Preliminary Geotechnical Data Report

Emergency Bridge Package 3 – SC 34 Bridge Replacement over Heller's Creek Newberry County, South Carolina

> November 10, 2015 (Rev. 2) Terracon Project No. 73155050F

Prepared for:

South Carolina Department of Transportation Columbia, South Carolina

Prepared by:

Terracon Consultants, Inc. Columbia, South Carolina

November 10, 2015 (Rev. 2)

South Carolina Department of Transportation 955 Park Street, Room 421 Columbia, South Carolina 29201

- Attn: Mr. Trapp Harris, P.E. Geotechnical Design Engineer – Design-Build Section
- Re: Preliminary Geotechnical Data Report Emergency Bridge Package 3 – SC 34 Bridge Replacement over Heller's Creek Newberry County, South Carolina Terracon Project Number: 73155050F

Dear Mr. Harris:

Terracon Consultants Inc. (Terracon) has completed the geotechnical exploration and testing services for the above referenced project. These services were conducted in general accordance with the SCDOT Request for Subsurface Exploration and Laboratory Testing dated October 23, 2015. This geotechnical data report presents the findings of the subsurface exploration and laboratory testing along with an overview of testing activities.

1.0 INTRODUCTION

The South Carolina Department of Transportation (SCDOT) has contracted Terracon to perform subsurface exploration and laboratory testing for the Emergency Bridge Package 3 – SC 34 Bridge Replacement over Heller's Creek in Newberry County, South Carolina, South Carolina. The purpose this work is to develop information relative to subsurface soil and groundwater conditions at the bridge location. This report presents the results of that work. No geotechnical recommendations are associated with the requested scope of study.

The following sections of this report contain a summary of the activities our field exploration and laboratory testing. The logs of the borings, the Site Location Map and the Exploration Plan are included in Appendix A of this report. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included in Appendix B of this report. Descriptions of the field exploration and laboratory testing are included in their respective appendices.

> Terracon Consultants, Inc. 521 Clemson Road Columbia, South Carolina 29229 P [803] 741 9000 F [803] 741 9900 terracon.com

2.0 PROJECT DESCRIPTION

The project bridge replacement project is located on SC 34 in Newberry County, SC. Site location and boring locations plans are presented in Appendix A of this report. It is our understanding that the project will include the demolition/removal of the existing bridge structure and the replacement with a new bridge on the existing or similar horizontal alignment. The existing bridge is a multi-span structure apparently supported steel piles. It crosses Heller's Creek. The surface of the stream flow was about 17 feet below the existing bridge deck.

3.0 GEOTECHNICAL TESTING

Between October 29 and October 30 2015, two (2) soil test borings (designated STB-1 and STB-2) were performed at the bridge location. Borings STB-1 and STB-2 were performed approximately 10 feet to the east and west of the ends of the existing bridge, respectively, as shown on Exhibit A-2 in Appendix A.

3.1 Field Exploration

Our field exploration at the site consisted of two (2) Standard Penetration Test (SPT) Borings (STB-1, STB-2) at the general test locations provided to Terracon by the SCDOT. A description of our testing methods and graphical logs outlining the soil conditions at each test location are presented in Appendix A. The test locations were established in the field by Terracon and surveyed by Construction Support Services, LLC, after completion. At the time of our field exploration, the roadway in the area of the bridge was closed due to a washout on the east side of the bridge. The set up at each boring is provided in the photographs below.

Photo 1. Drill rig at STB-1 (SC-34)

Photo 2. Drill rig at STB-2 (SC-34)

Preliminary Geotechnical Data Report SC 34 Bridge Replacement over Heller's Creek Newberry County, SC November 10, 2015 (Rev. 2) Terracon Project No. 73155050F

3.2 Laboratory Testing

The following laboratory tests were performed on the soil samples collected at the site.

- Twelve (12) Natural Moisture Content Tests (ASTM D2216)
- Four (4) Atterberg Limits Tests (ASTM D4318)
- Eight (8) Wash #200 Tests
- Six (6) Compressive Strength of Rock Tests

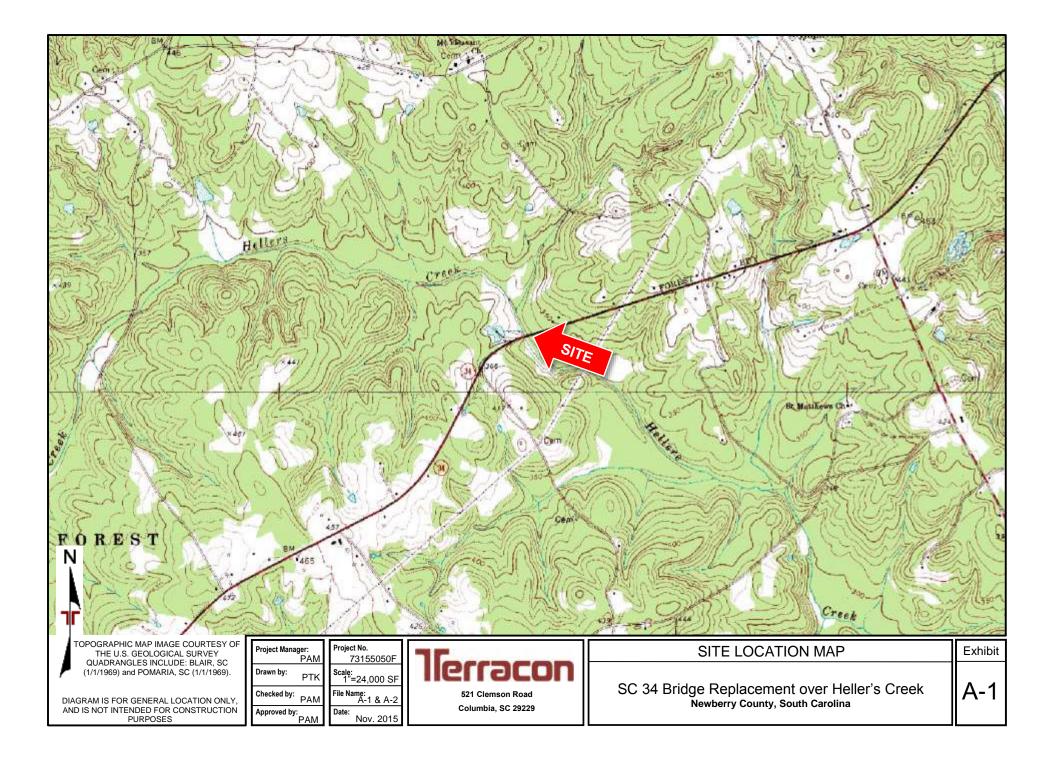
The laboratory procedures and results of the laboratory tests are presented in Appendix B.

4.0 CLOSURE

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or we may be of further service, please contact us.

Sincerely, Terracon Consultants, Inc.

redenda


Joseph D.M. Fredendall, E.I.T. Field Engineer Phillip A. Morrison, P.E. Geotechnical Department Manager SC Registration No. 17275

Attachments

Copies: Addressee (1 via email) File (1)

APPENDIX A - FIELD EXPLORATION

Exhibit A-1 – Site Location Map Exhibit A-2 – Exploration Plan Exhibit A-3 – Summary of Boring Data Exhibit A-4 – Field Testing Description Exhibit A-5 – Soil Description Terms Exhibit A-6 – Rock Description Terms Exhibits A-7 and A-8 - Boring Logs Exhibit A-9 - Rock Core Photographs

Summary of Boring Data

Boring No.	Ground Elevation (ft.)	Test Depth (ft.)	Northing	Easting	Latitude	Longitude
STB-1	334.4	50.1	926291.789	1867276.964	34.378446	-81.439904
STB-2	334.7	37.0	926249.284	1867173.742	34.378328	-81.440246

FIELD EXPLORATION DESCRIPTION

Overview

The testing locations were provided by the SCDOT and located in the field by Terracon by taking measurements from the existing bridge. The borings were surveyed by Construction Support Services, LLC after drilling was complete. The locations are shown on the Exploration Plan (Exhibit A-2).

A field log of each test location was prepared by our field engineer. The final boring logs included with this report represent the engineer's description of the encountered conditions modified as necessary based on laboratory test results of the individual samples.

Soil Test Borings (STB)

All boring and sampling operations were conducted in general accordance with the following procedures:

- SCDOT Geotechnical Design Manual 2010
- ASTM D5783, "Standard Guide for Use of Direct Rotary Drilling with Water-Based Drilling Fluid for Geo-environmental Exploration"
- ASTM D1586 "Test Method for Penetration Test and Split-Barrel Sampling of Soils"
- ASTM D2113 "Standard Practice for Rock Core Drilling and Sampling of Rock for Site Exploration"
- ASTM D4220 "Standard Practices for Preserving and Transporting Soil"

Each boring was advanced using rotary wash drilling techniques. Five samples were collected in the upper 10 feet. Below that depth, samples were obtained at 5-foot intervals. Soil samples were obtained with a standard 1.4-inch I.D., 2-inch O.D., split-barrel sampler, also known as a standard split-spoon. The sampler is advanced into the soil a total of 18 inches (24-inches in the upper 10 feet) by striking the drill rod using a 140-pound automatic hammer falling 30 inches. The number of blows required to advance the sampler for each of the three, 6-inch increments is recorded. A fourth reading was recorded in the upper 10 feet. The sum of the number of blows for the second and third increments is called the "Standard Penetration Value", or N-value (N_{meas} , blows per foot). The N-value, when properly evaluated, is an index to the soil strength.

Soil Classification provides a general guide to the engineering properties of various soil types and enables the engineer to apply his experience to current situations. In our exploration, samples obtained during drilling operations are examined and visually classified by a geotechnical engineer using the procedures outlined in ASTM D2487 - Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System). Laboratory testing was also performed on select split-spoon samples to evaluate index properties for further classification. The soils are described according to color, texture, and relative density or

Preliminary Geotechnical Data Report SC 34 Bridge Replacement over Heller's Creek Newberry County, SC November 10, 2015 (Rev. 2) Terracon Project No. 73155050F

consistency (based on standard penetration resistance). An explanation of the soil descriptions shown on the logs is provided on Exhibit A-5.

The borings were advanced to refusal of the drilling equipment and continued below this depth using diamond bit rock coring techniques. NQ2 sized cores were recovered from the borehole. The rock recovery ratios (REC, percentage of the total core run), Rock Quality Designation (RQD, percentage of the total core run of pieces greater than 4 inches) were recorded along with a description of the rock. An explanation of the rock descriptions shown on the logs is provided on Exhibit A-6. Photos of the recovered rock core specimens are provided on Exhibit A-9 of the Appendix.

Due to the drilling method, time-of-drilling water levels could not be recorded as it as well as the rock coring introduces water into the borehole. The 24-hour groundwater readings were collected from the borings, where possible. These are indicated on the boring logs. As the roadway was being paved at the time of the field exploration, 24-hour groundwater measurements could not be collected at Boring STB-1. At the conclusion of the work, the boreholes were backfilled and capped with cold-patch asphalt.

SOIL DESCRIPTION TERMS

Relative Density/Consistency Terms Relative Density¹

Consistency²

relative Benety			Conclotency		
				Unconfined	SPT Blow
Descriptive Term	Relative Density	SPT Blow Count	Descriptive Term	Compression	Count
				Strength (q _u) (tsf)	
Very Loose	0 to 15%	4 and less	Very Soft	0.25 and less	2 and less
Loose	16 to 35%	5 to 10	Soft	0.26 to 0.50	3 to 4
Medium Dense	36 to 65%	11 to 30	Firm	0.51 to 1.00	5 to 8
Dense	66 to 85%	31 to 50	Stiff	1.01 to 2.00	9 to 15
Very Dense	86 to 100%	51 and more	Very Stiff	2.01 to 4.00	16 to 30
			Hard	4.01 and more	31 and more

Moisture Condition

Descriptive Term	<u>Criteria</u>
Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
Wet	Visible free water, usually in coarse-grained soils below the water table

Color

Describe the sample color while sample is still moist.

Angularity¹

Descriptive Term	Criteria
Angular	Particles have sharp edges and relatively plane sides with unpolished surfaces.
Subangular	Particles are similar to angular description but have rounded edges.
Subrounded	Particles have nearly plane sides but have well-rounded corners and edges.
Rounded	Particles have smoothly curved sides and no edges.

HCI Reaction³

Descriptive Term	Criteria
None Reactive	No visible reaction
Weakly Reactive	Some reaction, with bubbles forming slowly
Strongly Reactive	Violent reaction, with bubbles forming immediately

Cementation³

Descriptive Term	Criteria
Weakly Cemented	Crumbles or breaks with handling or little finger pressure
Moderately Cemented	Crumbles or breaks with considerable finger pressure
Strongly Cemented	Will not crumble or break with finger pressure

Particle-Size Range¹

Gravel	Diameter, mm	Sieve Size	Sand	Diameter, mm	Sieve Size
Fine	4.76 to 19.1	#4 to ¾ inch	Fine	0.074 to 0.42	#200 to #40
Coarse	19.1 to 76.2	3/4 inch to 3 inch	Medium	0.42 to 2.00	#40 to #10
			Coarse	4.00 to 4.76	#10 to #4

Primary Soil Type^{1, 2}

The primary soil type will be shown in all capital letters.

USCS Soil Designation

Indicate USCS soil designation as defined in ASTM D-2487 and D-2488

AASHTO Soil Designation

Indicate AASHTO soil designation as defined in AASHTO M-145 and ASTM D-3282

¹ Applies to coarse-grained soils (major portion retained on No. 200 sieve)

² Applies to fine-grained soils (major portion passing No. 200 sieve)

³Use as required

DESCRIPTION OF ROCK PROPERTIES

WEATHERING

Rock fresh, crystals bright, few joints may show slight staining. Rock rings under hammer if crystalline. Fresh Very slight Rock generally fresh, joints stained, some joints may show thin clay coatings, crystals in broken face show bright. Rock rings under hammer if crystalline. Slight Rock generally fresh, joints stained, and discoloration extends into rock up to 1 in. Joints may contain clay. In granitoid rocks some occasional feldspar crystals are dull and discolored. Crystalline rocks ring under hammer. Significant portions of rock show discoloration and weathering effects. In granitoid rocks, most feldspars are dull Moderate and discolored; some show clayey. Rock has dull sound under hammer and shows significant loss of strength as compared with fresh rock. Moderately severe All rock except quartz discolored or stained. In granitoid rocks, all feldspars dull and discolored and majority show kaolinization. Rock shows severe loss of strength and can be excavated with geologist's pick. Severe All rock except guartz discolored or stained. Rock "fabric" clear and evident, but reduced in strength to strong

- Very severe
 All rock except quality discolored of staffied.
 Rock rabit
 Clear and evident, but reduced in strength to strong soil.

 Very severe
 All rock except quartz discolored or stained.
 Rock "fabric" discernible, but mass effectively reduced to "soil" with
- only fragments of strong rock remaining.
- Complete Rock reduced to "soil". Rock "fabric" not discernible or discernible only in small, scattered locations. Quartz may be present as dikes or stringers.

HARDNESS (for engineering description of rock – not to be confused with Moh's scale for minerals)

Very hard	Cannot be scratched with knife or sharp pick. Breaking of hand specimens requires several hard blows of geologist's pick.
Hard	Can be scratched with knife or pick only with difficulty. Hard blow of hammer required to detach hand specimen.
Moderately hard	Can be scratched with knife or pick. Gouges or grooves to ¼ in. deep can be excavated by hard blow of point of a geologist's pick. Hand specimens can be detached by moderate blow.
Medium	Can be grooved or gouged 1/16 in. deep by firm pressure on knife or pick point. Can be excavated in small chips to pieces about 1-in. maximum size by hard blows of the point of a geologist's pick.
Soft	Can be gouged or grooved readily with knife or pick point. Can be excavated in chips to pieces several inches in size by moderate blows of a pick point. Small thin pieces can be broken by finger pressure.
Very soft	Can be carved with knife. Can be excavated readily with point of pick. Pieces 1-in. or more in thickness can be broken with finger pressure. Can be scratched readily by fingernail.

Joint, Bedding, and Foliation Spacing in Rock ^a									
Spacing	Joints	Bedding/Foliation							
Less than 2 in.	Very close	Very thin							
2 in. – 1 ft.	Close	Thin							
1 ft. – 3 ft.	Moderately close	Medium							
3 ft. – 10 ft.	Wide	Thick							
More than 10 ft.	Very wide	Very thick							

a. Spacing refers to the distance normal to the planes, of the described feature, which are parallel to each other or nearly so.

Rock Quality De	signator (RQD) a	Joint Openness Descriptors							
RQD, as a percentage	Diagnostic description	Openness Descrip							
Exceeding 90	Excellent	No Visible Separation	Tight						
90 – 75	Good	Less than 1/32 in.	Slightly Open						
75 – 50	Fair	1/32 to 1/8 in.	Moderately Open						
50 – 25	Poor	1/8 to 3/8 in.	Open						
Less than 25	Very poor	3/8 in. to 0.1 ft.	Moderately Wide						
. RQD (given as a percentage) = length of core in pieces	Greater than 0.1 ft.	Wide						

RQD (given as a percentage) = length of core in piece
 4 in. and longer/length of run.

References: American Society of Civil Engineers. Manuals and Reports on Engineering Practice - No. 56. <u>Subsurface Investigation for</u> <u>Design and Construction of Foundations of Buildings.</u> New York: American Society of Civil Engineers, 1976. U.S. Department of the Interior, Bureau of Reclamation, <u>Engineering Geology Field Manual</u>.

Responsive Resourceful Reliable

Site Des Eng./Ge						age 3	•			100	unty:		ewbe	Пy					110	STE	5-1	
	Scripti	on:	SC 3	-		-		ent o	ver Hel							I		1	oute:			
		. Zur	-		, •				WBL			Offs	et:		CTR		Ali	gnn	nent:	M	AINL	IN
_164	334.4	ft	Latitu	de:			7844		Longit	ude:	-8	1.43	9904		Date	Star	ted:			10/29	9/201	5
Total De	epth:	50.1	1 ft	Soil	Dept	:h:	30).1 ft	Co	ore De	pth:	50).1 ft		Date	Con	nple	ted:		10/29	9/201	5
Bore Ho	ole Dia	meter	(in):	2.9	4	Sam	pler (Confi	iguratio	on	Lin	er R	equir	ed:	Y	í (f	J)	Lir	ner Ü	lsed:	Y	(
Drill Ma	chine:	CN	1E 55	0	Drill	Meth	od:	RW	/RC		Hamm	er T	ype:	Au	toma	tic	E	Iner	gy R	atio:	81.9	%
Core Siz	ze:	NQ2		0	Drille	er:	C.	Fred	rychow	ski	Groun	dwa	ter:	то	В	N/R			24H	R	N/R	
									_	L	-1											
Elevation (ft)	O Depth (ft)	l Roadv	MATER vay	RIAL E	DES	CRIP	TION	I	Graphic Log	Sample Depth	Sample No./Type	1st 6"	2nd 6"	3rd 6"	N Value	0 1		PL X	ES CO	VALUE	LL —X IT (%)) 9
	0.5	Aspha	It Concre	ete (6.	5 incł	nes)				0.5							:	:			: :	
-	2.0 _	subrou	Medium unded, w (SC) (A- :15.8	eakly o	ceme	nted,	lowish fine cla	red, ayey		2.0	SS-1	5	10/7		17	_	۲	•				
-	- 4.0_	subrou SAND	Medium unded, w (SM) (A :11.4, % /	eakly (-2-4) 5	ceme 5YR5/	nted,				4.0	- SS-2	5	9/8	7	17	_		•				
329.4-	6.0	subrou SAND	Medium unded, w (SM) (A P, PL=NF	eakly (-2-4) 5	ceme 5YR5/	nted, '8	fine si	lty		6.0	- SS-3	7	6/5	5	11	*						
-	-	FILL -	Very loos , subrour AND (SN	se to lo	oose, weak	moist y cerr	, stron nented	ng		8.0	- SS-4	3	2/2	2	4	•	0	· · · · ·				
-	_	-	P, PL=NF	p, NMC	C=16.	9, %#	200=2	28.8			- SS-5	1	3/2	1	5	ו	0					
324.4-																	:	:	:			
	11.0										_						÷		-			
	_	Firm, i seams	moist, gra s (CL) (A	ay, silt -6) GL	y CL/ EY1_	4Y wit _5/1	n sano	a		13.5	-											
- 319.4 -	-	NMC=	27.3								SS-6	3	2/3		5	•		0				
-	-										_											
_	- 19.0 _	Very s ∖NMC=	oft from 35.7	18.5 to	o 19 f	eet			/	18.5	SS-7	мон.	/6''3/6		9				D			
				PLER T					LE	GEN)				RILLI				Conti	inued	Next	Р

SCEFT Soil Test Log

			-	-		Varil			Newb	erry		E			-		
							eller's		Offect		СТР						
							tuday			4							
								•									
												\sim					<u>(</u> /
Project ID: Emergency Bridge Package 3 County: Newberry Boring No.: STE-1 Site Description: SC 34 Bridge Replacement over Heller's Creek Rotter SC 34 Rotter SC 34			0														
	26.	INQZ			0. Tieu	rychov	V SKI	Ground	awater.		ין ט	N/ I X				11/11	
													•	SPT N	VALUE	•	
Elevation (ft)	Depth (ft)	MATE	ERIAL DE	SCRIPT	ION	Graphic Log	Sample Depth	(II) Sample No./Type	1st 6" 2nd 6"	3rd 6"	N Value	0 10	▲ FIN		NTEN	T (%)	90
- - 309.4 -		weakly cem (A-2-4) 10G Dense, mois greenish bla (SM) (A-2-4	ented fine s Y3/2 st, very dark ck, micace) 10GY3/2 t	ilty SAND greenish ous, fine s o GLEY1	gray to silty SAND _2.5/1		23.5		7 13/2	23	36 2			•			
- - - 304.4 -		SAND (Part (A-2-4) 10G Very dense, SAND (Part (A-2-4) 5YR	ally Weath Y3/2 moist, redo ally Weath 4/4	ered Rock dish browr ered Rock	x) (SM)		•		2128/50)/2"	50/2"		D				
-	-	Coring. Igneous to M Gneiss), ligh subangular, Fe and Sa, White9.5/N,	Aetamorphi It brown an fresh, stror Pl, 0 to 45	c (Granite d white, fi ng, V, N, S 7.5YR6/4	to ne grained Su to Pa,			-				RQD	=77, %	REC=8	8, RMI	₹=76	
299.4 - - - -	35.1 - - -	Gneiss), ligh subangular, Fe and Sa, White9.5/N,	t brown an fresh, stror Pl, 0 to 45	d white, fi ng, V, N, S 7.5YR6/4	ne grained Su to Pa,		35.1	-				RQD	=68, %	REC=7	5, RMI	₹=69	
						LE	GEN	C						Conti	nued	Next	Pa
D - U		on ed Sample	NQ - CU -	PE · Rock Cor · Cuttings · Continuo			CF	SA - Hollo A - Cont C - Drivir	inuous Fli	Auger		R٧	V - Ro		ash		

SC_DOT_SC-34 SCDOT.GPJ_SCDOT DATA TEMPLATE_12_30_2014.GDT_11/11/15

SCENT Soil Test Log

Site De Eng./Ge			SC 3			ring L						Offset		CTR		Alignm		C 34 MAINLIN
-	334.4		Latitu	udo:	BU		78446		ongit	udo		1.4399		Date				29/2015
fotal D		50.1			Dept		30.			ore De		50.1				oleted:		29/2015
	-	meter (2.9							•						her Used	
												er Rec			\sim			
Drill Ma			E 55			Metho		RW/F				ner Typ				Energ	gy Ratio:	-
Core Si	ze:	NQ2			Drille	er:	C. F	redry	cnow	SKI	Groun	dwate	r: TC	B	N/R		24HR	N/R
																	PT N VALI	
																• 3		
ы	_								<u>.</u>	<u>ہ</u> د	e e			e		PL	MC	
(ft)	Depth (ft)	Ν	IATE	RIAL	DES	CRIPT	ΓΙΟΝ		Graphic Log	Sample Depth		-		N Value		~	Ŭ	
Elevation (ft)									5	So	Sample No./Type	1st 6"	2nd 6" 3rd 6"	ź	0 10		ES CONTE	
	40.1	Igneou	e (Gran	vite) a	roonis	h blac	(fino		X///2	40.1	-	-	N 00			20 30	40 50 60	<u>70 80 9</u>
		grained	I, fresh	, stron	ig, V, I	N, Su te	o Pa, F	e										
-	-	and Sa	, PI, 0,	15, 4	5 GLE	EY12.5	/1 and		\mathbb{K}		1							: :
		White9 q _u =8,21		QD=5	ю, %R	KEC=94	I, RMR	=69,	\gg									
-	-	Yu−0,∠	5001						\mathbb{K}		1							
									\mathbb{X}		NQ2-3	3			RQD	=58, %R	EC=94, RI	MR=69
-	-										1							
									$\langle \rangle \rangle$									
-	-										1				:			
	45.1-								\mathbb{K}	45.1								
289.4-	40.1-	Igneou	s (Gran	nite), a	reenis	h blac	k, fine		\bigotimes	40.1	1	+						
		grained	I, fresh	, stron	ig, V, I	N, Su te	o Pa, F	e							:			
		and Sa White9						=73	\mathbb{K}		7							
		vvince5			0, 701	LO-37	, 1 \1011 \	-75	$\langle \rangle \rangle \rangle$									
_											1							
									$\langle \rangle \rangle$		NQ2-4	1			RQD	=80, %R	EC=97, RI	MR=73
_	_								\mathbb{K}						:	: :		: :
									\gg									
284.4-	50.1-														:	: :		
204.4		Coring	Termi	nated	at 50.	1 feet.												
_	_										_							
_	_										4				:			
_	_										4							: :
-	-										4							
															:			
279.4-	-										-						· · · ·	· · ·
-	-										-				:			
												1						
-	-										-					: :		: :
															:			
-	-										-							
-	-										-							
										GEND						. :	:	. :
			CUN	PLER					LE		,			DRILLI		тнор		
SS - S	Split Spo	on	O-AIVII			ock Co					A - Holl	~					ary Wash	

Project								nt c	(or 11-1		unty:	N	ewbe	erry			B		g No.	_		
Site De Eng./Ge			50	34 BI			aceme L ocati		er Hel	iers (Offs	ot:		CTR		•		oute: nent	_	<u>C 34</u> MAIN	
-	334.7		Latit	tude:	D		100ali		Longit	udo			0246		Date	Sta			nent		29/20	
fotal D		37 1			il De		17			re De		_	7 ft		Date						30/20	
Bore H	-				.94				guratio		•	-	equir				<u>اما،</u> ال		ner l			
Drill Ma			/E 55		-	I Meth		RW	-		Hamm		-		tomat		<u> </u>				: 81.	
Core Si		NQ2			Dril				ychow		Ground			TO		N/R			24		12	
							10.1		jenen		er e un								1			· ·
																		• :	SPT N	VAL	UE	
_											0							РI	Ν	/C	11	
Elevation (ft)	Depth (ft)						TION		Graphic Log	Sample Depth (ft)	Sample No./Type				Value			PL X—		0 —	——X	
(f					. DE	SCRIP	TION		Gal	Del Cel	San Vo./	lst 6"	2nd 6"	3rd 6"	× z			▲ FIN	IES C	ONTE	ENT (%)
ш	0.0	Roady		anata (C in al				-				21	ň		0 1	0 2	0 30	40	<u>50 60</u>	0 70	<u>30 9</u>
	0.5		It Con			,				0.5						-						
-	_						lowish r fine silt			-	SS-1	<u>_</u>	12/12	,	24		Ö					
	0.0		(SM)					,		0.0		2	12/12	-	24		<u> </u>				÷	: :
-	2.0_	∖NMC=	:11.7, ^o	%#200	=31.8	5			/ 🗱	2.0		-				-			÷	: :	÷	:
		FILL -	Mediur	n dens	se to I	oose, n	noist.				0.0			~								
-	_	bronw	ish yel	low to	yellov	vish bro	own,				SS-2	8	5/6	6	11]	* (÷		÷	
							fine silt 10YR5			4.0									:			
1	_		• •	•			#200=27												:		÷	
329.7-	_		,	. ,		o, /o					SS-3	2	3/3	2	6							
020.7												1	0/0	-					:	: :	:	
_	6.0_									6.0					_	_						
		weakl	v ceme	ented t			, angula e SAND													:		-
-	7.0_	- <u>(SP) (</u>	A-3) 5`	YR5/8					/ 👯		SS-4	2	3/2	3	5	\bullet						
	0.0	FILL -	Loose,	wet, y	/ellow	ish red,	, rounde	ed,		0.0												
-	8.0_	_ weakl ∖(A-2-4			fine s	Ity SAN	ND (SM))		8.0						-				: :	÷	
		<u>.</u>	,		vot v		ubround		' 🗱					_						: :	:	
_	-	weakl	y ceme	ented, t	fine s	Ity SAN	ID (SM)))			SS-5	12	1/2	3	3	•	0		÷			
324.7-	_) 10YF														:					
524.7		NMC=	•14.5, °	%#200	=26.1														÷	: :		-
_	_										_											
-	12.0_		lenco	wet v		subang	nular				-	1									:	
		weakl	y ceme	ented, t	fine to	coarse	e silty S	AND				1									-	
-	-	(Partia 10YR		eathere	ed Ro	ck) (SM	1) (A-2-4	4)		13.5	1	1									÷	
		10111								10.0	SS-6	50/5	"		50/5'				÷		÷	
1	_									-] _								÷		÷	: :
319.7-	_									-		1										<u> </u>
0.0.1																						
-	_										-								÷		÷	
	4									/— -		1									÷	: :
-	17.0_	Rotar	y Was	h Refu	ısal a	t 17.0 fe	eet. Beg	gin		17.0		-				-			-		÷	
		Corin							/ 🕅			1										
-	-						black,			-	1	1										
		graine N. Su	u, sub Cl and	angula d Fe. F	ar, fre PI, C t	sh, stro o VC, 3	ong rock 0,	ι, J,				1					:		÷		÷	:
1	_	GLEY	2_6/11	to 2.5Y	(R5/1	, RQD=	:86,			-	NQ2-1	1				PC	- חו	36 0/		08 D	MR=76	
		%RE(,=98, F	KIVIR=7	ι σ, q _u	=11,539	əpsi		K							RC	ιυ-0 :	: :	:	: :	:	: :
						_			LE	GEND									Cont	inue	d Ne	(t Pe
SS - 5	Split Spo		SAN	NPLER		E Rock Co	4 -	(O !!		1	A - Hollo	~			DRILLI				4 14	Vash		

SCEFT Soil Test Log

Site Des Eng./Ge				4 Bridge Bo		ocation:				Offset:		CTR	ļ	Alignme		2 34 MAINLINE
Elev.:	334.7	ft	Latitu			78328	Longi	ude:	-81	.440246	3	Date	Starte	d:	10/2	9/2015
otal D	epth:	37 ft	t	Soil Dep	th:	17 ft	Co	ore De	pth:	37 ft		Date	Comp	leted:	10/3	80/2015
Bore Ho	ole Dia	meter (in):	2.94	Sam	pler Con	figurati	on	Line	r Requi	red:	Y	(N)	Line	r Used	i) Y (
Drill Ma			E 55	Drill	Metho		V/RC		Hamme			omat	ic	Energy	/Ratio:	81.9%
Core Si		NQ2		Drill			drychow		Ground		-		N/R		4HR	12 ft
	1						,				1			I		
														● SP ⁻	T N VALU	JE ●
Elevation (ft)	Depth (ft)	Ν	/ ATEF	RIAL DES	CRIP	TION	Graphic Log	Sample Depth (ff)	Sample No./Type	1st 6" 2nd 6"	3rd 6"	N Value	0 10	PL ★ FINES 20 30 4	MC CONTE 0 50 60	LL (%) 0 70 80 9
-	- 22.0_ -	graineo N, Su,	d, sub a Fe, Pl, V	ite), bluish ngular, fres VC, 0 to 10 D=58, %RB	sh, stroi , GLEY	ng rock, J, ′2_6/1 to		22.0	_				-			
- 309.7 -	-	2.51 Rd q _u =21,2		J−J0, %RI	_ U-3 4,	ι χινίτ ν – Ι Ζ,			- NQ2-2 -				RQD=	58, %RE	C=94, RI	//R=72
	27.0							27.0								
	-	grained No, No 2.5YR	d, sub a , No, No 5/1, RQI	ite), bluish ngular, fres o, No, C to D=100, %F 7,138psi	sh, stro M, GL	ng rock, EY2 6/1 to		21.0	- - NQ2-3				RQD=	100, %R	≡C=100,	RMR=79
-	32.0	Igneou	s (Gran	ite), bluish	grav to	black. fine		32.0	_							
- 299.7 -	-	graineo No, No	d, sub a , No, No	ngular, fres o, No, C to D=82, %RI	sh, stro M, GL	ng rock, EY2_6/1 to			- - NQ2-4				RQD=	82, %RE	C=93, RM	//R=71
-	37.0	Coring	Termi	nated at 37	. O feet				-							
_	_	2011IY	,						_							
								GENE)			1	·		. :	
SS - S	Split Spo		SAMF			ore, 1-7/8"				w Stem A		RILLIN	IG MET	HOD V - Rotar		

Preliminary Geotechnical Data Report

SC 34 Bridge Replacement over Heller's Creek Newberry County, SC November 10, 2015 (Rev. 2) Terracon Project No. 73155050F

Terracon

Photo #1 STB-1 30.1'-40.1'

Photo #2 STB-1 40.1'-50.1'

Photo #3 STB-2 17'-27'

Photo #4 STB-2 17'-27'

APPENDIX B - LABORATORY TESTING

Exhibit B-1 – Laboratory Testing Description Exhibit B-2 – Summary of Laboratory Data Laboratory Data Sheets Preliminary Geotechnical Data Report SC 34 Bridge Replacement over Heller's Creek Newberry County, SC November 10, 2015 (Rev. 2) Terracon Project No. 73155050F

LABORATORY TESTING DESCRIPTION

The samples collected during the field exploration were taken to our laboratory for additional testing. The laboratory testing program was developed by the SCDOT. Using the provided testing program, the laboratory tests were conducted on selected soil samples from the borings and the bulk samples locations. The test results are presented in this appendix

The laboratory test results were used to confirm the soil descriptions presented on the boring logs in Appendix A. Laboratory tests were performed in general accordance with the applicable ASTM, AASHTO, SCDOT or other accepted standards.

Selected soil samples obtained from the site were tested for the following engineering properties:

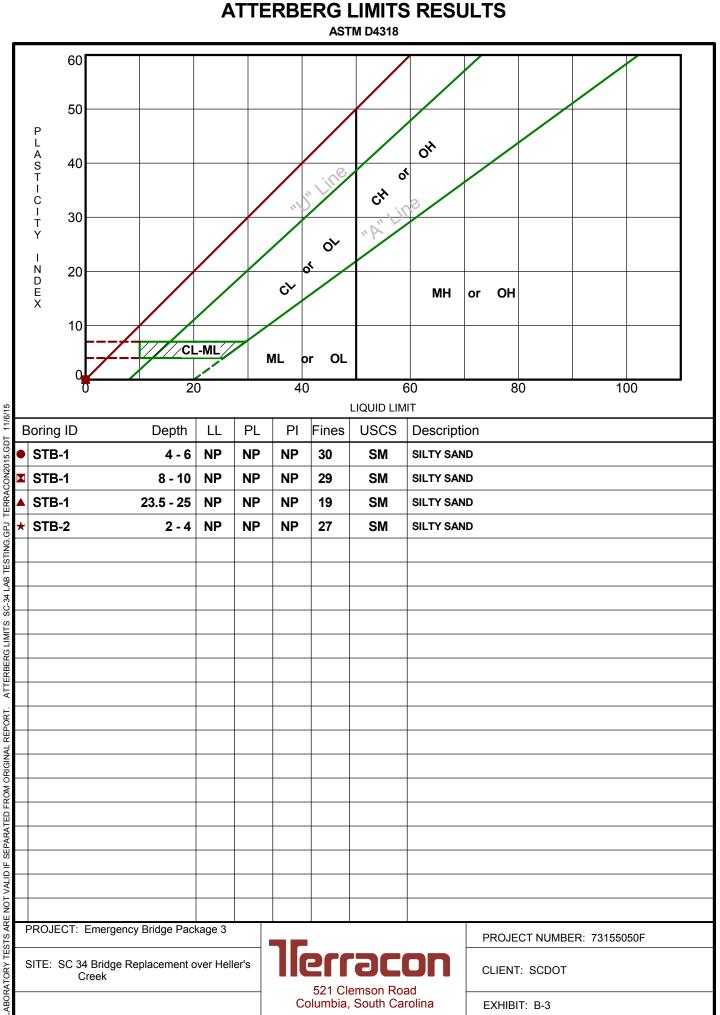
- Percent Fines
- Atterberg Limits
- Moisture Content Determination
- Compressive Strength of Rock

AASHTO T11 (ASTM D1140) AASHTO T89/T90(ASTM D4318) AASHTO T265/(ASTM D2216) ASTM D7012

Summary of Laboratory Results

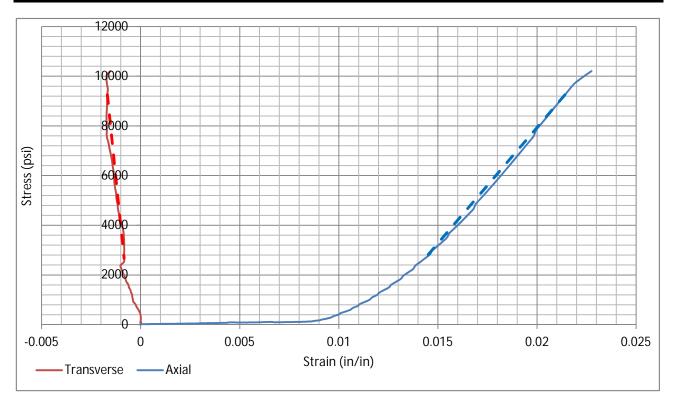
											1	Sheet	1 of 1
BORING ID	Depth	USCS Classification and Soil Description	Compressive Strength (psf)	Liquid Limit	Plastic Limit	Plasticity Index	% <#200 Sieve	% Gravel	% Sand	% Silt	% Clay	Water Content (%)	Dry Density (pcf)
STB-1	0.5 - 2	CLAYEY SAND (SC)										15.8	
STB-1	2 - 4	SILTY SAND (SM)					20.5	0.0	0.0			11.4	
STB-1	4 - 6	SILTY SAND(SM)		NP	NP	NP	30.3	0.0	0.0			11.3	
STB-1	6 - 8	SILTY SAND (SM)										16.7	
STB-1	8 - 10	SILTY SAND(SM)		NP	NP	NP	28.8	0.0	0.0			16.9	
STB-1	13.5 - 15	SILTY CLAY (CL)										27.3	
STB-1	18.5 - 20	SILTY CLAY (CL)										35.7	
STB-1	23.5 - 25	SILTY SAND(SM)		NP	NP	NP	18.6	0.0	0.0			24.2	
STB-1	28.5 - 30	SILTY SAND (SM)					17.8	0.0	0.0			16.5	
STB-2	0.5 - 2	SILTY SAND (SM)					31.8	0.0	0.0			11.7	
STB-2	2 - 4	SILTY SAND(SM)		NP	NP	NP	27.1	0.0	0.0			13.2	
STB-2	8 - 10	SILTY SAND (SM)					26.1	0.0	0.0			14.5	

PROJECT: Emergency Bridge Package 3


SITE: SC-34 Bridge Replacement over Heller's Creek

PROJECT NUMBER: 73155050F

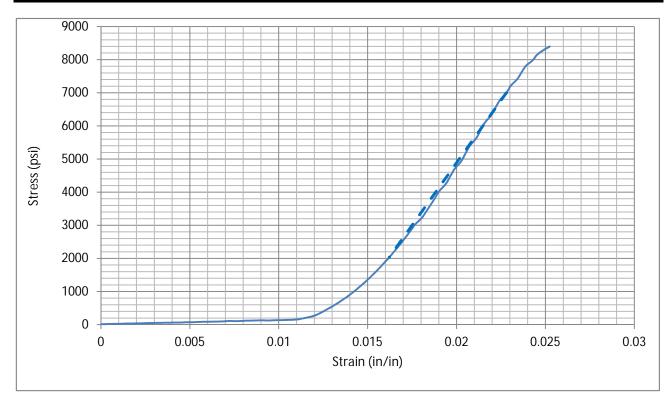
CLIENT: SCDOT


EXHIBIT: B-2

TERRACON2015.GDT ATTERBERG LIMITS SC-34 LAB TESTING.GPJ -ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

	KOCK ADIM D/012	Consulting Engineers & Scientists
Client:	Emergency Bridge Package	
Project:	SCDOT	
Project Number:	73155050F(SC 34)	
Task:	0	
Boring:	STB-1	
Depth:	30.1 - 35.1	
Sample Number:		
Lab Number:	8994	09911
Date Tested:	11/3/2015	8174
Tested By:	GAS	
Date Reduced:	11/3/2015	
Reduced By:	STT	Slightly Weathered Granite

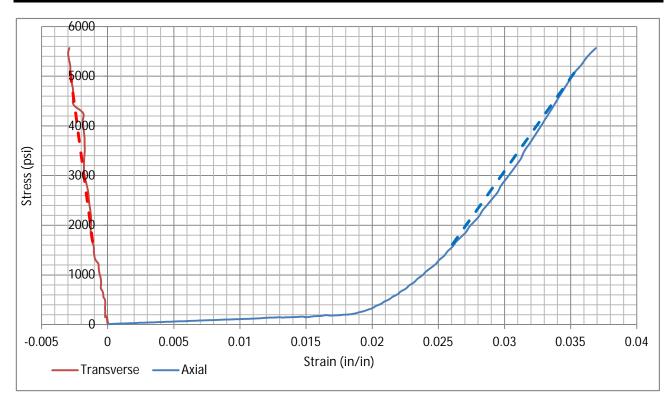
Core Length		Core D	L/D	Mass	Den	sity	
in	cm	in	cm	Ratio	g	lb/ft ³	g/cm ³
4.11	10.44	1.98	5.03	2.08	539.7	162.48	2.60



Failure Load	Failure Stress	Elastic M	Poisson's Ratio,	
lbs	psi	ksi	Gpa	ν
31,425	10,206	933	6.4	0.12

Exhibit: B-4

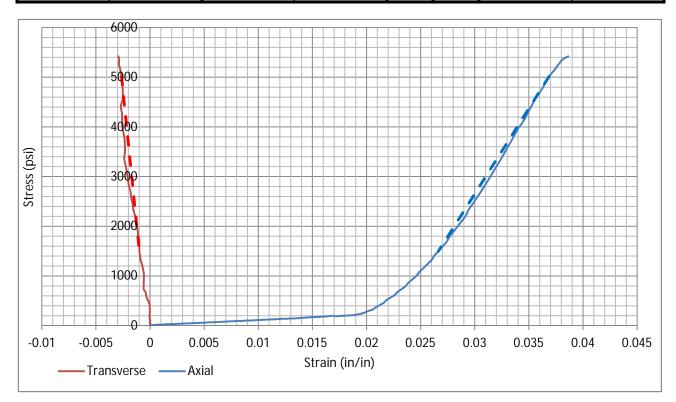
	ROCH HOIM DIVIL	Consulting Engineers & Scientists
Client:	Emergency Bridge Package	
Project:	SCDOT	
Project Number:	73155050F(SC 34)	
Task:	0	
Boring:	STB-1	
Depth:	30.1 - 35.1	
Sample Number:		
Lab Number:	8994A	
Date Tested:	11/3/2015	2994A
Tested By:	GAS	
Date Reduced:	11/4/2015	
Reduced By:	STT	Granite


Core l	Core Length		Core Diameter			Den	sity
in	cm	in	cm	Ratio	g	lb/ft ³	g/cm ³
4.10	10.41	1.98	5.03	2.07	544.9	164.44	2.63

	Compressive ngth	Failure Load	Failure Strain	
psi	kPa	lbs	%	
8,397	57,897	25,856	2.52	
	Elastic M	lodulus, E		
	ksi	Gpa		
	754	5.2	Exhibit: I	B-5

	ROCK ADIM DIVIZ	Consulting Engineers & Scientists
Client:	Emergency Bridge Package	1.5 A A A A A A A A A A A A A A A A A A A
Project:	SCDOT	
Project Number:	73155050F(SC 34)	
Task:	0	E /
Boring:	STB-1	
Depth:	35.1 - 40.1	
Sample Number:		
Lab Number:	8995	
Date Tested:	11/3/2015	
Tested By:	GAS	8995
Date Reduced:	11/4/2015	
Reduced By:	STT	Slighty Weathered Granite

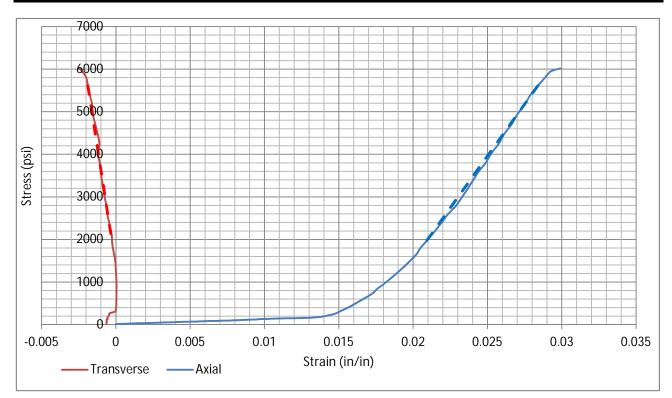
Core l	Core Length		Core Diameter			Den	sity
in	cm	in	cm	Ratio	g	lb/ft ³	g/cm ³
3.97	10.08	1.98	5.03	2.01	510.6	159.14	2.55



Failure Load	Failure Stress	Elastic Modulus, E		Poisson's Ratio,
lbs	psi	ksi	Gpa	ν
17,136	5,565	375	2.6	0.19

Exhibit: B-6

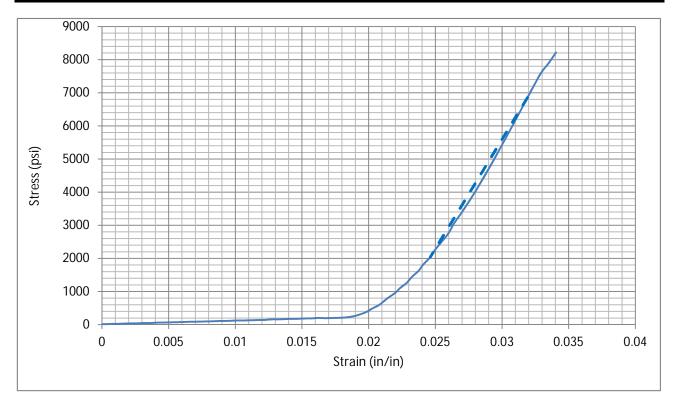
		Consulting Engineers & Scientists
Client:	Emergency Bridge Package	
Project:	SCDOT	
Project Number:	73155050F(SC 34)	
Task:	0	
Boring:	STB-1	
Depth:	35.1 - 40.1	
Sample Number:		
Lab Number:	8995A	
Date Tested:	11/3/2015	00054
Tested By:	GAS	67954
Date Reduced:	11/4/2015	
Reduced By:	STT	Slighty Weathered Granite


Core I	Length	Core Diameter		L/D	Mass	Density	
in	cm	in	cm	Ratio	g	lb/ft ³	g/cm ³
3.96	10.06	1.98	5.03	2.00	509.7	159.25	2.55

Failure Load	Failure Stress	Elastic Modulus, E		Poisson's Ratio,
lbs	psi	ksi	Gpa	ν
16,692	5,421	344	2.4	0.16

	ROCH HOIM DIVIE	Consulting Engineers & Scientists
Client:	Emergency Bridge Package	
Project:	SCDOT	
Project Number:	73155050F(SC 34)	
Task:	0	
Boring:	STB-1	
Depth:	40.1 - 45.1	
Sample Number:		
Lab Number:	8996	
Date Tested:	11/3/2015	0096
Tested By:	GAS	BIID.
Date Reduced:	11/4/2015	
Reduced By:	STT	Slighty Weathered Granite

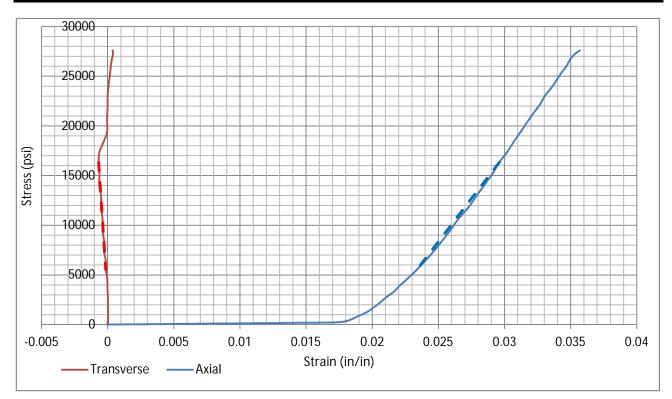
Core I	Length	Core Diameter		L/D	Mass	Der	sity
in	cm	in	cm	Ratio	g	lb/ft ³	g/cm ³
3.98	10.11	1.98	5.03	2.01	518.3	161.12	2.58



Failure Load	Failure Stress	Elastic Modulus, E		Poisson's Ratio,
lbs	psi	ksi	Gpa	ν
18,528	6,018	486	3.4	0.22

Exhibit: B-8

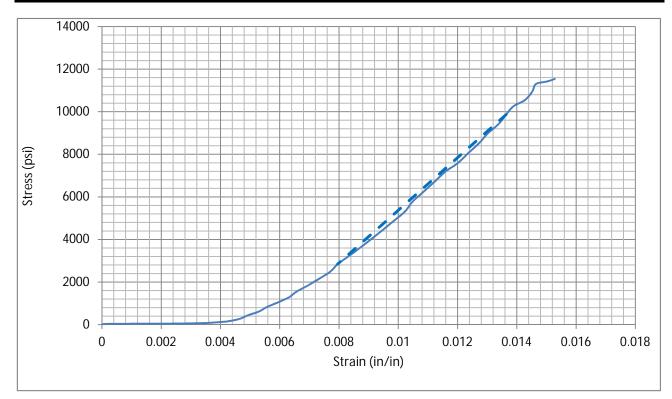
		Consulting Engineers & Scientists
Client:	Emergency Bridge Package	
Project:	SCDOT	Tana and the second sec
Project Number:	73155050F (SC 34)	
Task:	0	
Boring:	STB-1	The second se
Depth:	40.1 - 45.1	
Sample Number:		
Lab Number:	8996A	
Date Tested:	11/3/2015	000.4
Tested By:	GAS	8996A
Date Reduced:	11/4/2015	
Reduced By:	STT	Slighty Weathered Granite


Core Length Core Diameter		L/D	Mass	Den	sity		
in	cm	in	cm	Ratio	g	lb/ft ³	g/cm ³
3.98	10.11	1.98	5.03	2.01	520.3	161.74	2.59

Unconfined Compressive Strength		Failure Load	Failure Strain	
psi	kPa	lbs	%	
8,218	8,218 56,660		3.40	
	Elastic M	lodulus, E		
	ksi	Gpa		
661		4.6	Exhibit: B	3- 9

		Consulting Engineers & Scientists
Client:	Emergency Bridge Package	
Project:	SCDOT	5.0
Project Number:	73155050F(SC 34)	
Task:	0	
Boring:	STB-2	
Depth:	17.0 - 22.0	
Sample Number:		
Lab Number:	8997	1001
Date Tested:	11/3/2015	8991
Tested By:	GAS	0.
Date Reduced:	11/4/2015	
Reduced By:	STT	Granite

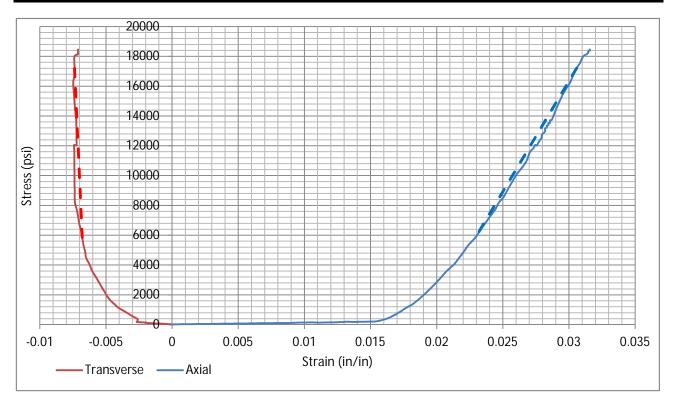
Core Length		Core D	Core Diameter		Mass	Den	nsity
in	cm	in	cm	Ratio	g	lb/ft ³	g/cm ³
4.02	10.21	1.98	5.03	2.03	534.5	164.51	2.64



Failure Load	Failure Stress	Elastic M	Poisson's Ratio,	
lbs	psi	ksi	Gpa	ν
84,978	27,599	1,734	12.0	0.09

Exhibit: B-10

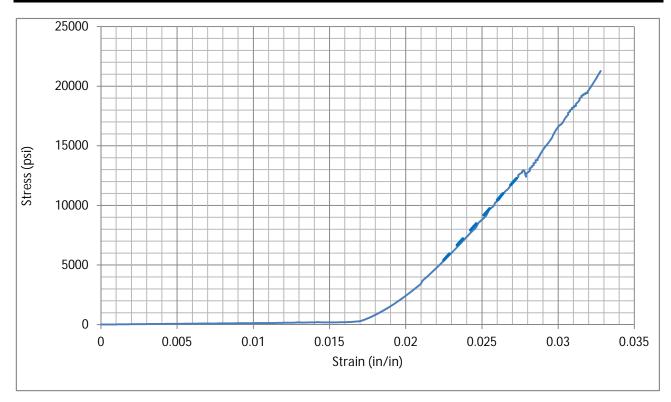
		Consulting Engineers & Scientists
Client:	Emergency Bridge Package	
Project:	SCDOT	
Project Number:	73155050F (SC 34)	0
Task:	0	
Boring:	STB-2	
Depth:	17.0 - 22.0	
Sample Number:		
Lab Number:	8997A	
Date Tested:	11/3/2015	8997A
Tested By:	GAS	0991
Date Reduced:	11/4/2015	
Reduced By:	STT	Granite


Core Length		Core Diameter		L/D	Mass	Den	sity
in	cm	in	cm	Ratio	g	lb/ft ³	g/cm ³
3.96	10.06	1.98	5.03	2.00	529.3	165.38	2.65

	Unconfined Compressive Strength		Failure Strain	
psi	kPa	lbs	%	
11,539	79,555	35,528	1.53	
	Elastic M	lodulus, E		-
	ksi Gpa			
	1,235	8.5	Exhibit:	B-1 1

	ROCK ADTAI DIVIZ	Consulting Engineers & Scientists
Client:	Emergency Bridge Package	· · •
Project:	SCDOT	
Project Number:	73155050F (SC 34)	
Task:	0	
Boring:	STB-2	
Depth:	22.0 - 27.0	
Sample Number:		
Lab Number:	8998A	
Date Tested:	11/3/2015	8998A
Tested By:	GAS	
Date Reduced:	11/4/2015	
Reduced By:	STT	Granite

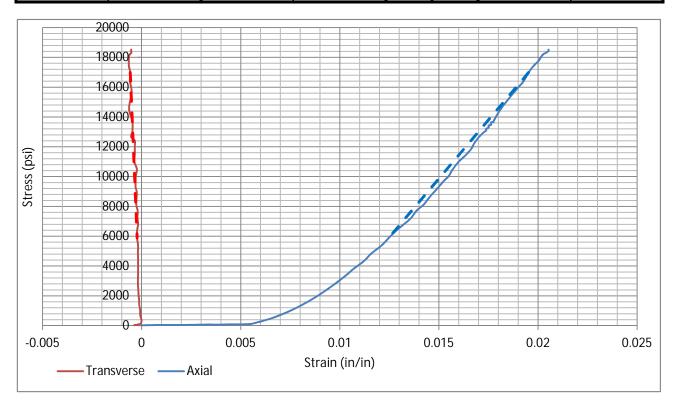
Core Length		Core Diameter		L/D	Mass	Den	sity
in	cm	in	cm	Ratio	g	lb/ft ³	g/cm ³
3.99	10.13	1.98	5.03	2.02	527.2	163.48	2.62



Failure Load	Failure Stress	Elastic Modulus, E		Poisson's Ratio,
lbs	psi	ksi	Gpa	ν
56,832	18,458	1,485	10.2	0.08

Exhibit: B-12

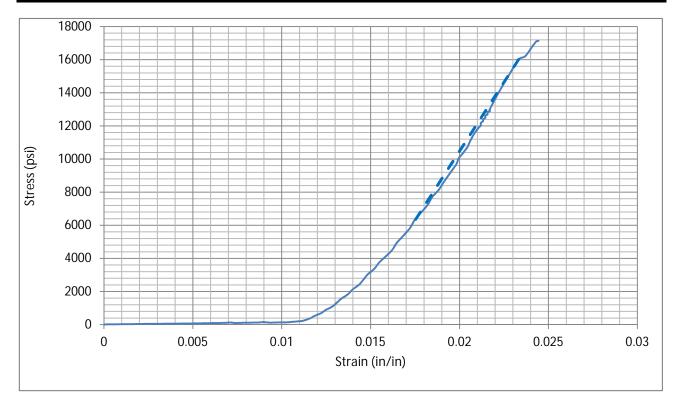
	KOCK ADIM D7012	Consulting Engineers & Scientists
Client:	Emergency Bridge Package	A New York
Project:	SCDOT	
Project Number:	73155050F (SC 34)	
Task:	0	
Boring:	STB-2	Tetter
Depth:	22.0 - 27.0	
Sample Number:		
Lab Number:	8998	0000
Date Tested:	11/3/2015	8998
Tested By:	GAS	
Date Reduced:	11/4/2015	
Reduced By:	STT	Granite


Core Length		Core Diameter		L/D	Mass	Den	nsity
in	cm	in	cm	Ratio	g	lb/ft ³	g/cm ³
3.98	10.11	1.98	5.03	2.01	526.2	163.56	2.62

	Unconfined Compressive Strength		Failure Strain	
psi	kPa	kPa lbs		
21,268	146,641	65,487	3.28	
	Elastic M	lodulus, E		
	ksi	Gpa		
	1,434	9.9	Exhibit:	B-13

	ROCK ADIM DIVIZ	Consulting Engineers & Scientists
Client:	Emergency Bridge Package	
Project:	SCDOT	
Project Number:	73155050F (SC 34)	
Task:	0	
Boring:	STB-2	
Depth:	27.0 - 32.0	
Sample Number:		
Lab Number:	8999A	
Date Tested:	11/3/2015	2000A
Tested By:	GAS	8999A
Date Reduced:	11/4/2015	
Reduced By:	STT	Granite

Core Length		Core Diameter		L/D	Mass	Den	sity
in	cm	in	cm	Ratio	g	lb/ft ³	g/cm ³
3.97	10.08	1.98	5.03	2.01	528.2	164.61	2.64

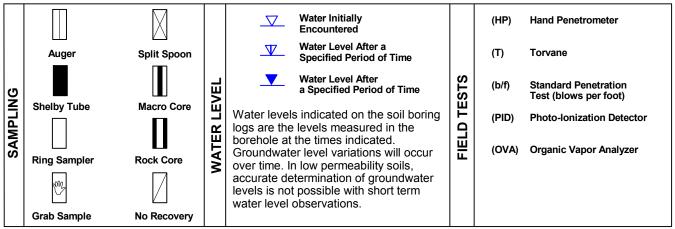


Failure Load	Failure Stress	Elastic M	lodulus, E	Poisson's Ratio,
lbs	psi	ksi	Gpa	ν
57,023	18,519	1,573	10.8	0.05

Exhibit: B-14

	Roominging	Consulting Engineers & Scientists
Client:	Emergency Bridge Package	5 m
Project:	SCDOT	
Project Number:	73155050F (SC 34)	
Task:	0	
Boring:	STB-2	
Depth:	27.0 - 32.0	
Sample Number:		
Lab Number:	8999	8999
Date Tested:	11/3/2015	8999
Tested By:	GAS	
Date Reduced:	11/4/2015	
Reduced By:	STT	Granite
Reduced Dy.	511	orume

Core	Length	Core Diameter		L/D	Mass	Density	
in	cm	in	cm	Ratio	g	lb/ft ³	g/cm ³
4.01	10.19	1.98	5.03	2.03	532.8	164.38	2.63


	Unconfined Compressive Strength		Failure Strain	
psi	kPa	lbs	%	
17,138	118,164	52,770	2.44	
	Elastic M			
	ksi	Gpa		
	1,667	11.5	Exhibit:	B-15

APPENDIX C - SUPPORTING DOCUMENTS

Exhibit C-1 – General Notes Exhibit C-2 – Unified Soil Classification System

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	(More than Density determin	NSITY OF COARSE-GRAM 50% retained on No. 200 ied by Standard Penetration des gravels, sands and silf	sieve.) on Resistance		CONSISTENCY OF FIN (50% or more passing t ency determined by laborato -manual procedures or star	he No. 200 sieve.) bry shear strength testing, t	
RMS	(Density)	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength, Qu, psf	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.
	Voly Loodo	0 - 3	0 - 6	Very Soft	less than 500	0 - 1	< 3
RENGTH	Loose	4 - 9	7 - 18	Soft	500 to 1,000	2 - 4	3 - 4
TREN	Medium Dense	10 - 29	19 - 58	Medium-Stiff	1,000 to 2,000	4 - 8	5 - 9
_ S	Dense	30 - 50	59 - 98	Stiff	2,000 to 4,000	8 - 15	10 - 18
	Very Dense	> 50	<u>></u> 99	Very Stiff	4,000 to 8,000	15 - 30	19 - 42
				Hard	> 8,000	> 30	> 42

RELATIVE PROPORTIONS OF SAND AND GRAVEL

Descriptive Term(s) of other constituents

Trace

With

Modifier

Percent of Dry Weight < 15 15 - 29 > 30

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents Trace With Modifier Percent of Dry Weight < 5 5 - 12 > 12 **GRAIN SIZE TERMINOLOGY**

Major Component of Sample Boulders Cobbles Gravel Sand

Silt or Clay

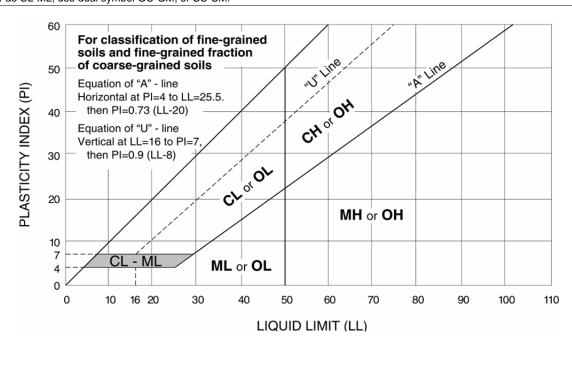
Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

Particle Size

PLASTICITY DESCRIPTION

<u>Term</u> Non-plastic Low Medium High 0 1 - 10 11 - 30 > 30

Criteria for Assigr	Group Symbol	Group Name ^B				
	Gravels:	Clean Gravels:	$Cu \ge 4$ and $1 \le Cc \le 3^{E}$	GW	Well-graded gravel F	
Coarse Grained Soils: More than 50% retained on No. 200 sieve		Less than 5% fines ^c	$Cu < 4$ and/or $1 > Cc > 3^{E}$	GP	Poorly graded gravel F	
	coarse fraction retained	Gravels with Fines:	Fines classify as ML or MH	GM	Silty gravel F,G,H	
	on No. 4 sieve	More than 12% fines ^c	Fines classify as CL or CH	GC	Clayey gravel ^{F,G,H}	
	Sands:	Clean Sands: Less than 5% fines ^D	$Cu \ge 6$ and $1 \le Cc \le 3^{E}$	SW	Well-graded sand	
	50% or more of coarse		$Cu < 6$ and/or $1 > Cc > 3^{E}$	SP	Poorly graded sand ¹	
	fraction passes No. 4	Sands with Fines:	Fines classify as ML or MH	SM	Silty sand G,H,I	
	sieve	More than 12% fines ^D	Fines classify as CL or CH	SC	Clayey sand G,H,I	
		Inorgania	PI > 7 and plots on or above "A" line ^J	CL		
Fine-Grained Soils: 50% or more passes the No. 200 sieve	Silts and Clays:	Inorganic:	PI < 4 or plots below "A" line ^J	ML		
	Liquid limit less than 50	Organia	Liquid limit - oven dried	OL		
		Organic:	Liquid limit - not dried			
		Inorganic:	PI plots on or above "A" line	СН	Fat clay K,L,M	
	Silts and Clays:	morganic:	PI plots below "A" line	MH	Elastic Silt K,L,M	
	Liquid limit 50 or more	Organic:	Liquid limit - oven dried	он	Organic clay K,L,M,P	
		Organic.	Liquid limit - not dried < 0.75		Organic silt K,L,M,Q	
Highly organic soils:	Primarily	, organic matter, dark in o	color, and organic odor	PT	Peat	


^A Based on the material passing the 3-inch (75-mm) sieve

- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with clay

^E Cu = D₆₀/D₁₀ Cc =
$$\frac{(D_{30})^2}{D_{10} \times D_{60}}$$

 $^{\sf F}$ If soil contains \geq 15% sand, add "with sand" to group name. $^{\sf G}$ If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- $^{\rm I}$ If soil contains \geq 15% gravel, add "with gravel" to group name.
- ^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- ^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- ^L If soil contains \ge 30% plus No. 200 predominantly sand, add "sandy" to group name.
- ^M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- ^N $PI \ge 4$ and plots on or above "A" line.
- ^o PI < 4 or plots below "A" line.
- ^P PI plots on or above "A" line.
- ^Q PI plots below "A" line.

llerracon