrosion OUTLET End Section OUTLET Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion OUTLET		Cracked		Vegetation	Alignment	
OUTLET End Section Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion OUTLET		Separated		Blocked	Erosion	
End Section Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion Corrosion		Scour	х	Corrosion		
End Section Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion Corrosion						
Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion				OUTLET		
Separated Blocked Erosion Scour Corrosion Image: Comments		End Section				
Scour Corrosion COMMENTS		Cracked		Vegetation	Alignment	
COMMENTS		Separated		Blocked	Erosion	
COMMENTS		Scour		Corrosion		
	D/S 6 inch	nes - 1 foot of sediment	deposition	inside culvert. Tree g	rowing through hea	dwall weep

RECOMMENDATIONS Clean culvert; Clean infall and outfall. Site No. 62 PHOTO

Culvert Assessment Form				
Project ID	Work County	Route		

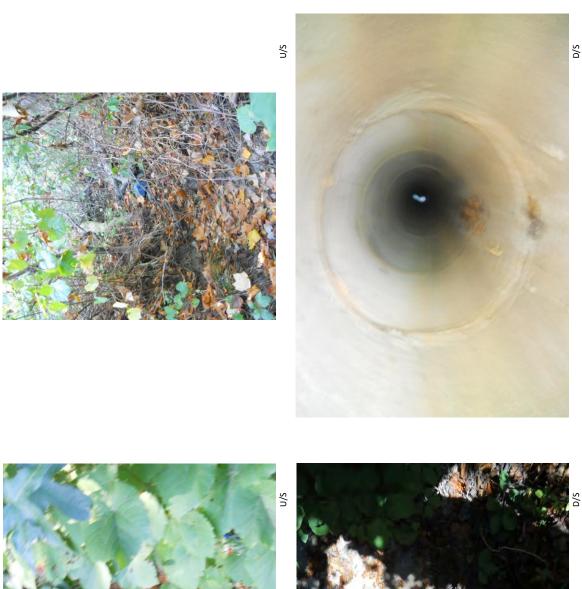
I-85

Cherokee

Site No.	63
	Date
	9/14/2016

	E de cont	INLET		
	End Section			1
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion	х
	Scour	Corrosion		
	End Section	OUTLET		
	Cracked	Vegetation x	Alignment	
	Separated	Blocked	Erosion	
	Scour	Corrosion	LIUSION	
	Scoul	CONOSION		
RECOMMEN	NDATIONS			
RECOMMEN Clear outfal				

Site No. 63 PHOTO


Culvert Assessment Form

Project ID	Work County	Route
	Cherokee	I-85

Site No.	64
	Date
	9/14/2016

			INLET		
	End Section				
	Cracked		Vegetation	Alignment	
	Separated		Blocked	Erosion	
	Scour		Corrosion		
			OUTLET		
	End Section				
	Cracked		Vegetation	Alignment	
	Separated	х	Blocked	Erosion	х
	Scour		Corrosion		
RECOMM					
	ENDATIONS				
	ENDATIONS utfall and repair joint se	eparation.			
		eparation.			

|--|

Project ID	Work County	Route
	Cherokee	I-85

Site No.	65
	Date
	9/14/2016

Section ked arated ir Section ked arated ir er w/ excessive sc	Vegetation Blocked Corrosion OUTLET Vegetation Blocked Corrosion Corrosion Sour and last section separat	Alignment Erosion Alignment Erosion ed	
arated ir Section ked arated ir	Blocked Corrosion OUTLET Vegetation Blocked Corrosion	Erosion Alignment Erosion	
Ir Section ked arated Ir	Corrosion OUTLET Vegetation Blocked Corrosion	Alignment Erosion	
Section ked arated Ir	OUTLET Vegetation Blocked Corrosion	Erosion	
ked arated ır	Vegetation Blocked Corrosion	Erosion	
ked arated ır	Vegetation Blocked Corrosion	Erosion	
ked arated ır	Blocked Corrosion	Erosion	
arated Ir	Blocked Corrosion	Erosion	
ir	Corrosion		
		red	
er w/ excessive sc	our and last section separat	ed	
	our hole and joint separation	n downstream. Construct	energy
	IS hannel. Repair sc		IS hannel. Repair scour hole and joint separation downstream. Construct

Site No. 65 PHOTO

C E Civil Engineering C S Consulting Services, Ir

Culvert Asse	ssment Form		Site No.	66
Project ID	Work County	Route		Date
	Cherokee	I-85		9/14/2016

			INLET			
	End Section					
	Cracked		Vegetation		Alignment	
	Separated		Blocked	х	Erosion	
	Scour		Corrosion			
			OUTLET			
	End Section					
	Cracked		Vegetation		Alignment	
	Separated		Blocked		Erosion	x
	Scour	х	Corrosion			
			•	- P		
	TS					
J/S has a i	rip rap ditch channel froi	m intersta	ite. Channel has	s a CMP ′	~60% buried upst	ream of Site 66
U/S has a i	rip rap ditch channel froi	m intersta	ite. Channel has	a CMP [,]	~60% buried upst	ream of Site 66
		m intersta	ite. Channel has	a CMP 1	~60% buried upst	ream of Site 66
RECOMME	ENDATIONS					
RECOMME Clean infal	ENDATIONS Il and stabilize pipe entra	ance with	riprap. Clean ex			
RECOMME Clean infal	ENDATIONS	ance with	riprap. Clean ex			
RECOMME Clean infal	ENDATIONS Il and stabilize pipe entra	ance with	riprap. Clean ex			
RECOMME Clean infal	ENDATIONS Il and stabilize pipe entra	ance with	riprap. Clean ex			
RECOMME Clean infal	ENDATIONS Il and stabilize pipe entra	ance with	riprap. Clean ex			
RECOMME Clean infal	ENDATIONS Il and stabilize pipe entra	ance with	riprap. Clean ex			
RECOMME Clean infal	ENDATIONS Il and stabilize pipe entra	ance with	riprap. Clean ex			
RECOMME Clean infal	ENDATIONS Il and stabilize pipe entra	ance with	riprap. Clean ex			
RECOMME Clean infal	ENDATIONS Il and stabilize pipe entra	ance with	riprap. Clean ex			

Site No. 66 PHOTO

C E Civil Engineering C S Consulting Services, Inc

D/S

D/S

Culvert Asse	ssment Form		Site No.	67
Project ID	Work County	Route		Date
	Cherokee	I-85		9/14/2016

	End Section Cracked Separated Scour	Vegetation Blocked Corrosion	Alignment Erosion	
	Separated Scour	Blocked		
	Scour		Erosion	
		Corrosion		
		···		
		OUTLET		
	End Section			
	Cracked	Vegetation	Alignment	
	Separated	Blocked	Erosion x	
	Scour	Corrosion		
)/S outfalls o	onto a paved channel (w	hich outfalls to site 66) which	n has erosion around edges	S.
RECOMMEN	DATIONS			
Check capaci	ity of D/S paved channel fall channel.	and potentially increasing siz	e to prevent overtopping	and erosion.

D/S

761

Culvert Asse	ssment Form		Site No.	68
Project ID	Work County	Route		Date
	Cherokee	I-85		9/14/2016

End Section Alignment Separated Blocked Erosion Scour x Corrosion OUTLET End Section Alignment Cracked Vegetation Alignment Separated Blocked Erosion Cracked Vegetation Alignment Separated Blocked Erosion Scour Corrosion Image: Separated Dipe entrance partially blocked by sediment. Image: Separated D/S outfalls into eroded channel. Image: Separate Sepa	COMMENTS Pipe entrance p	Cracked Separated Scour End Section Cracked Separated Scour	y sediment	Blocked Corrosion OUTLET Vegetation Blocked Corrosion	Erosion Alignment	
Separated Blocked Erosion Scour x Corrosion Image: Corrosion image: Corrosimage: Corrosion image: Corrosion image: Corros	COMMENTS Pipe entrance p	Separated Scour End Section Cracked Separated Scour	y sediment	Blocked Corrosion OUTLET Vegetation Blocked Corrosion	Erosion Alignment	
Separated Blocked Erosion Scour x Corrosion Image: Corrosion image: Corrosimage: Corrosion image: Corrosion image: Corros	COMMENTS Pipe entrance p	Scour End Section Cracked Separated Scour	y sediment	Blocked Corrosion OUTLET Vegetation Blocked Corrosion	Erosion Alignment	
OUTLET End Section Cracked Vegetation Alignment Separated Blocked Erosion x Scour Corrosion Corrosion x COMMENTS Pipe entrance partially blocked by sediment. D/S outfalls into eroded channel. Secommendations Secommendations Secommendations	COMMENTS Pipe entrance p	End Section Cracked Separated Scour Partially blocked by	y sediment	OUTLET Vegetation Blocked Corrosion		
End Section Cracked Vegetation Alignment Separated Blocked Erosion x Scour Corrosion Image: Scour state s	COMMENTS Pipe entrance p	Cracked Separated Scour Partially blocked by		Vegetation Blocked Corrosion		
End Section Cracked Vegetation Alignment Separated Blocked Erosion x Scour Corrosion Image: Scour state s	COMMENTS Pipe entrance p	Cracked Separated Scour Partially blocked by		Vegetation Blocked Corrosion		
Cracked Vegetation Alignment Separated Blocked Erosion x Scour Corrosion Corrosion x COMMENTS Pipe entrance partially blocked by sediment. Pipe ontrance partially blocked by sediment. D/S outfalls into eroded channel. Secommendation Secommendation RECOMMENDATIONS Secommendation Secommendation	COMMENTS Pipe entrance p	Cracked Separated Scour Partially blocked by		Blocked Corrosion		
Separated Blocked Erosion x Scour Corrosion Image: Scour state of the second state of	COMMENTS Pipe entrance p	Separated Scour partially blocked by		Blocked Corrosion		
COMMENTS Pipe entrance partially blocked by sediment. D/S outfalls into eroded channel.	COMMENTS Pipe entrance p	Scour Partially blocked by		Corrosion	Erosion x	
COMMENTS Pipe entrance partially blocked by sediment. D/S outfalls into eroded channel.	COMMENTS Pipe entrance p	partially blocked by				
Pipe entrance partially blocked by sediment. D/S outfalls into eroded channel.	Pipe entrance p			t.		
Pipe entrance partially blocked by sediment. D/S outfalls into eroded channel.	Pipe entrance p			t.		
		TIONS				
lear mail to k/w. Repair downstream scour noie and construct energy dissipator.			troom cool	ur halo and construct	onorgy discinator	
	Clear Infall to R	vv. Repair downs	tream scol	ur note and construct	energy dissipator.	

Site No. 68 PHOTO

C E Civil Engineering C S Consulting Services, Inc

D/S

D/S

Culvert Asses	sment Form	
Project ID	Work County	

Project ID	Work County	Route
	Cherokee	I-85

			INLET			
	End Section					
	Cracked		Vegetation	х	Alignment	
	Separated		Blocked		Erosion	
	Scour		Corrosion			
			OUTLET			
	End Section					
	Cracked		Vegetation		Alignment	
	Separated	х	Blocked			х
	Scour	х	Corrosion			
RECOMME Stabilize ou	NDATIONS Itfall and repair joint s	eparation.				

C E Civil Engineering C S Consulting Services, In

D/S

D/S

Culvert Asse	ssment Form		Site No.	70
Project ID	Work County	Route		Date
	Cherokee	I-85		9/14/2016

			INLET			
	End Section					
	Cracked		Vegetation	х	Alignment	
	Separated		Blocked	х	Erosion	
	Scour		Corrosion			
			OUTLET			
	End Section					
	Cracked		Vegetation		Alignment	
	Separated		Blocked		Erosion	х
	Scour	х	Corrosion			
U/S has mu	ultiple inflows and a co	illection of	debris.			
RECOMME	NDATIONS					
Clear U/S c						
Repair and	stabilize outfall chann	el.				
Repair and	stabilize outfall chann	el.				
Repair and	stabilize outfall chann	el.				
Repair and	stabilize outfall chann	iel.				

Site No. 70 PHOTO

Culvert Assessment Form

Project ID	Work County	Route
	Cherokee	I-85

	INLET			
End Section				
Cracked	Vegetation		Alignment	
Separated	Blocked	х	Erosion	
Scour	Corrosion			
	OUTLET			
End Section	OUTLET			
End Section Cracked	OUTLET	x	Alignment	
	1 1	x	Alignment Erosion	

COMMENTS

D/S alignment did not agree with survey or upstream junction out-pipe. Assuming a buried junction box of unknown location. Took a photo with expected alignment (photo shown with knife). Survey did show an 18" cross pipe beneath the ramp which was located and photographed to ensure outfall was not being mistaken.

RECOMMENDATIONS Clear debris and sediment from U/S. Clear vegetation at outlet Site No. 71 PHOTO

C E Civil Engineering C S Consulting Services, Inc.

C E C S

Civil Engineering Consulting Services, Inc.