Traffic Noise Analysis Report

U.S. 701 Bridge Replacement Over the Great Pee Dee River Georgetown/Horry County, South Carolina

Prepared by:

January 2013

TRAFFIC NOISE ANALYSIS REPORT U.S. Route 701 (U.S. Route 701 Bridge Replacement Over The Great Pee Dee River) Georgetown/Horry County, South Carolina

EXECUTIVE SUMMARY

The Code of Federal Regulations (CFR) Section 23, Part 772 contains the Federal Highway Administration (FHWA) traffic noise standards. The South Carolina Department of Transportation (SCDOT) has implemented these standards in its Traffic Noise Abatement Policy. A traffic noise analysis is required for proposed Federal-aid highway projects that will construct a highway on new location or physically alter an existing highway, which will significantly change either the horizontal or vertical alignment of the road or increase the number of through-traffic lanes. Traffic noise impacts are predicted for this project. Noise abatement measures have been considered for reducing or eliminating the traffic noise impacts in accordance SCDOT's Traffic Noise Abatement Policy.

An original noise analysis was completed for this project in May of 2009. The new noise analysis was prepared to comply with the revised SCDOT Traffic Noise Abatement Policy implemented in July of 2011 and to evaluate another proposed alternate, Alternative 2, as well as a No-Build Alternative.

An analysis was performed on U.S. 701 from Trinity Road in Georgetown County to Lucas Bay Road in Horry County to determine the effect of the project on traffic noise levels in the immediate area (Figure 1). This investigation includes an inventory of existing noise sensitive land uses, and a field survey of background (existing) noise levels in the project study area. It also includes a comparison of the predicted noise levels and the background noise levels to determine if traffic noise impacts can be expected resulting from the proposed project. Traffic noise impacts are predicted for this project.

TNM version 2.5, A Federal Highway Administration (FHWA) traffic noise prediction model was used in the analysis to compare existing and future Leq(h) noise levels. Leq(h) is the average energy of a sound level over a one hour period. A-weighted decibels (dBa) are the units of measurement used in the study.

Existing noise measurements were taken in the vicinity of the project to quantify the existing acoustic environment and to provide a base for assessing the impact of noise level increases. Model inputs included existing and proposed roadway characteristics, estimated traffic volumes, and receiver locations. Table 1 lists the traffic data used to estimate Leq(h) noise levels expected to occur in the project area by the year 2032.

Roadway Section	Speed (mph)	Two Way Design Hourly Traffic	One Way Hourly Traffic	Hourly Volume Cars (vph)	Hourly Volume Medium Trucks (vph)	Hourly Heavy Trucks (vph)
2012 Traffic Computations						
U.S. 701	55	880	440	378	18	44
2032 Traffic Computations						
U.S. 701	55	1230	615	529	25	62

Table 1 - Traffic Data for Noise Analysis

Table 2 shows the comparison of field measurements versus modeled noise levels. The calculated noise levels for the measurement sites range from 48.0 to 65.4 dBA. The difference between calculated and field measured noise levels at all five locations is 3 dBA or less, validating the results of the TNM model.

Site	Location	Field Measurement Noise Level (dBA)	TNM Calculated Noise Level (dBA)	Difference (dBA)
1	U.S. 701/Trinity Road/Ellis Landing Road	66.9	65.4	1.5
2	U.S. 701/Yauhannan Lake Drive	61.6	59.2	2.4
3	9265 N. Fraser Street (U.S. 701)	62.0	59.0	3.0
4	Public Boat Ramp at Great Pee Dee River	58.1	60.2	-2.1
5	Walking Trail at Oxbow	49.8	48.0	1.8

Table 2 - Existing TNM Calculated Noise Levels vs. Field Measurements

Difference = Measured Leq minus Modeled Leq

The Federal Highway Administration (FHWA) has developed Noise Abatement Criteria (NAC) and procedures to be used in the planning and design of highways to determine whether highway noise levels are or are not compatible with various land uses (Table 3). The abatement criteria and procedures are set forth in the aforementioned Federal reference (Title 23 CFR Part 772).

 Table 3 – FHWA Noise Abatement Criteria

Activity	Activity Criteria\2\		Evaluation				
Category	Leq(h) L10(h)		Location	Activity Description			
A	57	60	Exterior	Lands on which serenity and quiet are of extraordinary significance and serve an important public need, and where the preservation of those qualities is essential if the area is to continue to serve its purpose.			
B\3\	67	70	Exterior	Residential			
C\3\	67	70	Exterior	Active sport areas, amphitheaters, auditoriums, campgrounds, cemeteries,			

				day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings
D	52	55	Interior	Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios
E\3\	72	75	Exterior	Motels, hotels, offices, restaurant/bars, and other developed lands, properties or activities not included in A-D or F
F				Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical), and warehousing
G				Undeveloped lands that are not permitted

1 Either Leq(h) or L10(h) (but not both) may be used on a project

\2\ The Leq(h) and L10(h) Activity Criteria values are for impact determination only, and are not design standards for noise abatement measures

\3\ Includes undeveloped lands permitted for this activity category

Activity Category A consists of tracts of land that are locally significant for their serenity and quiet surroundings. Activity Category B consists of residential properties. Activity Category C consists of exterior locations of public outdoor areas, places of worship, cemeteries, recreational areas, etc. Activity Category D consists primarily of the same activities as Activity Category C but is for interior locations. Activity Category E consists of hotel/motels, offices, restaurants, and other developed land with activities not included in Activity Categories A-D. Activity F consists of agricultural lands, airports, and commercial/industrial facilities. Activity G is for undeveloped lands not presently permitted. Activity Categories adjacent to the project are mostly residential (B).

Traffic noise impacts occur when the predicted traffic noise levels either: (a) approach or exceed the FHWA noise abatement criteria ("approach" meaning within 1 dBA of the value listed in Table 3), or (b) substantially exceed the existing noise levels. According to the SCDOT Traffic Noise Abatement Policy, a 15 dBA increase is deemed to be a "substantial increase." Consideration for noise abatement measures must be given to receivers that fall in either category.

The results of the noise analysis indicate that traffic related noise impacts would occur to eight (8) receivers under the 2032 Build Alternative 2 and 6 (six) receivers under the 2032 Build Alternative 3. However, eight (8) receivers would be impacted under the 2032 No-Build Alternative. No receivers in the project area would substantially exceed the FHWA noise abatement criteria. The original noise analysis completed in May of 2009, for Alternative 3, resulted in 11 receivers being impacted in future build conditions. No receivers were found to substantially exceed the FHWA noise abatement criteria.

Predicted build-condition traffic noise level contours are not a definitive means by which to assess traffic noise level impacts; however, they can aid in future land use planning efforts in undeveloped areas. Table 4 summarizes the predicted distances to the 72, 67, and 66 dBA noise level contours and the noise impact analysis results.

					ACTIVITY CATEGORY			
	Leq(h)	NOISE	LEVELS	51	DISTANCES ² (ft)			
STUDY AREA	25 ft	50 ft	100	ft 72	72 dBA		dBA	66dBA
U.S. 701	77.3	73.8	68.7	7	76		135	151
	APPROXIMATE # OF IMPACTED				TED			
	TOTA	L NO.	RECEI	VERS A	RS ACCORDING TO TITLE 23 CFR			
	0	F		PART 772 / SCDOT POLICY				Y
ROADWAY LOCATION	RECEI	VERS	Α	В	C		D	E
2032 Year No-Build Alterna	ative							
U.S. 701 – No-Build	20	5		8				
2032 Year Build Alternatives								
U.S. 701 – Alternative 2	20	5		8				
U.S. 701 – Alternative 3	20	5		6				

Table 4: Activity Category Critical Distances and Noise Impact Analysis

1. 50ft, 100 ft & 200 ft distances are measured from the outside edge of pavement

2. 72 dBA, 67 dBA and 66 dBA activity category distances are measured from the proposed centerline of the roadway

If traffic noise impacts are predicted, noise abatement measures for reducing or eliminating the noise impacts must be considered. Noise abatement measures were evaluated for this project but were found not to be acoustically feasible since it would not provide at least a 5 dBA noise reduction to impacted receivers due to the number of access breaks.

The major construction elements of this project are expected to be earth removal, hauling, grading, paving, and pile driving. General construction noise impacts, such as temporary speech interference for passers-by and those individuals living or working near the project, can be

expected particularly from pile driving, paving operations, and earth moving equipment during construction. However, considering the relatively short-term nature of construction noise and the likely limitation of construction to daytime hours, these impacts are not expected to be substantial. The contractor would be required to comply with applicable local noise ordinances and OSHA regulations concerning noise attenuation devices on construction equipment.

This evaluation completes the highway traffic noise requirements of Title 23 CFR Part 772.

TABLE OF CONTENTS

U.S. ROUTE 701 NOISE ANALYSIS (U.S. ROUTE 701 BRIDGE REPLACEMENT OVER THE GREAT PEE DEE RIVER) GEORGETOWN/HORRY COUNTY, SOUTH CAROLINA

		Page
I.	HIGHWAY TRAFFIC NOISE ANALYSIS	1
	A. Introduction	1
	B. Project Description	1
	C. Characteristics of Noise	3
	D. Noise Abatement Criteria	5
	E. Existing Noise Levels	7
	F. Procedures Foe Predicting Future Noise Levels	9
	G. Traffic Noise Impacts and Noise Thresholds	10
II.	TRAFFIC NOISE ABATEMENT MEASURES	11
	A. Noise Barriers	11
	B. Highway Alignment Selection	12
	C. Traffic System Management Measures	12
	D. Other Mitigation Measures Considered	12
III.	CONSTRUCTION NOISE	13
IV.	GEORGETOWN COUNTY& HORRY COUNTY PLANNING OFFICIALS	13
V.	SUMMARY	13
LIST OF	FIGURES	
Figure 1		2
LIST OF	TABLES	
Table 1	Daily Sounds	4
Table 2	FHWA Noise Abatement Criteria	6
Table 3	Existing Noise Levels	7
Table 4	Field Noise Measurements	8
Table 5	Existing TNM Calculated Noise Levels vs. Field Measurements	8
Table 6	Traffic Data for Noise Analysis	10
Table 7	Activity Category Critical Distances and Noise Impact Analysis	11
APPENI	DIX	

Traffic Noise Impacts and Locations Noise Measurement Data Sheets Traffic Data 2012 Existing Noise Levels 2032 No-Build Noise Levels 2032 Build Noise Levels Contours TNM Validations

I. HIGHWAY TRAFFIC NOISE ANALYSIS

A. Introduction

The Code of Federal Regulations (CFR) Section 23, Part 772 contains the Federal Highway Administration (FHWA) traffic noise standards. The South Carolina Department of Transportation (SCDOT) has implemented these standards in its Traffic Noise Abatement Policy approved on July 1, 2011. A traffic noise analysis is required for proposed Federal-aid highway projects that will construct a highway on new location or physically alter an existing highway, which will significantly change either the horizontal or vertical alignment of the road or increase the number of through-traffic lanes. Traffic noise impacts are predicted for this project. Noise abatement measures have been considered for reducing or eliminating the traffic noise impacts in accordance SCDOT's Traffic Noise Abatement Policy.

An analysis was performed on U.S. 701 from Trinity Road in Georgetown County to Lucas Bay Road in Horry County to determine the effect of the project on traffic noise levels in the immediate area (Figure 1). This investigation includes an inventory of existing noise sensitive land uses, and a field survey of background (existing) noise levels in the project study area. It also includes a comparison of the predicted noise levels and the background noise levels to determine if traffic noise impacts can be expected resulting from the proposed project. Traffic noise impacts are predicted for this project.

An original noise analysis was completed for this project in May of 2009. The new noise analysis was prepared to comply with the revised SCDOT Traffic Noise Abatement Policy implemented in July of 2011 and to evaluate another proposed alternate, Alternative 2, as well as a No-Build Alternative.

B. Project Description

The U.S. 701 Bridge Replacement project consists of the replacement and realignment of an approximately two mile long section of U.S. 701 located in Georgetown and Horry Counties. The project involves the replacement of three bridges on U.S. 701 through rural, undeveloped, light residential and light commercial portions of Horry and Georgetown Counties. The project involves replacing the three existing U.S. 701 bridges over Yauhannah Lake, the Great Pee Dee River, and the Great Pee Dee River Overflow, as well as the construction of a new roadway approach alignment. The project corridor crosses the referenced water bodies, as well as extensive floodplain forested wetlands. The Waccamaw National Wildlife Refuge occupies much of the project corridor study area. The purpose of the project is to replace the structurally deteriorated and functionally obsolete existing U.S. 701 bridges and maintain the principal direct rural connection between the larger towns of Conway and Georgetown, as well as the smaller communities such as Bucksport and Yauhannah. Two proposed alternatives were considered for evaluation as part of this study; Alternative 2 that moved the existing alignment 55 feet

northwest and Alternative 3 that moved the existing alignment 55 feet southeast. A future nobuild alternative was also considered.

C. Characteristics of Noise

Noise is basically defined as unwanted sound. It is emitted from many sources including airplanes, factories, railroads, commercial businesses, and highway vehicles. Highway traffic noise is usually a composite of noises from engine exhaust, drive train, and tire-roadway interaction. Of these sources, tire noise is typically the most offensive at unimpeded travel speeds.

The magnitude of noise is usually described by its sound pressure. Since the range of sound pressure varies greatly, a logarithmic scale is used to relate sound pressures to some common reference level, usually the decibel (dB). Sound pressures described in decibels are called sound pressure levels and are often defined in terms of frequency weighted scales (A, B, C, or D).

The weighted-A decibel scale is used almost exclusively in vehicle noise measurements because it places the most emphasis on the frequency range to which the human ear is most sensitive (1,000-6,000 Hertz). Sound levels measured using a weighted-A decibel scale are often expressed as dBA. Throughout this report, all noise levels will be expressed in dBA-(s).

Most individuals are exposed to fairly high noise levels from many sources as they go about their daily activities (Table 1).

Table 1 – Daily Sounds

	140	Shotgun blast, jet 100' away at takeoff Motor test chamber	PAIN HUMAN EAR THRESHOLD
	130	 Firecrackers	
	120	Severe thunder, pneumatic jackhammer Hockey crowd	
	110		
	100	Textile loom Subway train, elevated train, farm tractor Power lawn mower, newspaper press Heavy city traffic, noisy factory	LOUD
_	90		
D E C	80	Diesel truck 40 mph at 50' away Crowded restaurant, garbage disposal Average factory, vacuum cleaner	
I B	70	Passenger car 50 mph at 50' away	MODERATELY LOUD
E L S	60	Quiet typewriter Singing birds, window air-conditioner Quiet automobile	
	50	Normal conversation, average office	QUIET
	10	Household refrigerator Quiet office	VERY QUIET
	40	Average home	
	30	Dripping faucet Whisper at 5' away	
	20	Light rainfall, rustle of leaves	
		AVERAGE PERS Whisper	ON'S THRESHOLD OF HEARING JUST AUDIBLE
	10 0	 דיות	ESHOLD FOR ACUTE HEARING

Sources: World Book, Rand McNally Atlas of the Human Body, Encyclopedia America, "Industrial Noise and Hearing Conversation" by J. B. Olishifski and E. R. Harford (Researched by N. Jane Hunt and published in the Chicago Tribune in an illustrated graphic by Tom Heinz.)

The degree of disturbance or annoyance of unwanted sound depends essentially on three things:

- 1. The amount and nature of the intruding noise.
- 2. The relationship between the background noise and the intruding noise.
- 3. The type of activity occurring when the noise is heard.

In considering the first of these factors, it is important to note that individuals have different sensitivity to noise. Loud noises disturb some individuals more than others and some individuals become upset if an unwanted noise persists. The time patterns of noise also enter into an individual's judgment of whether or not a noise is offensive. For example, noises that occur during sleeping hours are usually considered to be more offensive than the same noises in the daytime.

With regard to the second factor, individuals tend to judge the annoyance of an unwanted noise in terms of its relationship to noise from other sources (background noise). The blowing of a car horn at night when background noise levels are approximately 45 dBA would generally be more objectionable than the blowing in the afternoon when background noises might be 55 dBA.

The third factor is related to the interference of noise with activities of individuals. In a 60 dBA environment, normal conversation would be possible while sleep might be difficult. Work activities requiring high levels of concentration may be interrupted by loud noises while activities requiring manual effort may not be interrupted to the same degree.

Over time, particularly if the noises occur at predicted intervals and are expected, individuals tend to accept the noises that intrude into their lives. Attempts have been made to regulate many of these types of noises including airplane noise, factory noise, railroad noise, and highway noise. In relation to highway traffic noise, methods of analysis and control have developed rapidly over the past few years.

D. Noise Abatement Criteria

The Federal Highway Administration (FHWA) has developed Noise Abatement Criteria (NAC) and procedures to be used in the planning and design of highways to determine whether highway noise levels are or are not compatible with various land uses. The abatement criteria and procedures are set forth in the aforementioned Federal reference (Title 23 CFR Part 772). A summary of the noise abatement criteria for various land uses is presented in Table 2.

Activity	Activity (Activity Criteria\2\		
Category	Leq(h)	L10(h)	Location	Activity Description
A	57	60	Exterior	Lands on which serenity and quiet are of extraordinary significance and serve an important public need, and where the preservation of those qualities is essential if the area is to continue to serve its purpose.
B\3\	67	70	Exterior	Residential
С\З\	67	70	Exterior	Active sport areas, amphitheaters, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings
D	52	55	Interior	Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios
E\3\	72	75	Exterior	Motels, hotels, offices, restaurant/bars, and other developed lands, properties or activities not included in A-D or F
F				Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical), and warehousing
G				Undeveloped lands that are not permitted

 $1 \in Leq(h)$ or L10(h) (but not both) may be used on a project

\3\ Includes undeveloped lands permitted for this activity category

Activity Category A consists of tracts of land that are locally significant for their serenity and quiet surroundings. Activity Category B consists of residential properties. Activity Category C consists of exterior locations of public outdoor areas, places of worship, cemeteries, recreational areas, etc. Activity Category D consists primarily of the same activities as Activity Category C but is for interior locations. Activity Category E consists of hotel/motels, offices, restaurants, and other developed land with activities not included in Activity Categories A-D. Activity F consists of agricultural lands, airports, and commercial/industrial facilities. Activity G is for undeveloped

lands not presently permitted. Activity Categories adjacent to the project are mostly residential (B).

Sound pressure levels in this report are referred to as Leq(h). The hourly Leq, or equivalent sound level, is the level of constant sound in a one-hour time period that would have the same energy as a time-varying sound. In other words, the fluctuating sound levels of traffic noise are represented in terms of a steady noise level with the same energy content.

E. Existing Noise Levels

Existing noise measurements were taken in the vicinity of the project to quantify the existing acoustic environment and to provide a base for assessing the impact of noise level increases. There are five traffic noise measurement sites. The following are the traffic noise measurement sites and their locations:

- Site 1 Site 1 is located at the intersection of U.S. 701 and Trinity Road and Ellis Landing Road. The measurement device was set at approximately 60 inches above the ground elevation at the corner of the restaurant (Terry's Fish House).
- Site 2 Site 2 is located at the intersection of U.S. 701 and Yauhannan Lake Drive. The measurement device was set at approximately 60 inches above the ground elevation at the corner of the residence.
- Site 3 Site 3 is located at 9265 N. Fraser Street (U.S. 701). The measurement device was set at approximately 60 inches above the ground elevation at the corner of the residence.
- Site 4 Site 4 is located at the public boat ramp on the Great Pee Dee River. The measurement device was set at approximately 60 inches above the ground elevation just before the beginning of the dock.
- Site 5 Site 5 is located on the public walking trail at the oxbow. The measurement device was set at approximately 60 inches above the ground elevation.

The existing Leq(h) traffic noise levels, as measured in the project area at Sites 1, 2, 3, 4, and 5 were 66.9, 61.6, 62.0, 58.1, and 49.8 respectively (Table 3).

Site	Location	Description	Noise Level (dBA)
1	U.S. 701/Trinity Road/Ellis Landing Road	Asphalt	66.9
2	U.S. 701/Yauhannan Lake Drive	Grass	61.6
3	9265 N. Fraser Street (U.S. 701)	Grass	62.0
4	Public Boat Ramp at Great Pee Dee River	Concrete	58.1
5	Walking Trail at Oxbow	Grass	49.8

Table 3 - Existing Noise Levels [Leq(h)]

The existing roadway and traffic conditions were used with the current traffic noise prediction model (TNM version 2.5, February 2004) to calculate existing noise levels for comparison with actual measured noise levels. Project-related traffic noise level increases are based upon the existing loudest-hour noise levels. See Table 4 for more information about the field measurements.

			Hourly Traffic Based on Concurrent Traffic Counts									
Site	Time Period		Northb	ound l	Lanes		Southbound Lanes				Measured Lea	
Site		Autos	MT	HT	Bus	MC	Autos	MT	HT	Bus	MC	Leq
1	9:11 AM – 9:31 AM	102	3	9	0	0	99	0	21	0	0	66.9
2	9:44 AM – 10:04 AM	108	3	15	0	0	111	0	15	0	0	61.6
3	10:13 AM – 10:33 AM	120	0	6	0	0	72	6	12	0	0	62.0
4	10:45 AM – 11:05 AM	72	3	15	3	0	96	0	9	0	0	58.1
5	11:34 AM – 11:54 AM	90	3	24	0	0	114	0	9	0	0	49.8

 Table 4 - Field Noise Measurements

MT = Medium Trucks; HT = Heavy Trucks; MC = Motorcycles - Data was obtained on Thursday, October 4, 2012.

Notes (background noise sources):

Site 1 – traffic, crows, pile driver in distance, loud bass from car on Trinity at 9:19 AM

Site 2 – traffic, dogs barking, electric saw in distance, woman speaking at 9:48 AM

Site 3 – traffic, rooster next door

Site 4 – traffic

Site 5-traffic

Table 5 shows the comparison of field measurements versus modeled noise levels. The calculated noise levels for the measurement sites range from 48.0 to 65.4 dBA. The difference between calculated and field measured noise levels at all five locations is 3 dBA or less, validating the results of the TNM model.

 Table 5 - Existing TNM Calculated Noise Levels vs. Field Measurements

Site	Location	Field Measurement Noise Level (dBA)	TNM Calculated Noise Level (dBA)	Difference (dBA)
1	U.S. 701/Trinity Road/Ellis Landing Road	66.9	65.4	1.5
2	U.S. 701/Yauhannan Lake Drive	61.6	59.2	2.4
3	9265 N. Fraser Street (U.S. 701)	62.0	59.0	3.0
4	Public Boat Ramp at Great Pee Dee River	58.1	60.2	-2.1
5	Walking Trail at Oxbow	49.8	48.0	1.8

Difference = Measured Leq minus Modeled Leq

F. Procedure For Predicting Future Noise Levels

Based on the SCDOT Traffic Noise Abatement Policy, a preliminary noise analysis is required for all build alternatives determined to be reasonable and under consideration in a project's NEPA document. The preliminary analysis models the most conservative noise environment to determine if there will be noise impacts, and if there are, the feasibility and reasonableness of noise abatement to mitigate the impacts. The elevations of receiver locations and roadway characteristics *are not* taken into account in a preliminary noise analysis (i.e. everything is considered to be flat and at the same elevation).

A total of four build alternatives were considered for this project, including the two alternatives previously discussed. Two of these alternatives were deemed not reasonable due to property impacts and environmental impacts. Therefore, these alternatives were not modeled as part of this study.

Once a preferred alternative has been identified, a detailed noise analysis is required for any noise abatement that was recommended for that alternative in the preliminary analysis. Elevations of the receivers and roadway *are* taken into account in a detailed analysis.

Traffic noise is not constant; it varies in time depending upon the number, speed, type, and frequency of vehicles that pass by a given receiver. Furthermore, since traffic noise emissions are different for various types of vehicles, the TNM model distinguishes between the source emissions from the following vehicle types: automobiles, medium trucks, heavy trucks, buses, and motorcycles. The TNM traffic noise prediction model uses the number and type of vehicles on the planned roadway, their speeds, the physical characteristics of the road (curves, hills, depressed, elevated, etc.), receiver location and height, and, if applicable, barrier type, barrier ground elevation, and barrier top elevation.

Preliminary designs, aerial photography, and contour mapping were used to model the proposed roadway and receiver elevations and represent the topographical conditions. The noise predictions made in this report are highway-related noise predictions for the traffic conditions during the year 2032. They do not include other noises related to the excessive background noises (trains, airplanes and construction, etc.) that were measured during the existing conditions.

According to FHWA guidance, the predictions documented in this report are based upon each proposed roadway alignment design and the traffic conditions for the year 2032 that result in the loudest predicted hourly-equivalent traffic noise levels for each receiver. Traffic noise level and location spreadsheets are included in the Appendix and contain a list of all receivers in close proximity to the project along with aerials showing the receiver locations, and summarize the loudest hour equivalent noise levels for the Existing, No-Build, Build Alternative 2, and Build Alternative 3 conditions in the year 2032 under traffic conditions within

the project site. The land uses of receivers were determined by field observations and reviewing available GIS parcel data.

Table 6 lists the traffic data used in this noise analysis. This data is based on field observations and data from the 2009 Highway Capacity Analysis Report for this project.

Roadway Section	Speed (mph)	Two Way Design Hourly Traffic	One Way Hourly Traffic	Hourly Volume Cars (vph)	Hourly Volume Medium Trucks (vph)	Hourly Heavy Trucks (vph)
2012 Traffic Computations						
U.S. 701	55	880	440	378	18	44
2032 Traffic Computations						
U.S. 701	55	1230	615	529	25	62
2032 Traffic Computations U.S. 701	55	1230	615	529	25	62

Table 6 - Traffic Data for Noise Analysis

• mph = miles per hour

• vph = vehicles per hour

• Design hourly traffic volumes were obtained using 10% of average daily traffic provided by SCDOT.

• Design hourly traffic volumes on U.S. 701 are assumed to result in worst case noise conditions.

• The assumed truck split was a Medium Truck Percentage of 4 percent and a Heavy Truck Percentage of 10 percent, based on previous noise analysis report.

G. Traffic Noise Impacts And Noise Thresholds

Traffic noise impacts occur when the predicted traffic noise levels either: (a) approach or exceed the FHWA noise abatement criteria ("approach" meaning within 1 dBA of the value listed in Table 2), or (b) substantially exceed the existing noise levels. According to the SCDOT Traffic Noise Abatement Policy, a 15 dBA increase is deemed to be a "substantial increase." Consideration for noise abatement measures must be given to receivers that fall in either category. The results of the noise analysis indicate that traffic related noise impacts would occur to eight (8) receivers under the 2032 Build Alternative 2 and 6 (six) receivers under the 2032 Build Alternative 3. However, eight (8) receivers would be impacted under the 2032 No-Build Alternative. No receivers in the project area would substantially exceed the FHWA noise abatement criteria. Predicted build-condition traffic noise level contours are not a definitive means by which to assess traffic noise level impacts; however, they can aid in future land use planning efforts in undeveloped areas. Table 7 summarizes the predicted distances to the 72, 67, and 66 dBA noise level contours and the noise impact analysis results.

					ACTIVITY CATEGORY			
	Leq(h)	NOISE	LEVEL	5 ¹	DISTANCES ² (ft)			řt)
STUDY AREA	25 ft	50 ft	100	ft	72 d	BA 6	67 dBA	66dBA
U.S. 701	77.3	73.8	68.7	7	76	5	135	151
	APP			PPR	ROXIMATE # OF IMPACTED			
	TOTA	L NO.	RECEIVERS ACCORDING TO TITLE 23 CFR					
	0	F	PART 772 / SCDOT POLICY					Y
ROADWAY LOCATION	RECEI	VERS	Α		B	С	D	E
2032 Year No-Build Alterna	ative							
U.S. 701 – No-Build	26	5			8			
2032 Year Build Alternatives								
U.S. 701 – Alternative 2	26	5			8			
U.S. 701 – Alternative 3	26	5			6			

Table 7: Activity Category Critical Distances and Noise Impact Analysis

1. 50ft, 100 ft & 200 ft distances are measured from the outside edge of pavement

2. 72 dBA, 67 dBA and 66 dBA activity category distances are measured from the proposed centerline of the roadway

II. TRAFFIC NOISE ABATEMENT MEASURES

If traffic noise impacts are predicted, noise abatement measures for reducing or eliminating the noise impacts must be considered. Consideration for noise abatement measures have been given to impacted receivers along each alternative. The following discussion addresses the applicability of these measures to the proposed project.

A. Noise Barriers

Physical measures to abate anticipated traffic noise levels are often applied on fully controlled facilities using solid mass berms or walls strategically placed between the traffic sound source and the receivers to diffract, absorb, and reflect highway traffic noise emissions. To be effective, a noise barrier must be long enough and tall enough to shield the impacted receiver(s). Generally, the noise wall length must be eight times the distance from the barrier to the receiver. For example, if a receiver is 200 feet from the roadway, an effective barrier would be approximately 1,600 feet long – with the receiver in the horizontal center. Due to the requisite lengths for effectiveness, noise walls are typically not economical for isolated or most low-density areas, or for most uncontrolled access facilities. On facilities where access is allowed for driveways, openings will be needed in the walls. An access opening of 40 feet in a 400-foot wall will make the wall ineffective.

According to the SCDOT's Traffic Noise Abatement Policy, a noise wall must be considered both reasonable and feasible. The feasibility of a wall is determined by constructability of the wall given the topography, presence of other dominant noise sources, and at least a 5 dBA noise reduction must be achieved for 75% of the impacted receivers. Construction of a noise wall is considered reasonable if the cost per benefited receiver is less than \$30,000 and if other applicable criteria are met.

Residences and businesses will have direct access to U.S. 701 with the proposed alignments. Each impacted property has a nearby driveway that accesses U.S. 701 or an intersecting road. Most impacts in the project are within 100 feet of the proposed roadway. At this distance, an effective barrier would be approximately 800 feet long with no breaks in access. One or more access breaks would be required at any impacted receiver in the project area, making a barrier incapable of providing at least a 5 dBA noise reduction to be acoustically feasible. For these reasons, noise barriers are not feasible for reducing or eliminating noise impacts for this project.

B. Highway Alignment Selection

Highway alignment selection involves the horizontal or vertical orientation of the proposed improvements in such a way as to minimize impacts and costs. The selection of alternative alignments for noise abatement purposes must consider the balance between noise impacts and other engineering and environmental parameters. For noise abatement, horizontal alignment selection is primarily a matter of constructing the proposed roadway at a sufficient distance from noise sensitive areas. The two alternatives evaluated have been located to minimize impacts to human and natural resources. Raising or lowering of the roadway grade for either alternative is not feasible or practical as a change in grade would require additional new right-of-way and constitute a large cost versus small benefit in reduced noise levels. Alignment shifts are not practical due to safety considerations and potential displacements.

C. Traffic System Management Measures

Traffic system management (TSM) measures, which limit vehicle type, speed, volume and time of operations are often effective noise abatement measures. Past project experience has shown that a reduction in the speed limit of 10 mph would result in a noise level reduction of approximately 1 to 2 dBA. Further reducing the speed limit would not be appropriate for the functional classification for this project. Truck lane designation is not a viable alternative of noise abatement on this project, given the limited scope of the proposed improvements.

D. Other Mitigation Measures Considered

The acquisition of property in order to provide buffer zones to minimize noise impacts is not considered to be a feasible noise mitigation measure. The cost to acquire impacted receivers for buffer zones would exceed the abatement threshold of \$30,000 per benefited receiver. The use of buffer zones to minimize impacts to future sensitive areas is not recommended because this could be accomplished through land use controls and the noise critical distances as predicted in Table 7. The use of vegetation for noise mitigation is not considered reasonable for projects such as this one due to the substantial amount of right-of-way necessary to make vegetative barriers

effective. FHWA research has shown that a vegetative barrier should be approximately 100 feet wide to provide a 3 dBA reduction in noise levels.

III. CONSTRUCTION NOISE

The major construction elements of this project are expected to be earth removal, hauling, grading, paving, and pile driving. General construction noise impacts, such as temporary speech interference for passers-by and those individuals living or working near the project, can be expected particularly from pile driving, paving operations, and earth moving equipment during construction. However, considering the relatively short-term nature of construction noise and the likely limitation of construction to daytime hours, these impacts are not expected to be substantial. The contractor would be required to comply with applicable local noise ordinances and OSHA regulations concerning noise attenuation devices on construction equipment.

IV. GEORGETOWN COUNTY & HORRY COUNTY PLANNING OFFICIALS

Boyd Johnson, Director Georgetown County Department of Planning & Code Enforcement 129 Screven Street, Room 222 Georgetown, SC 29440

Janet Carter, Director Horry County Planning & Zoning Department 1301 Second Ave Conway, SC 29526

V. SUMMARY

An original noise analysis was completed in May of 2009 for the 2032 Build Alternative 3 that resulted in 11 receivers being impacted in future build conditions. No receivers would substantially exceed the FHWA noise abatement criteria.

The results of the new noise analysis indicate that traffic related noise impacts would occur to eight (8) receivers under the 2032 Build Alternative 2 and six (6) receivers under the 2032 Build Alternative 3. However, eight (8) receivers would be impacted under the 2032 No-Build Alternative. No receivers in the project area would substantially exceed the FHWA noise abatement criteria. Noise abatement measures were evaluated for this project but were found not to be acoustically feasible since it would not provide at least a 5 dBA noise reduction to impacted receivers due to the number of required access breaks.

This evaluation completes the highway traffic noise requirements of Title 23 CFR Part 772.

APPENDIX

Traffic Noise Impacts and Locations

	RECEIVER INFORMATION	1		2012 E	XISTING	2032 NO-BUIL	D ALTERNATIVE	2032 BUILD	ALTERNATIVE 2	2032 BUILD A	BUILD ALTERNATIVE 3	
ID #	LAND USE	CATEGORY	EQUIVALENT NO. OF RECEIVERS	ESTIMATED Leq dBA	NOISE IMPACT (YES/NO)							
R 1	Commercial	Е	1	67	No	68	No	67	No	68	No	
R 2	Commercial	Е	1	67	No	69	No	68	No	69	No	
R 3	Residential	В	1	56	No	57	No	57	No	57	No	
R 4	Residential	В	1	65	No	66	Yes	67	Yes	67	Yes	
R 5	Residential	В	1	65	No	66	Yes	68	Yes	67	Yes	
R 6	Residential	В	1	64	No	65	No	68	Yes	66	No	
R 7	Residential	В	1	55	No	56	No	56	No	56	No	
R 8	Residential	В	1	55	No	56	No	57	No	56	No	
R 9	Residential	В	1	56	No	57	No	59	No	57	No	
R 10	Residential	В	1	57	No	58	No	60	No	58	No	
R 11	Residential	В	1	66	No	67	Yes	72	Yes	65	No	
R 12	Residential	В	1	58	No	59	No	61	No	58	No	
R 13	Residential	В	1	65	No	67	Yes	71	Yes	64	No	
R 14	Residential	В	1	68	Yes	69	Yes	71	Yes	65	No	
R 15	Residential	В	1	60	No	61	No	63	No	60	No	
R 16	Commercial	Е	1	64	No	65	No	64	No	65	No	
R 17	Residential	В	1	63	No	64	No	63	No	64	No	
R 18	Residential	В	1	65	No	66	No	65	No	67	Yes	
R 19	Residential	В	1	62	No	63	No	62	No	63	No	
R 20	Residential	В	1	67	Yes	67	Yes	68	Yes	68	Yes	
R 21	Residential	В	1	61	No	61	No	63	No	63	No	
R 22	Residential	В	1	63	No	64	No	62	No	64	No	
R 23	Residential	В	1	66	Yes	67	Yes	65	No	72	Yes	
R 24	Residential	В	1	66	No	67	Yes	66	Yes	69	Yes	
R 25	Residential	В	1	64	No	65	No	64	No	66	No	
R 26	National Park Walking Trail	C	1	53	No	54	No	54	No	56	No	

Predicted Traffic Noise Levels - US 701 Bridge Replacement

Noise Measurement Data Sheets

Project Name: U.S Georgetown/Horry	. 701 Bridge Replacement, y County, SC	Site #: 1	Date: December 14, 2012		
Site Description: C	Commercial/Residential	Site Location: U.S. 701/Trinity Rd/Ellis Landing Rd			
Start Time: 9:11 ar	n	Duration: 20 minutes	L _{eq} : 66.9		
Site Sketch: (Plan	View)	ELLS LANDING ROAD			
Thores. crows, pile					
Traffic Counts	U.S. 701		ity/Ellis Landing		
Autos:	North Bound – 34, South Bou	nd - 33 East Bound	- 13, West Bound - 4		
Medium Trucks:	North Bound – 1, South Boun	d - 0 East Bound	-0, West Bound -0		
Heavy Trucks:	North Bound -3 , South Boun	d - / East Bound	- 0, West Bound - 0		
Buses:	North Bound – 0, South Boun	d - 0 East Bound	- 0, West Bound - 0		
Motorcycles:	North Bound -0 , South Bound	d - 0 East Bound	– 0, West Bound - 0		

Project Name: U.S. 701 Georgetown/Horry Cou	Bridge Replacement, nty, SC	Site #: 1 Date: December 14, 2				
Site Description: Comm	ercial/Residential	Site Location: U.S. 701/Trinity Rd/Ellis Landing Rd				
Start Time: 9:11 am		Duration: 20 minutes	L _{eq} :			

Site Photographs:

Florence & Hutcheson, Inc.

Field Personnel: Wayne Hall & Maddy Barbian

			Site 1							
		I	ntersection	of US 701/Trir	nity Road/El	lis Landing	Road			
Period:	Time: 10:10 - 10:29	LAeq	Despike?	SPL	LAF(max)	Lmax	LCpeak			
	121214_0001.NBF	66.9			82.3	80.9				
0	(2012-12-14 10:10:04.000)	65.9		3890451.45	75.5	75.5	93.8			
1	(2012-12-14 10:11:04.000)	69.5		8912509.38	80.9	80.9	95.8			
2	(2012-12-14 10:12:04.000)	65.3		3388441.56	75.7	75.7	87.6			
3	(2012-12-14 10:13:04.000)	67.8		6025595.86	79.3	79.3	97.7			
4	(2012-12-14 10:14:04.000)	61.0		1258925.41	74.5	74.5	88.8			
5	(2012-12-14 10:15:04.000)	59.3		851138.038	73.0	73.0	86.3			
6	(2012-12-14 10:16:04.000)	68.8		7585775.75	78.1	78.1	96.6			
7	(2012-12-14 10:17:04.000)	69.5		8912509.38	80.8	80.8	97.3			
8	(2012-12-14 10:18:04.000)	66.5		4466835.92	75.3	75.3	93.5			
9	(2012-12-14 10:19:04.000)	64.0		2511886.43	75.8	75.8	90.6			
10	(2012-12-14 10:20:04.000)	63.2		2089296.13	76.1	76.1	89.8			
11	(2012-12-14 10:21:04.000)	68.8		7585775.75	77.8	77.8	96.2			
12	(2012-12-14 10:22:04.000)	68.1		6456542.29	77.5	77.5	89.8			
13	(2012-12-14 10:23:04.000)	72.5	х		82.3		102.4			
14	(2012-12-14 10:24:04.000)	65.3		3388441.56	75.6	75.6	90.2			
15	(2012-12-14 10:25:04.000)	69.5		8912509.38	78.4	78.4	95.8			
16	(2012-12-14 10:26:04.000)	64.4		2754228.7	74.6	74.6	87.1			
17	(2012-12-14 10:27:04.000)	64.7		2951209.23	76.0	76.0	88.8			
18	(2012-12-14 10:28:04.000)	42.3	х		51.1		74.3			
19	(2012-12-14 10:29:04.000)	62.7		1862087.14	76.3	76.3	90.2			

Project Name: U.S Georgetown/Horry	. 701 Bridge Replacement, y County, SC	Site #: 2		Date: December 14, 2012		
Site Description: R	esidential	Site Locatio	hannan Lake Drive			
Start Time: 9:44 ar	n	Duration: 20) minutes	L _{eq} : 61.6		
Site Sketch: (Plan	View)					
	ISTORY SITE 2 US 701	YAUHANNAH LAKE DRIVE	DITCH			
Notes: dogs barking, sawing in distance, woman speaking at 9:48						
Traffic Counts	U.S. 701		Yauhan	nan Lake Drive		
Autos:	North Bound – 36, South Bou	nd - 37	East Bound – 0), West Bound - 2		
Medium Trucks:	North Bound – 1, South Boun	d - 0	East Bound – 0), West Bound - 0		
Heavy Trucks:	North Bound – 5, South Boun	d - 5	East Bound – 0, West Bound - 0			
Buses:	North Bound – 0, South Boun	d - 0	East Bound – 0), West Bound - 0		
Motorcycles:	North Bound – 0, South Boun	d - 0	East Bound – 0, West Bound - 0			

Project Name: U.S. 701 Bridge Replacement, Georgetown/Horry County, SC	Site #: 2	Date: December 14, 2012		
Site Description: Residential	Site Location: U.S. 701/Yauhannan Lake Drive			
Start Time: 9:44 am	Duration: 20 minutes	L _{eq} :		

Site Photographs:

				Sit	:e 2				
		Intersection of US 701/Yauhannah Drive							
Period:	Time: 10:43-11:02	LAeq	Despike?	SPL	LAF(max)	Lmax	LCpeak		
	121214_0002.NBF	61.6			76.6	76.6			
0	(2012-12-14 10:43:03.000)	57.0		501187.234	64.8	64.8	82.2		
1	(2012-12-14 10:44:03.000)	55.4		346736.85	64.6	64.6	84.4		
2	(2012-12-14 10:45:03.000)	64.1		2570395.78	76.6	76.6	89.7		
3	(2012-12-14 10:46:03.000)	61.3		1348962.88	72.6	72.6	87.5		
4	(2012-12-14 10:47:03.000)	64.2		2630267.99	73.5	73.5	89.1		
5	(2012-12-14 10:48:03.000)	60.0		1000000	67.5	67.5	86.7		
6	(2012-12-14 10:49:03.000)	64.1		2570395.78	73.6	73.6	93.8		
7	(2012-12-14 10:50:03.000)	63.9		2454708.92	74.2	74.2	95.0		
8	(2012-12-14 10:51:03.000)	60.7		1174897.55	67.1	67.1	87.4		
9	(2012-12-14 10:52:03.000)	59.5		891250.938	68.2	68.2	84.7		
10	(2012-12-14 10:53:03.000)	61.3		1348962.88	69.4	69.4	89.3		
11	(2012-12-14 10:54:03.000)	63.6		2290867.65	74.8	74.8	93.5		
12	(2012-12-14 10:55:03.000)	62.3		1698243.65	72.1	72.1	90.9		
13	(2012-12-14 10:56:03.000)	51.2		131825.674	61.3	61.3	87.1		
14	(2012-12-14 10:57:03.000)	58.2		660693.448	66.5	66.5	87.2		
15	(2012-12-14 10:58:03.000)	63.4		2187761.62	74.1	74.1	91.4		
16	(2012-12-14 10:59:03.000)	58.7		741310.241	71.5	71.5	90.8		
17	(2012-12-14 11:00:03.000)	58.9		776247.117	65.6	65.6	85.3		
18	(2012-12-14 11:01:03.000)	63.0		1995262.31	74.4	74.4	90.2		
19	(2012-12-14 11:02:03.000)	59.7		933254.301	66.6	66.6	85.4		
Project Name: U.S Georgetown/Horry	. 701 Bridge Replacement, y County, SC	Site #: 3	Date: December 14, 2012						
---------------------------------------	--	------------------------------	--------------------------------------	--	--	--	--		
Site Description: R	esidential	Site Location: 9265 N. Frase	on: 9265 N. Fraser Street (U.S. 701)						
Start Time: 10:13 a	ım	Duration: 20 minutes	L _{eq} : 62.0						
Site Sketch: (Plan	DTCH DTCH DTCH C V/2 STORY ERAME DWELLING								
Traffic Counts	US 701								
	North Bound – 40 South Bou	nd - 24							
Medium Trucks	North Bound $= 0$ South Bound	d - 2							
Heavy Trucks:	North Bound – 2. South Bound	d - 4							
Buses:	North Bound – 0. South Boun	d - 0							
Motorcycles:	North Bound – 0, South Boun	d - 0							

Project Name: U.S. 701 Bridge Replacement, Georgetown/Horry County, SC	Site #: 3	Date: December 14, 2012					
Site Description: Residential	Site Location: 9265 N. Fraser Street (U.S. 701)						
Start Time: 10:13 am	Duration: 20 minutes	L _{eq} :					
Site Photographs:							

			Site 3										
				9265 L	J.S. 701								
Period:	Time: 11:12-11:31	LAeq	Despike?	SPL	LAF(max)	Lmax	LCpeak						
	121214_0003.NBF	62			78.4	78.4							
0	(2012-12-14 11:12:30.000)	58.4		691830.971	69.2	69.2	87.5						
1	(2012-12-14 11:13:30.000)	38.8	х		50.3		78.7						
2	(2012-12-14 11:14:30.000)	61.9		1548816.62	75.9	75.9	90.8						
3	(2012-12-14 11:15:30.000)	59.5		891250.938	71.2	71.2	86.0						
4	(2012-12-14 11:16:30.000)	66.2		4168693.83	78.4	78.4	103.2						
5	(2012-12-14 11:17:30.000)	61.2		1318256.74	70.6	70.6	87.0						
6	(2012-12-14 11:18:30.000)	57.2		524807.46	68.6	68.6	87.1						
7	(2012-12-14 11:19:30.000)	63.0		1995262.31	75.3	75.3	97.7						
8	(2012-12-14 11:20:30.000)	60.3		1071519.31	69.9	69.9	85.9						
9	(2012-12-14 11:21:30.000)	62.4		1737800.83	71.0	71.0	85.7						
10	(2012-12-14 11:22:30.000)	59.7		933254.301	71.0	71.0	87.5						
11	(2012-12-14 11:23:30.000)	59.1		812830.516	70.7	70.7	90.3						
12	(2012-12-14 11:24:30.000)	59.3		851138.038	69.1	69.1	88.0						
13	(2012-12-14 11:25:30.000)	58.0		630957.344	70.1	70.1	85.3						
14	(2012-12-14 11:26:30.000)	53.9		245470.892	66.1	66.1	79.7						
15	(2012-12-14 11:27:30.000)	66.0		3981071.71	75.9	75.9	96.6						
16	(2012-12-14 11:28:30.000)	66.2		4168693.83	78.0	78.0	95.8						
17	(2012-12-14 11:29:30.000)	62.5		1778279.41	74.1	74.1	92.2						
18	(2012-12-14 11:30:30.000)	62.0		1584893.19	73.2	73.2	92.3						
19	(2012-12-14 11:31:30.000)	65.4		3467368.5	74.8	74.8	90.9						

Project Name: U.S Georgetown/Horry	. 701 Bridge Replacement, y County, SC	Site #: 4	Date: December 14, 2012					
Site Description: R	lural	Site Location: Boat Ramp						
Start Time: 10:45 a	am	Duration: 20 minutes	L _{eq} :					
Site Sketch: (Plan	View)	ASPHALT PAVING AND PARKING						
Notes:								
Traffic Counts	U.S. 701							
Autos:	North Bound – 24, South Bou	nd - 32						
Medium Trucks:	North Bound – 1, South Boun	d - 0						
Heavy Trucks:	North Bound – 5, South Boun	d - 3						
Buses:	North Bound – 1, South Boun	d - 0						
Motorcycles:	North Bound – 0, South Boun	d - 0						

Project Name: U.S. 701 Bridge Replacement, Georgetown/Horry County, SC	Site #: 4	Date: December 14, 2012				
Site Description: Rural	Site Location: Boat Ramp					
Start Time: 10:45 am	Duration: 20 minutes	L _{eq} :				

Site Photographs:

		Site 4										
			Public	: Boat Ramp at	: Great Pee I	Dee River						
Period:	Time: 11:43-12:02	LAeq	Despike?	SPL	LAF(max)	Lmax	LCpeak					
	121214_0004.NBF	58.1			79.3	79.3						
0	(2012-12-14 11:43:53.000)	55.9		389045.145	70.8	70.8	90.7					
1	(2012-12-14 11:44:53.000)	56.8		478630.092	79.3	79.3	97.6					
2	(2012-12-14 11:45:53.000)	52.3		169824.365	69.1	69.1	91.1					
3	(2012-12-14 11:46:53.000)	62.8		1905460.72	72.8	72.8	99.6					
4	(2012-12-14 11:47:53.000)	63.9		2454708.92	76.1	76.1	99.8					
5	(2012-12-14 11:48:53.000)	58.0		630957.344	68.6	68.6	97.4					
6	(2012-12-14 11:49:53.000)	57.0		501187.234	71.8	71.8	92.7					
7	(2012-12-14 11:50:53.000)	57.4		549540.874	67.4	67.4	96.3					
8	(2012-12-14 11:51:53.000)	57.4		549540.874	68.6	68.6	91.5					
9	(2012-12-14 11:52:53.000)	58.1		645654.229	69.6	69.6	91.4					
10	(2012-12-14 11:53:53.000)	59.6		912010.839	69.1	69.1	97.6					
11	(2012-12-14 11:54:53.000)	55.0		316227.766	71.7	71.7	92.6					
12	(2012-12-14 11:55:53.000)	54.8		301995.172	67.9	67.9	92.0					
13	(2012-12-14 11:56:53.000)	57.4		549540.874	68.6	68.6	92.2					
14	(2012-12-14 11:57:53.000)	54.7		295120.923	65.4	65.4	85.9					
15	(2012-12-14 11:58:53.000)	52.4		173780.083	63.2	63.2	90.2					
16	(2012-12-14 11:59:53.000)	50.2		104712.855	65.1	65.1	89.0					
17	(2012-12-14 12:00:53.000)	59.1		812830.516	70.6	70.6	98.8					
18	(2012-12-14 12:01:53.000)	57.9		616595.002	69.0	69.0	96.1					
19	(2012-12-14 12:02:53.000)	56.2		416869.383	68.6	68.6	90.1					

Project Name: U.S. 701 Bridge Replacement, Georgetown/Horry County, SC		Site #: 5	Date: December 14, 2012					
Site Description: R	lural	Site Location: Oxbow, Walking Trail						
Start Time: 11:34 a	ım	Duration: 20 minutes	L _{eq} :					
Site Sketch: (Plan	View)							
- Juster		■ US 70/						
	e energiane a superior and and a superior							
A CLASSING . No.								
Nilda Barris								
		18 M Steve the.						
			ALL ME					
	SITE 5							
Notes:								
Traffic Counts	U.S. 701							
Autos:	North Bound – 30, South Bou	nd - 38						
Medium Trucks:	North Bound – 1, South Boun	d - 0						
Heavy Trucks:	North Bound – 8, South Boun	d - 3						
Buses:	North Bound – 0, South Boun	d - 0						
Motorcycles:	North Bound – 0, South Boun	d - 0						

Project Name: U.S. 701 Bridge Replacement, Georgetown/Horry County, SC	Site #: 5	Date: December 14, 2012			
Site Description: Rural	Site Location: Oxbow, Walking	Trail			
Start Time: 11:34 am	Duration: 20 minutes	L _{eq} :			
Site Photographs:					

		Site 5									
		Public Walking Trail at Oxbow									
Period:	Time: 12:32 - 12:51	LAeq	Despike?	SPL	LAF(max)	Lmax	LCpeak				
	121214_0005.NBF	49.8			61.2	61.2					
0	(2012-12-14 12:32:52.000)	49.8		95499.2586	56.6	56.6	79.3				
1	(2012-12-14 12:33:52.000)	46.7		46773.5141	50.0	50.0	70.2				
2	(2012-12-14 12:34:52.000)	46.6		45708.819	55.1	55.1	75.4				
3	(2012-12-14 12:35:52.000)	52.3		169824.365	57.3	57.3	80.4				
4	(2012-12-14 12:36:52.000)	52.0		158489.319	58.9	58.9	86.6				
5	(2012-12-14 12:37:52.000)	46.0		39810.7171	51.0	51.0	70.9				
6	(2012-12-14 12:38:52.000)	42.3		16982.4365	49.7	49.7	69.5				
7	(2012-12-14 12:39:52.000)	52.8		190546.072	61.2	61.2	83.6				
8	(2012-12-14 12:40:52.000)	49.9		97723.7221	57.5	57.5	80.5				
9	(2012-12-14 12:41:52.000)	43.6		22908.6765	51.9	51.9	71.2				
10	(2012-12-14 12:42:52.000)	43.8		23988.3292	53.4	53.4	70.9				
11	(2012-12-14 12:43:52.000)	38.2		6606.93448	49.8	49.8	73.3				
12	(2012-12-14 12:44:52.000)	45.6		36307.8055	58.1	58.1	80.8				
13	(2012-12-14 12:45:52.000)	55.3		338844.156	60.9	60.9	85.5				
14	(2012-12-14 12:46:52.000)	48.4		69183.0971	54.3	54.3	74.5				
15	(2012-12-14 12:47:52.000)	51.0		125892.541	57.4	57.4	79.4				
16	(2012-12-14 12:48:52.000)	50.8		120226.443	58.0	58.0	81.1				
17	(2012-12-14 12:49:52.000)	51.2		131825.674	55.6	55.6	75.8				
18	(2012-12-14 12:50:52.000)	49.9		97723.7221	55.3	55.3	74.6				
19	(2012-12-14 12:51:52.000)	46.5		44668.3592	52.0	52.0	72.8				

Traffic Data

	CAPACITY ANALYSIS RESULTS												
Case	Analysis Year	AADT	Peak Hour Volume	Average Travel Speed	% Time Spent Following	LOS	v/c						
Case 1	2012	8,800	880	51.0	65.2	D	0.32						
No-Build w/	2022	10,500	1,050	49.8	70.0	D	0.38						
Historical Data	2032	12,300	1,230	48.4	74.4	D	0.44						
Case 2	2012	8,800	880	54.0	65.2	D	0.32						
Build w/	2022	10,500	1,050	52.8	70.0	D	0.38						
Historical Data	2032	12,300	1,230	51.4	74.4	D	0.44						
Case 3	2012	8,300	830	51.3	63.4	С	0.30						
No-Build w/	2022	11,100	1,110	49.4	71.6	D	0.40						
3% Growth	2032	14,900	1,490	46.1	80.4	Е	0.54						
Case 4	2012	8,300	830	54.3	63.4	С	0.30						
Build w/	2022	11,100	1,110	52.4	71.6	D	0.40						
3% Growth	2032	14,900	1,490	49.1	80.4	Е	0.54						

Table 6. Highway Capacity Analysis Results

5.0 Conclusions

The purpose of the US 701 Bridge Replacement Project is to improve safety for the motoring public, as well as the safety of bicyclists, by replacing the three existing conditionally deficient and functionally obsolete bridges. The proposed project will improve safety by providing dedicated bike lanes and shoulder widths that are wider than the existing facility. Although the highway capacity analysis results indicates that there is not an improvement in the level of service between the "no-build" option and the "build" option, the results do demonstrate that the proposed bridge replacement will not negatively impact the level of service for US 701.

HCM Roadway Type	Rural Arterial
Free-Flow Speed	55.0
LOS C MSF (pcphpl)	1,190
LOS C Speed	55.0
LOS D MSF (pcphpl)	1,830
LOS D Speed	55.0

RUN	Roadway	Direction	Speed (mph)	Dir.Split	ADT	DHV %	DHV-dir	Duals (MT)	TT (HT)	Lanes	LOS	DHV-cap	Autos	MT	HT	Checksum
CASE 1: No Build w/ Hist. Data															-	
NO BUILD Year 2012 LOS D	U.S. 701	NB	55	50.0%	8,800	10.0%	440	4.0%	10.0%	1	D	440	378	18	44	0
	U.S. 701	SB	55	50.0%	8,800	10.0%	440	4.0%	10.0%	1	D	440	378	18	44	0
NO BUILD Year 2022 LOS D	U.S. 701	NB	55	50.0%	10,500	10.0%	525	4.0%	10.0%	1	D	525	452	21	53	1
	U.S. 701	SB	55	50.0%	10,500	10.0%	525	4.0%	10.0%	1	D	525	452	21	53	1
NO BUILD. Year 2032 LOS D	U.S. 701	NB	55	50.0%	12 300	10.0%	615	4 0%	10.0%	1	D	615	529	25	62	1
	U.S. 701	SB	55	50.0%	12,300	10.0%	615	4.0%	10.0%	1	D	615	529	25	62	1
CASE 2: Build w/ Hist. Data														<u></u>		
BUILD Year 2012 LOS D	U.S. 701	NB	55	50.0%	8,800	10.0%	440	4.0%	10.0%	1	D	440	378	18	44	0
	U.S. 701	SB	55	50.0%	8,800	10.0%	440	4.0%	10.0%	1	D	440	378	18	44	0
BUILD Year 2022 LOS D	U.S. 701	NB	55	50.0%	10,500	10.0%	525	4 0%	10.0%	1	D	525	452	21	53	1
	U.S. 701	SB	55	50.0%	10,500	10.0%	525	4.0%	10.0%	1	D	525	452	21	53	1
BUILD Year 2032 LOS D	U.S. 701	NB	55	50.0%	12,300	10.0%	615	4.0%	10.0%	1	D	615	529	25	62	1
	U.S. 701	SB	55	50.0%	12,300	10.0%	615	4.0%	10.0%	1	D	615	529	25	62	1

PROJECT	
US 701	

Date	12/14	4/2012	12/1	4/2012	12/14	1/2012	12/14	/2012	12/14	1/2012	12/14	1/2012	12/14	/2012	12/14	4/2012	12/1	4/2012	12/14	/2012	
Time	Time: 10	:10 - 10:29	Time: 10	:10 - 10:29	Time: 10	:43-11:02	Time: 10:	43-11:02	Time: 11	:12-11:31	Time: 11	:12-11:31	Time: 11	:43-12:02	Time: 11:43-12:02		Time: 12:32 - 12:51		Time: 12:32 - 12:51		
Setup	Si	ite 1	S	ite 1	Si	Site 2		e 2	Sit	te 3	Sit	te 3	Site 4 Site 4		te 4	Site 5		Site 5			
Location	Intersectio	on of US 701/T	rinity Rd/Ellis	Landing Rd	Intersec	Intersection of US 70		ection of US 701/Yauhannah Drive			9265 U		U.S. 701		Public Boat Ramp a		Dee River	Public Walkinç		g Trail at Oxbow	
Count Duration (Mins)		20		20		20	2	0	2	20	2	20	2	20	2	20		20	2	0	
LANE(s)	US 7	701 NB	UST	701 SB	US 7	US 701 NB		US 701 SB		US 701 NB		US 701 SB		US 701 NB		01 SB	US 7	/01 NB	US 701 SB		
	COUNT	HOURLY	COUNT	HOURLY	COUNT	COUNT HOURLY		HOURLY	COUNT	HOURLY	COUNT	HOURLY	COUNT	HOURLY	COUNT	HOURLY	COUNT	HOURLY	COUNT	HOURLY	
AUTOS	34	102	33	99	36	108	37	111	40	120	24	72	24	72	32	96	30	90	38	114	
DT / MED TRUCKS	1	3	0	0	1	3	0	0	0	0	2	6	1	3	0	0	1	3	0	0	
TTST / HEAVY TRUCKS	3	9	7	21	5	15	5	15	2	6	4	12	5	15	3	9	8	24	3	9	
BUSES	0	0	0	0	0	0	0	0	0	0	0	0	1	3	0	0	0	0	0	0	
MOTORCYCLES	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
SPEED	ļ	55		55	Į	55 55		5	5	55	5	55	5	5	5	55		55	5	5	
DIR DT / MED TRUCKS %	2.	.6%	0	.0%	2.	4%	0.0	0.0%		0%	6.7%		3.3%		0.0%		2.6%		0.0%		
DIR TTST / HEAVY TRUCKS %	7.	.9%	17	7.5%	11	.9%	11.	11.9%		8%	13.3%		16.7%		8.6%		20).5%	7.3	3%	
TOTAL DIR TRUCKS %	10).5%	17	7.5%	14	.3%	11.	9%	4.8	8%	20.	.0%	20.	0%	8.	6%	23	3.1%	7.3	3%	
TOTAL RDY DT / MED TRUCKS %		1.	3%			1.29				2.	8%			1.9	5%			1.:	3%		
TOTAL RDY TTST / HEAVY TRKS %		12	.8%			11.	9%			8.	3%			12.	.3%			13.	8%		
TOTAL RDY TRUCKS %		14	.1%		13.1%		11.1%			13.8%			15.0%								

2012 Existing Noise Levels

2012 Existing Co	onditions		Sheet 1 of 1		10 Jan 2013	
-			F&H			
Plan View (rotate	ed)		Project/Contract I	No. U	S 701 Bridge Replace	emen
Run name: Exist	ting Condition		TNM Version 2.5,	, Feb	2004	
Scale:		1000 feet	Analysis By: JW⊦	ł		
Roadway:	\longrightarrow		Ground Zone:	poly	/gon	
Receiver:			Tree Zone:	das	hed polygon	
Barrier:	\longmapsto		Contour Zone:	poly	'gon	
Building Row:			Parallel Barrier:			
Terrain Line:			Skew Section:		$- \longrightarrow$	

RESULTS: SOUND LEVELS		1					US 701 Bri	dge Repla	cement				
F&H							10 Januar	v 2013					
JWH							TNM 2 5	y 2010					
								d with TNM	2.5				
RESULTS: SOUND LEVELS							Curculator						
PROJECT/CONTRACT:		US 701	Bridge Re	olacement									
RUN:		2012 E	xisting Con	ditions									
BARRIER DESIGN:		INPUT	HEIGHTS					Average p	oavement type	shall be use	d unles	s	
								a State hig	ghway agency	y substantiate	es the u	se	
ATMOSPHERICS:		68 deg	F, 50% RH					of a differ	ent type with	approval of F	HWA.		
Receiver								1					
Name	No.	#DUs	Existing	No Barrier					With Barrier				
		1	LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcul	lated
							Sub'l Inc					minus	;
												Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
R1	49		0.0	66.5	5 72	2 66.5	5 15		66.5	0.0)	8	-8.0
R2	50		0.0	67.0) 72	2 67.0) 15		67.0	0.0)	8	-8.0
R3	51		0.0	55.8	3 66	6 55.8	3 15		55.8	0.0)	8	-8.0
R4	52		I 0.0	65.4	4 66	6 65.4	15		65.4	0.0)	8	-8.0
R5	53	· ·	0.0	65.1	1 66	6 65.1	15		65.1	0.0)	8	-8.0
R6	54	. ^	0.0	63.8	3 66	63.8	3 15		63.8	0.0)	8	-8.0
R7	55	; ·	0.0	54.8	3 66	6 54.8	3 15		54.8	0.0)	8	-8.0
R8	56		0.0	55.1	1 66	6 55.1	15		55.1	0.0)	8	-8.0
R9	57		0.0	56.3	3 66	56.3	3 15		56.3	0.0	1	8	-8.0
R10	58		0.0	56.6	6 66	5 56.6	6 15		56.6	0.0	1	8	-8.0
R11	59		0.0	65.7	7 66	6 65.7	' 15		65.7	0.0)	8	-8.0
R12	60		0.0	57.6	6 66	5 57.6	6 15		57.6	0.0)	8	-8.0
R13	61		0.0	64.8	3 66	6 64.8	8 15		64.8	0.0	1	8	-8.0
R14	62		0.0	67.7	7 66	6 67.7	15	Snd Lvl	67.7	0.0	/	8	-8.0
R15	63		0.0	59.8	o 60	59.5	b 15		59.5	0.0	·	8	-8.0
R16	64		0.0	63.		2 63.7	15		63.7	0.0	<u> </u>	8	-8.0
R17	60		0.0	63.4		b 63.2	15		63.2	0.0	<u></u>	8	-8.0
R18	67			00. 61.(00. I	15		61.0	0.0	, 	0	-8.0
R20	C0 01			66.5	7 64		CI 10	Spd Lyl	66.7		<u></u>	8	-0.U
R21	00			60.0			15		60.0	0.0	<u></u>	8	-0.0
R22	70			60.8		S 62 6	, 15 , 15		62.6	0.0	<u>}</u>	8	-0.0 _ 2 0
R23	70			66 1	, 00 1 61	5 02.0 5 66.1	15	Snd I vl	66 1	0.0)	8	-8.0
R24	72	, ,	0.0	65.0	. 00 9 66	65 C	15		65.9	0.0)	8	-8.0
L:\00108\Noiso Analysis\Existing (`ondition		0.0	50.0		00.0	1		50.0	0.0	10	 January 20	013

L:\09108\Noise Analysis\Existing Condition

RESULTS: SOUND LEVELS							US	701 Bric	ige Replac	cement			
R25	73	1	0.0	63.5	5	66	63.5	15		63.5	0.0	8	-8.0
R26	74	1	0.0	53.0)	66	53.0	15		53.0	0.0	8	-8.0
Dwelling Units		# DUs	Noise Red	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected		26	0.0	0.0)	0.0							
All Impacted		3	0.0	0.0)	0.0							
All that meet NR Goal		0	0.0	0.0)	0.0							

2032 No-Build Noise Levels

2032 Future No	Build		Sheet 1 of 1		10 Jan 2013	
			F&H			
Plan View (rotat	ed)		Project/Contract	No. U	S 701 Bridge Replac	<u>cem</u> en
Run name: Futu	ire No-Build		TNM Version 2.5,	, Feb	2004	
Scale:		1000 feet	Analysis By: JWH	1		
Roadway:	\longrightarrow		Ground Zone:	poly	gon	
Receiver:			Tree Zone:	das	hed polygon	
Barrier:	\longmapsto		Contour Zone:	poly	gon	
Building Row:			Parallel Barrier:			
Terrain Line:			Skew Section:		$- \longrightarrow$	

RESULTS: SOUND LEVELS		1					US 701 Bri	dge Repla	cement	1			
F&H							10 Januar	v 2013					
JWH							TNM 2 5	y 2010					
								d with TNN	125				
RESULTS: SOUND LEVELS							Carculated		2.5				
PROJECT/CONTRACT:		US 701	Bridge Re	placement									
RUN:		2032 F	uture No Bi	uild									
BARRIER DESIGN:		INPUT	HEIGHTS					Average p	avement type	shall be use	d unles	S	
								a State hi	ghway agency	substantiat	es the u	se	
ATMOSPHERICS:		68 deg	g F, 50% RH	l				of a differ	ent type with	, approval of F	HWA.		
Receiver			_		_								
Name	No.	#DUs	Existing	No Barrier					With Barrier				
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcu	lated
							Sub'l Inc					minu	S
												Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	-
Receiver1	1		1 0.0	68.	0 7	2 68.0) 15		68.0	0.0)	8	-8.0
Receiver2	2		1 0.0	68.	5 7	2 68.5	5 15		68.5	0.0)	8	-8.0
Receiver3	3	3 ·	1 0.0	56.	7 6	6 56.7	7 15		56.7	0.0)	8	-8.0
Receiver4	4	<i>،</i> ،	1 0.0	66.4	4 6	6 66.4	15	Snd Lvl	66.4	0.0)	8	-8.0
Receiver5	5	; ·	1 0.0	66.2	2 6	6 66.2	2 15	Snd Lvl	66.2	0.0)	8	-8.0
Receiver6	6	; ·	1 0.0	64.	7 6	6 64.7	7 15		64.7	0.0	j	8	-8.0
Receiver7	7		1 0.0	55.	7 6	6 55.7	7 15		55.7	0.0)	8	-8.0
Receiver8	8		1 0.0	56.	0 6	6 56.0) 15		56.0	0.0)	8	-8.0
Receiver9	9		1 0.0	57.3	3 6	6 57.3	3 15		57.3	0.0	1	8	-8.0
Receiver10	10		1 0.0	57.	7 6	6 57.7	7 15		57.7	0.0	1	8	-8.0
Receiver11	11		1 0.0	66.	9 6	6 66.9	9 15	Snd Lvl	66.9	0.0)	8	-8.0
Receiver12	12	2	1 0.0	58.	9 6	6 58.9	9 15		58.9	0.0)	8	-8.0
Receiver13	13	3	1 0.0	66.	7 6	6 66.7	7 15	Snd Lvl	66.7	0.0)	8	-8.0
Receiver14	14		1 0.0	69.	1 6	6 69.1	15	Snd Lvl	69.1	0.0	/	8	-8.0
Receiver15	15		1 0.0	61.	1 6	6 61.1	15		61.1	0.0	1	8	-8.0
Receiver16	16	j	1 0.0	64.9	9 7	2 64.9	15		64.9	0.0	<u> </u>	8	-8.0
Receiver17	1/		1 0.0	63.	6	63.7	15		63.7	0.0	<u> </u>	8	-8.0
Receiver18	18	5	1 0.0	65.		65.5	b 15		65.5	0.0	<u> </u>	8	-8.0
Receiver19	19		0.0	62.0		o 62.6	b 15	 Om-l.1.1	62.6	0.0		8	-8.0
	20			6/.4	4 6	o 67.4	+ 15	Sna LVI	67.4	0.0	<u></u>	<u>ŏ</u>	-8.0
Receiver21	21			61.	2 6	o 61.2	15		61.2	0.0	<u></u>	8	-8.0
Receiver22	22			64.	1 6	o 64.1	15	 0	64.1	0.0		8	-8.0
	23		1 0.0	67.4	4 6 0 0		+ 15 > 45		67.4	0.0	<u></u>	ŏ	-8.0
	24	•	0.0	66.	5 6	0 66.8	5 15	Sna LVI	66.8	0.0	<u>' </u>	<u> </u>	-8.0
L:\09108\Noise Analysis\Future No	o-Build					1				10 Jai	nuary 20	/13	

L:\09108\Noise Analysis\Future No-Build

RESULTS: SOUND LEVELS							US	701 Bric	lge Replac	cement			
Receiver25	25	1	0.0	64.	5	66	64.5	15		64.5	0.0	8	-8.0
Receiver26	26	1	0.0	54.4	4	66	54.4	15		54.4	0.0	8	3 -8.0
Dwelling Units		# DUs	Noise Red	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected		26	0.0	0.0	0	0.0							
All Impacted		8	0.0	0.0	C	0.0							
All that meet NR Goal		0	0.0	0.0	C	0.0							

2032 Build Noise Levels

2032 Future Bui	Id Alternative 2		Sheet 1 of 1	10 Jan 2013
			F&H	
Plan View (rotat	ed)		Project/Contract	No. US 701 Bridge Replacem
Run name: Alter	rnative 2		TNM Version 2.5	, Feb 2004
Scale:		1000 feet	Analysis By: JWI	4
Roadway:	\longrightarrow		Ground Zone:	polygon
Receiver:			Tree Zone:	dashed polygon
Barrier:	\longmapsto		Contour Zone:	polygon
Building Row:			Parallel Barrier:	
Terrain Line:			Skew Section:	\longrightarrow

RESULTS: SOUND LEVELS		1			1	1	US 701 Bri	dge Repla	cement		1		
F&H							10 Januar	v 2013					
							TNM 2 5	y 2015					
								l with TNM	2.5				
RESULTS: SOUND LEVELS							Carculater		2.5				
PROJECT/CONTRACT:		US 701	Bridge Re	olacement									
RUN:		2032 F	uture Build	Alternative 2									
BARRIER DESIGN:		INPUT	HEIGHTS					Average p	avement type	shall be use	d unles	s	
		1						a State hi	hway agency	v substantiate	es the u	se	
ATMOSPHERICS:		68 deg	F, 50% RH					of a differ	ent type with	approval of F	HWA.		
Receiver				<u> </u>	-								
Name	No.	#DUs	Existing	No Barrier	_				With Barrier				
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Ca	lculated
							Sub'l Inc					mir	nus
												Go	al
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
Receiver1	1	1	0.0	66.9	72	2 66.9	9 15		66.9	0.0)	8	-8.0
Receiver2	2	1	0.0	67.7	72	2 67.7	' 15		67.7	0.0)	8	-8.0
Receiver3	3	1	0.0	56.6	66	56.6	6 15		56.6	0.0)	8	-8.0
Receiver4	4	1	0.0	67.2	2 66	67.2	2 15	Snd Lvl	67.2	0.0)	8	-8.0
Receiver5	5	1	0.0	68.0	66	68.0) 15	Snd Lvl	68.0	0.0		8	-8.0
Receiver6	6	1	0.0	67.5	66	67.5	5 15	Snd Lvl	67.5	0.0)	8	-8.0
Receiver7	7	1	0.0	56.4	66	56.4	15		56.4	0.0		8	-8.0
Receiver8	8	1	0.0	57.0	66	5 57.0) 15		57.0	0.0)	8	-8.0
Receiver9	9	1	0.0	58.9	66	5 58.9	9 15		58.9	0.0)	8	-8.0
Receiver10	10	1	0.0	59.5	66	5 59.5	5 15		59.5	0.0		8	-8.0
Receiver11	11	1	0.0	71.5	66 66	5 71.5	5 15	Snd Lvl	71.5	0.0		8	-8.0
Receiver12	12	1	0.0	60.5	66	60.5	5 15		60.5	0.0		8	-8.0
Receiver13	13	1	0.0	70.7	66	5 70.7	15	Snd Lvl	70.7	0.0)	8	-8.0
Receiver14	14	1	0.0	71.2	2 66	5 71.2	2 15	Snd Lvl	71.2	0.0		8	-8.0
Receiver15	15	1	0.0	62.7	66	62.7	15		62.7	0.0		8	-8.0
Receiver16	16	1	0.0	64.2	2 72	64.2	2 15		64.2	0.0		8	-8.0
Receiver17	17	1	0.0	62.7	66	62.7	15		62.7	0.0		8	-8.0
Receiver18	18	1	0.0	65.3	66	65.3	3 15		65.3	0.0		8	-8.0
Receiver19	19	1	0.0	62.2	2 66	62.2	2 15		62.2	0.0		8	-8.0
Receiver20	20	1	0.0	67.9	66	67.9	15	Sha LVI	67.9	0.0		8	-8.0
	21	1	0.0	63.4	66	63.4	15		63.4	0.0	/	8	-8.0
Receiver22	22	1	0.0	62.2	66	62.2	15		62.2	0.0		8	-8.0
Receiver23	23	1	0.0	65.1	66	65.1	15	 Spelled	65.1	0.0		8 0	-8.0
Receiver24	24	1	0.0	66.4	66	66.4	15		66.4	0.0	1	ð	-8.0

L:\09108\Noise Analysis\Alternative 2

RESULTS: SOUND LEVELS							I	US 701 Bri	dge Repla	cement			
Receiver25	25	1	0.0	e	64.4	66	64.4	15		64.4	0.0	8	-8.0
Receiver26	26	1	0.0	Ę	53.8	66	53.8	15		53.8	0.0	8	-8.0
Dwelling Units		# DUs	Noise Red	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected		26	0.0		0.0	0.0							
All Impacted		8	0.0		0.0	0.0							
All that meet NR Goal		0	0.0		0.0	0.0							

2032 Future Bui	d Alternative 3	Sheet 1 of 1 10 Jan 2013
		F&H
Plan View (rotate	ed)	Project/Contract No. US 701 Bridge Replacen
Run name: Alter	native 3	TNM Version 2.5, Feb 2004
Scale:		Analysis By: JWH
Roadway:	\longrightarrow	Ground Zone: polygon
Receiver:		Tree Zone: dashed polygon
Barrier:	\longmapsto	Contour Zone: polygon
Building Row:		Parallel Barrier:
Terrain Line:		Skew Section: \longrightarrow
renam Line.		

Fall Image: marking and the state of the st	RESULTS: SOUND LEVELS	US 701 Bridge Replacement												
JWH Image: Source base of the sector of the se	F&H							10 Januar	v 2013					
Num A A A A A Calculated with TM 2.5 A A RESULTS: SOUND LEVELS V <th>JWH</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>TNM 2 5</th> <th>y 2010</th> <th></th> <th></th> <th></th> <th></th> <th></th>	JWH							TNM 2 5	y 2010					
RESULTS: SOUND LEVELS US 701 Bridge Jaccment US 701 Bridge Jaccment US 701 Bridge Jaccment Verage pavement type shall be used unes a State highway agoncy substantiates the use of a different type with approval of FHWA. BARRIED DESION: PDU # FLOHT Eds deg 7, 50% RI Note and the state highway agoncy substantiates the use of a different type with approval of FHWA. Average pavement type with approval of FHWA. Receiver PDU # Eds dg 7, 50% RI Eds dg 7, 50% RI Note and the state highway agoncy substantiates the use of a different type with approval of FHWA. Average pavement type with approval of FHWA. Receiver PDU # Eds dg 7, 50% RI Eds dg 7, 20% RI Note Additional actional act									l with TNM	2.5				
PROJECTICONTRACT: US 701 Single Replacement of 202 Further Build Alternative 3 Second Single Singl	RESULTS: SOUND LEVELS							Curculator						
RUN: 2032 Further Build Alternative 3 Average purport of the state of the stat	PROJECT/CONTRACT:		US 701	Bridge Re	placement									
BARRIER DESIGN: INPUT HEIGHTS Average payament type shall be used unless a State highway agency substantiates the used a ditterent type with approval State highway agency substantiates the used a ditterent type with approval State highway agency substantiates the used a ditterent type with approval State highway agency substantiates the used a ditterent type with approval State highway agency substantiates the used a ditterent type with approval State highway agency substantiates the used a ditterent type with approval State highway agency substantiates the used a ditterent type with approval State highway agency substantiates the used a ditterent type shall be used unless a State highway agency substantiates the used unless a ditterent type with approval Receiver No PUS Katent LAeqth Could Critical Critical Critical Critical Critical Critical Critical Critical State highway agency substantiates the used unless built in the substantiates	RUN:		2032 F	uture Build	Alternative 3	;								
ATMOSPHERICS: 68 deg F, 50% RF F 50% RF Size Reciver a State highway agency substantiates the use of a different type with approval of FIWA. Name 700. #DUs Existing LAeq1h No Barrier Increase over existing Sub'l Inc. Type Laeq1h Calculated Calculated Calculated Crit'n Calculated Calculated Calculated Crit'n Calculated Calculated Calculated Crit'n Noise Recover Noise Recover R1 1 1.0.0 68.3 72 68.3 15 68.5 0.0 8 -8.0 R2 2 1 0.0 667.7 166 57.1 10.0 8 -8.0 R4 4 1 0.0 667.7 166 57.1 10.0 8 -8.0 R5 1 0.0 667.7 66.6 57.1 10.0 8 -8.0 R4 1 0.0 65.5 66 657.8 15 65.5 0.0 8 -8.0 R5 1	BARRIER DESIGN:		INPUT	HEIGHTS					Average p	avement type	shall be use	d unles	s	
ATMOSPHERICS: 66 deg F, 50% RH Image 6 a different type with approval of FUNCATIONAL AND									a State hig	hway agency	y substantiate	es the us	se	
Receiver No. #DU Existing LAeq1M No Barrier LAeq1M Increase over LAeq1M Vith Barrier Calculated MBA Increase over MBA Vith Barrier Manual Calculated Vith Barrier Manual Calculated No. #DU Existing MBA No. #DU Existing LAeq1M No. #DU Existing Calculated Increase over Manual Manua	ATMOSPHERICS:		68 deg	F, 50% RH	4				of a differ	ent type with	approval of F	HWA.		
Name No. #DUs Existing LAeq1h No Barrier LAeq1h Increase over existing Calculated With Barrier Increase over existing Sub1 Inc Type Mapping Calculated LAeq1h Noise Reduction Manual Sub1 Inc Calculated Sub1 Inc With Barrier Sub1 Inc Calculated Manual Sub1 Inc With Barrier Sub1 Inc Calculated Sub1 Inc Moise Reduction Sub1 Inc Calculated Manual Sub1 Inc Calculated Sub1 Inc Moise Reduction Sub1 Inc Calculated Manual Sub1 Inc Calculated Sub1 Inc Calculated Manual Sub1 Inc Calculated Sub1 Inc R1	Receiver		-			-				<u>.</u>				-
LAeq1h LAeq1h Calculated Crith Increase over visiting Type Calculated Noise Reduction Calculated Calculated Crith Increase over visiting Type Calculated Noise Reduction Calculated Cal	Name	No.	#DUs	Existing	No Barrier					With Barrier				
Calculated Crit*n Bad Calculated Crit*n Bad Bad Calculated Crit*n Bad Bad Calculated Calculated <t< td=""><td></td><td></td><td></td><td>LAeq1h</td><td>LAeq1h</td><td></td><td>Increase over</td><td>existing</td><td>Туре</td><td>Calculated</td><td>Noise Reduc</td><td>tion</td><td></td><td></td></t<>				LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion		
Image: Substrain of the state of t					Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcu	lated
R1 I								Sub'l Inc					minus	5
R1 1 1 0.0 66.3 72 66.3 15 66.3 0.0 8 -8.0 R2 2 1 0.0 66.3 72 66.3 15 66.3 0.0 8 -8.0 R3 3 1 0.0 67.1 66 57.1 15 57.1 0.0 8 -8.0 R4 4 1 0.0 67.0 66 67.0 15 Snd LV 66.7 0.0 8 -8.0 R5 5 1 0.0 65.5 66 65.5 15 65.5 0.0 8 -8.0 R6 6 1 0.0 55.8 66 55.8 15 55.8 0.0 8 -8.0 R7 1 0.0 57.5 66 57.0 15 57.5 0.0 8 -8.0 R10 10 </td <td></td> <td>Goal</td> <td></td>													Goal	
R1 1 1 0.0 68.3 72 68.3 15 68.3 0.0 8 -8.0 R2 2 1 0.0 65.5 72 68.5 15 68.5 0.0 8 -8.0 R3 3 1 0.0 67.1 66 57.1 15 67.1 0.0 8 -8.0 R4 4 1 0.0 66.7 66 67.0 15 Snd Lvl 66.7 0.0 8 -8.0 R5 5 1 0.0 66.5 66 65.5 15 65.5 0.0 8 -8.0 R6 6 1 0.0 55.8 66 55.8 15 55.6 0.0 8 -8.0 R7 7 1 0.0 57.0 66 57.0 15 55.6 0.0 8 -8.0 R10 10 1 0.0 57.5 66 57.5 15 57.5				dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
R2 2 1 0.0 68.5 72 68.5 15 68.5 0.0 8 -8.0 R3 3 1 0.0 67.1 66 57.1 15 57.1 0.0 8 -8.0 R4 4 1 0.0 66.7 66 67.0 15 Snd Lvl 67.0 0.0 8 -8.0 R5 5 1 0.0 66.7 66 66.7 15 Snd Lvl 66.7 0.0 8 -8.0 R6 6 1 0.0 65.5 66 65.5 15 65.5 0.0 8 -8.0 R7 7 1 0.0 55.0 66 57.0 15 55.6 0.0 8 -8.0 R9 9 1 0.0 57.5 66 57.5 15 57.5 0.0 8 -8.0 R11 11 0.0 57.5 66 57.5 15 57.5 0.0	R1	1	1	0.0	68.3	3 72	2 68.3	3 15		68.3	0.0)	8	-8.0
R3 3 1 0.0 57.1 66 57.1 15 57.1 0.0 8 -8.0 R4 4 1 0.0 667.0 66 67.0 15 Snd Lvi 67.0 0.0 8 -8.0 R5 5 1 0.0 66.7 66 66.7 15 Snd Lvi 66.7 0.0 8 -8.0 R6 6 1 0.0 65.5 66 65.5 15 65.5 0.0 8 -8.0 R7 7 1 0.0 55.8 66 55.8 15 55.8 0.0 8 -8.0 R9 9 1 0.0 57.0 66 57.0 15 57.5 0.0 8 -8.0 R11 11 1 0.0 57.9 66 57.9 15 57.5 0.0 8 -8.0 R12 12 1 0.0 57.9 66 57.9 15 57.	R2	2	: 1	0.0	68.5	5 72	68.5	5 15		68.5	0.0)	8	-8.0
R4 4 1 0.0 67.0 66 67.0 15 Snd Lvl 67.0 0.0 8 -8.0 R5 5 1 0.0 66.7 66 66.7 15 Snd Lvl 66.7 0.0 8 -8.0 R6 6 1 0.0 65.5 66 66.5 15 65.5 0.0 8 -8.0 R7 7 1 0.0 55.8 66 55.8 15 55.0 0.0 8 -8.0 R9 9 1 0.0 57.5 66 57.5 15 57.0 0.0 8 -8.0 R10 11 1 0.0 57.5 66 57.5 15 57.9 0.0 8 -8.0 R12 12 1 0.0 65.2 66 57.9 15 65.2 0.0 8 -8.0 R14 14 0.0 65.0 66 57.9 15 64.2 <td< td=""><td>R3</td><td>3</td><td>i 1</td><td>0.0</td><td>57.1</td><td>66</td><td>57.1</td><td>15</td><td></td><td>57.1</td><td>0.0</td><td>)</td><td>8</td><td>-8.0</td></td<>	R3	3	i 1	0.0	57.1	66	57.1	15		57.1	0.0)	8	-8.0
R5 1 0.0 66.7 66 66.7 15 Snd Lvl 66.7 0.0 8 -8.0 R6 6 1 0.0 65.5 66 65.5 15 65.5 0.0 8 -8.0 R7 7 1 0.0 55.8 66 55.8 15 55.8 0.0 8 -8.0 R8 8 1 0.0 56.0 66 55.8 15 55.8 0.0 8 -8.0 R9 9 1 0.0 57.5 66 57.5 15 57.5 0.0 8 -8.0 R11 11 1 0.0 57.9 66 57.9 15 57.9 0.0 8 -8.0 R12 12 1 0.0 57.9 66 67.9 15 65.2 0.0 8 -8.0 R13 13 1 0.0 64.2 66 65.0 15 65.0 0.	R4	4	. 1	0.0	67.0	66	67.0) 15	Snd Lvl	67.0	0.0)	8	-8.0
R6 6 1 0.0 65.5 66 65.5 15 66.5 0.0 8 -8.0 R7 7 1 0.0 55.8 66 55.8 15 55.8 0.0 8 -8.0 R8 8 1 0.0 56.0 66 56.0 15 55.8 0.0 8 -8.0 R9 9 1 0.0 57.0 66 57.0 15 57.0 0.0 8 -8.0 R10 11 1 0.0 57.9 66 57.5 15 57.5 0.0 8 -8.0 R11 11 1 0.0 65.2 66 65.2 15 65.2 0.0 8 -8.0 R13 1 0.0 65.0 66 65.0 15 66.2 0.0 8 -8.0 R14 1 0.0 64.9 66 65.0 15 65.0 0.0 8 </td <td>R5</td> <td>5</td> <td>i 1</td> <td>0.0</td> <td>66.7</td> <td>66</td> <td>66.7</td> <td>' 15</td> <td>Snd Lvl</td> <td>66.7</td> <td>0.0</td> <td>)</td> <td>8</td> <td>-8.0</td>	R5	5	i 1	0.0	66.7	66	66.7	' 15	Snd Lvl	66.7	0.0)	8	-8.0
R7 T 1 0.0 55.8 66 55.8 15 55.8 0.0 8 -8.0 R8 8 1 0.0 56.0 66 57.0 15 57.0 0.0 8 -8.0 R9 10 1 0.0 57.5 66 57.0 15 57.5 0.0 8 -8.0 R10 11 1 0.0 57.5 66 57.5 15 57.5 0.0 8 -8.0 R11 11 1 0.0 65.2 66 65.2 15 65.2 0.0 8 -8.0 R12 12 1 0.0 65.2 66 65.0 15 65.2 0.0 8 -8.0 R13 13 1 0.0 64.2 66 65.0 15 65.0 0.0 8 -8.0 R14 1 0.0 64.9 72 64.9 15 64.9 0	R6	6	i 1	0.0	65.5	5 66	65.5	5 15		65.5	0.0	J	8	-8.0
R8 1 0.0 56.0 66 56.0 15 56.0 0.0 8 -8.0 R9 9 1 0.0 57.0 66 57.0 15 57.0 0.0 8 -8.0 R10 10 11 0.0 57.5 66 57.5 15 57.5 0.0 8 -8.0 R11 11 1 0.0 65.2 66 65.2 15 57.5 0.0 8 -8.0 R12 12 1 0.0 57.9 66 57.9 15 57.9 0.0 8 -8.0 R13 13 1 0.0 64.2 66 64.2 15 65.0 0.0 8 -8.0 R14 14 1 0.0 65.0 66 59.6 15 65.0 0.0 8 -8.0 R15 15 1 0.0 64.9 72 64.9 15 64.2 <t< td=""><td>R7</td><td>7</td><td>1</td><td>I 0.0</td><td>) 55.8</td><td>3 66</td><td>55.8</td><td>3 15</td><td></td><td>55.8</td><td>0.0</td><td>J</td><td>8</td><td>-8.0</td></t<>	R7	7	1	I 0.0) 55.8	3 66	55.8	3 15		55.8	0.0	J	8	-8.0
R9 9 1 0.0 57.0 66 57.0 15 57.0 0.0 8 -8.0 R10 10 1 0.0 57.5 66 57.5 15 57.5 0.0 8 -8.0 R11 11 1 0.0 65.2 66 65.2 15 65.2 0.0 8 -8.0 R12 12 1 0.0 65.7 66 57.9 15 65.2 0.0 8 -8.0 R13 13 1 0.0 64.2 66 64.2 15 64.2 0.0 8 -8.0 R14 14 1 0.0 65.0 66 65.0 15 64.2 0.0 8 -8.0 R15 15 1 0.0 64.9 72 64.9 15 64.9 0.0 8 -8.0 R16 16 1 0.0 64.2 66 64.2 15 Snd Lvi <	R8	8	1	0.0	56.0	66	56.0) 15		56.0	0.0)	8	-8.0
R10 10 1 0.0 57.5 66 57.5 15 57.5 0.0 8 -8.0 R11 11 1 0.0 65.2 66 65.2 15 65.2 0.0 8 -8.0 R12 12 1 0.0 57.9 66 57.9 15 57.9 0.0 8 -8.0 R13 13 1 0.0 64.2 66 64.2 15 64.2 0.0 8 -8.0 R14 14 1 0.0 65.0 66 65.0 15 64.2 0.0 8 -8.0 R15 15 1 0.0 64.9 72 64.9 15 64.9 0.0 8 -8.0 R17 17 1 0.0 64.2 66 64.2 15 64.9 0.0 8 -8.0 R17 17 1 0.0 62.9 66 62.9 15 Snd Lvl	R9	9	1	0.0	57.0	66	5 57.0) 15		57.0	0.0	1	8	-8.0
R11 11 1 0.0 65.2 66 65.2 15 65.2 0.0 8 -8.0 R12 12 1 0.0 57.9 66 57.9 15 57.9 0.0 8 -8.0 R13 13 1 0.0 64.2 66 64.2 15 64.2 0.0 8 -8.0 R14 14 1 0.0 65.0 66 65.0 15 65.0 0.0 8 -8.0 R15 15 1 0.0 65.0 66 59.6 15 66.9 0.0 8 -8.0 R16 16 1 0.0 64.9 72 64.9 15 64.2 0.0 8 -8.0 R17 17 1 0.0 64.2 66 64.2 15 Snd Lvl 66.6 0.0 8 -8.0 R18 1 0.0 62.9 66 62.9 15 62.9	R10	10	1	0.0	57.5	5 66	5 57.5	5 15		57.5	0.0	1	8	-8.0
R12 12 1 0.0 57.9 66 57.9 15 57.9 0.0 8 -8.0 R13 13 1 0.0 64.2 66 64.2 15 64.2 0.0 8 -8.0 R14 14 1 0.0 65.0 66 65.0 15 65.0 0.0 8 -8.0 R15 15 1 0.0 59.6 66 59.6 15 59.6 0.0 8 -8.0 R16 16 1 0.0 64.9 72 64.9 15 64.9 0.0 8 -8.0 R17 17 1 0.0 64.2 66 64.2 15 64.2 0.0 8 -8.0 R18 18 1 0.0 62.9 66 62.9 15 62.9 0.0 8 -8.0 R20 20 1 0.0 63.2 66 63.2 15 Snd Lvl	R11	11	1	0.0	65.2	2 66	65.2	2 15		65.2	0.0)	8	-8.0
R13 13 1 0.0 64.2 66 64.2 15 64.2 0.0 8 -8.0 R14 14 1 0.0 65.0 66 65.0 15 65.0 0.0 8 -8.0 R15 15 1 0.0 59.6 66 59.6 15 59.6 0.0 8 -8.0 R16 16 1 0.0 64.9 72 64.9 15 64.9 0.0 8 -8.0 R17 17 1 0.0 64.2 66 64.2 15 64.2 0.0 8 -8.0 R18 18 1 0.0 66.6 66 66 15 Snd Lvl 66.6 0.0 8 -8.0 R20 20 1 0.0 63.2 66 63.2 15 63.2 0.0 8 -8.0 R21 21 1 0.0 63.2 66 63.2 15 Snd Lvl	R12	12	! 1	0.0	57.9	9 66	57.9	9 15		57.9	0.0)	8	-8.0
R14 14 1 0.0 65.0 66 65.0 15 65.0 0.0 8 0 R15 15 1 0.0 59.6 66 59.6 15 59.6 0.0 8 8.0 R16 16 1 0.0 64.9 72 64.9 15 64.9 0.0 8 8.0 R17 17 1 0.0 64.2 66 64.2 15 64.2 0.0 8 8.0 R18 18 1 0.0 66.6 66 66 15 Snd Lvl 66.6 0.0 8 8.0 R20 19 1 0.0 66.2 66 68.3 15 Snd Lvl 68.3 0.0 8 -8.0 R21 20 1 0.0 63.2 66 63.2 15 Snd Lvl 68.3 0.0 8 -8.0 R22 21 1 0.0 63.2 66 63.2 15 Snd Lv	R13	13	1	0.0	64.2	2 66	64.2	2 15		64.2	0.0	1	8	-8.0
R15 1 0.0 59.6 66 59.6 15 59.6 0.0 8 8.0 R16 16 1 0.0 64.9 72 64.9 15 64.9 0.0 8 -8.0 R17 17 1 0.0 64.2 66 64.2 15 64.2 0.0 8 -8.0 R18 18 1 0.0 66.6 66 66.6 15 Snd Lvl 66.6 0.0 8 -8.0 R19 19 1 0.0 62.9 66 62.9 15 62.9 0.0 8 -8.0 R20 20 1 0.0 68.3 66 68.3 15 Snd Lvl 68.3 0.0 8 -8.0 R21 21 1 0.0 63.2 66 64.2 15 Snd Lvl 68.3 0.0 8 -8.0 R23 22 1 0.0 64.4 66 64.4 15 64.4<	R14	14	- 1	0.0	65.0) 66	65.0	15		65.0	0.0	/	8	-8.0
R16 16 1 0.0 64.9 72 64.9 15 64.9 0.0 8 8.0 R17 17 1 0.0 64.2 66 64.2 15 64.2 0.0 8 -8.0 R18 18 1 0.0 66.6 66 66.6 15 Snd Lvl 66.6 0.0 8 -8.0 R19 19 1 0.0 62.9 66 62.9 15 62.9 0.0 8 -8.0 R20 20 1 0.0 63.2 66 63.2 15 Snd Lvl 68.3 0.0 8 -8.0 R21 21 1 0.0 63.2 66 63.2 15 63.2 0.0 8 -8.0 R23 22 1 0.0 64.4 66 64.4 15 64.4 0.0 8 -8.0 R24 22 1 0.0 64.4 66 64.4 15 Snd Lvl <td>R15</td> <td>15</td> <td>1</td> <td>0.0</td> <td>59.6</td> <td>66</td> <td>5 59.6</td> <td>5 15</td> <td></td> <td>59.6</td> <td>0.0</td> <td>·</td> <td>8</td> <td>-8.0</td>	R15	15	1	0.0	59.6	66	5 59.6	5 15		59.6	0.0	·	8	-8.0
R17 17 1 0.0 64.2 66 64.2 15 64.2 0.0 8 8.0 R18 18 1 0.0 66.6 66 15 Snd Lvl 66.6 0.0 8 -8.0 R19 19 1 0.0 62.9 66 62.9 15 62.9 0.0 8 -8.0 R20 20 1 0.0 68.3 66 68.3 15 Snd Lvl 68.3 0.0 8 -8.0 R21 20 1 0.0 63.2 66 63.2 15 Snd Lvl 68.3 0.0 8 -8.0 R22 21 1 0.0 63.2 66 63.2 15 63.2 0.0 8 -8.0 R23 23 1 0.0 71.6 66 71.6 15 Snd Lvl 71.6 0.0 8 -8.0 R24 24 1 0.0 69.0 66 69.0 15 Snd Lvl 69	R16	16	1	0.0	64.9) 72	64.9	15		64.9	0.0	<u> </u>	8	-8.0
R18 16 1 0.0 66.6 66 66.6 15 Stild LVI 66.6 0.0 8 0 R19 19 1 0.0 62.9 66 62.9 15 62.9 0.0 8 8.0 R20 20 1 0.0 68.3 66 68.3 15 Stild LVI 68.3 0.0 8 8.0 R21 20 1 0.0 63.2 66 63.2 15 63.2 0.0 8 8.0 R22 22 1 0.0 64.4 66 64.4 15 63.2 0.0 8 8.0 R23 23 1 0.0 71.6 66 71.6 15 Stild LVI 71.6 0.0 8 -8.0 R24 24 1 0.0 69.0 66 69.0 15 Stild LVI 69.0 0.0 8 -8.0 L 100108 69.0 66 69.0 15 Stild LVI 69	R17	17			0 64.2		64.2	15	 Sod Lyd	64.2	0.0	<u></u>	8	-8.0
R19 1 0.0 62.9 66 62.9 15 62.9 0.0 6 62.9 0.0 6 62.9 0.0 6 62.9 0.0 6 62.9 0.0 6 62.9 0.0 6 62.9 0.0 6 62.9 0.0 6 62.9 0.0 6 62.9 0.0 6 62.9 0.0 6 62.9 0.0 8 63.2 0.0 8 63.2 0.0 8 63.2 0.0 8 63.2 0.0 8 64.4 0.0 8 64.4 0.0 8 64.0 0.0 8 64.0 0.0 8 64.4 0.0 8 64.0 0.0 8 64.0 0.0 8 64.0 0.0 8 64.0 0.0	R18	18) ID	Shu Lvi	62.0	0.0	, 	0	-8.0
R20 I 0.0 66.3 00 66.3 13 Sind LVI 66.3 0.0 8 0 R21 21 1 0.0 63.2 66 63.2 15 63.2 0.0 8 -8.0 R22 22 1 0.0 64.4 66 64.4 15 64.4 0.0 8 -8.0 R23 23 1 0.0 71.6 66 71.6 15 Snd LvI 71.6 0.0 8 -8.0 R24 24 1 0.0 69.0 66 69.0 15 Snd LvI 69.0 0.0 8 -8.0	RI9 R20	19			02.8			10 10 0 15	Spd Lyd	62.9	0.0	, 	<u> </u>	-0.0
N21 1 0.0 05.2 00 05.2 15 05.2 0.0 8 0.0 R22 22 1 0.0 64.4 66 64.4 15 64.4 0.0 8 -8.0 R23 23 1 0.0 71.6 66 71.6 15 Snd Lvl 71.6 0.0 8 -8.0 R24 24 1 0.0 69.0 66 69.0 15 Snd Lvl 69.0 0.0 8 -8.0	P21	20			00.0			0 ID		00.3	0.0	<u></u>	0	-0.0
122 1 0.0 04.4 15 10 04.4 0.0 6 -0.0 R23 23 1 0.0 71.6 66 71.6 15 Snd Lvl 71.6 0.0 8 -8.0 R24 24 1 0.0 69.0 66 69.0 15 Snd Lvl 69.0 0.0 8 -8.0	R22	21			03.2			. ID		6/ /	0.0	<u></u>	8	-0.U
120 1 0.0 11.0 00 11.0 10 10 10 0.0 8 -0.0 R24 24 1 0.0 69.0 66 69.0 15 Snd Lvl 69.0 0.0 8 -8.0 L \09108\Noise Analysis\Alternative 3 1 </td <td>R23</td> <td>22</td> <td></td> <td></td> <td>71 04.2</td> <td></td> <td>04.4 71.6</td> <td>10</td> <td>Snd Lyl</td> <td>04.4 71 G</td> <td>0.0</td> <td><u></u></td> <td>8</td> <td>-0.0</td>	R23	22			71 04.2		04.4 71.6	10	Snd Lyl	04.4 71 G	0.0	<u></u>	8	-0.0
	R24	23) 15	Snd Lvl	60 N	0.0		8	<u>-0.0</u>
	L:\00109\Noico Analysis\Alternativ	<u> </u>		0.0			- <u> </u>	, 13		03.0	10 10		<u> </u>	0.0

L:\09108\Noise Analysis\Alternative 3

RESULTS: SOUND LEVELS				US 701 Bridge Replacement											
R25	25	1	0.0	6	5.6	66	65.6	15		65.6	0.0	8	-8.0		
R26	26	1	0.0	5	5.5	66	55.5	15		55.5	0.0	8	-8.0		
Dwelling Units		# DUs	Noise Red	duction											
			Min	Avg	Max										
			dB	dB	dB										
All Selected		26	0.0	(0.0	0.0									
All Impacted		6	0.0	(0.0	0.0									
All that meet NR Goal		0	0.0	(0.0	0.0									

Contours

INPUTS FOR FUTURE NOISE LEVELS		NOISE	DISTANCE	
US 701 Bridge Replacement Georgetown/Horr		CONTOURS	TO CL (Ft)	
Distance From Proposed US 701 EOP	PRD # 1	PRD # 2	72	76
25	77.3	0.0		-
50	73.8	0.0	67	135
100	68.7	0.0	66	151
200	63	0.0		
400	56.7	0.0	71	85
800	50.4	0.0	DESIRED	
1600	0	0.0	60	290
R0	12.0	0.0	dBA ^	

R0= Distance from Centerline to Edge of Pavement

RESULTS: SOUND LEVELS	i.	US 701 Bridge Replacement											
F&H								10 Januar	y 2013				
JWH								TNM 2.5					
								Calculated	d with TNN	1 2.5			
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:		US 701	Bridge Re	placement									
RUN:		2032 Fi	uture Build	Alternative	3								
BARRIER DESIGN:						Average p	pavement type	shall be use	d unless				
									a State hi	ghway agency	y substantiat	es the use	÷
ATMOSPHERICS:		68 deg	F, 50% RH	I					of a differ	ent type with	approval of F	HWA.	
Receiver													
Name	No.	#DUs	Existing	No Barrier						With Barrier			
			LAeq1h	LAeq1h			Increase over	existing	Туре	Calculated	Noise Reduc	ction	
				Calculated	Crit'n		Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
								Sub'l Inc					minus
													Goal
			dBA	dBA	dBA		dB	dB		dBA	dB	dB	dB
R25	29	1	0.0	77.	3	66	77.3	3 10	Snd Lvl	77.3	0.0)	8 -8.0
R50	30	1	0.0	73.	8	66	73.8	3 10	Snd Lvl	73.8	0.0)	8 -8.0
R100	31	1	0.0	68.	7	66	68.7	' 10	Snd Lvl	68.7	0.0)	8 -8.0
R200	32	1	0.0	63.	0	66	63.0) 10		63.0	0.0)	8 -8.0
R400	33	1	0.0	56.	7	66	56.7	' 10		56.7	0.0)	8 -8.0
R800	34	1	0.0	50.	4	66	50.4	10		50.4	0.0)	8 -8.0
Dwelling Units		# DUs	Noise Re	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected		6	0.0	0.	0	0.0							
All Impacted		3	0.0	0.	0	0.0							
All that meet NR Goal		0	0.0	0.	0	0.0)						

TNM Validations

RESULTS: SOUND LEVELS		US 701 Bri	US 701 Bridge Replacement										
Florence & Hutcheson							10 Januar	v 2013					
JWH							TNM 2.5	,					
-							Calculate	d with TNN	1 2.5				
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:		US 701	Bridge Re	placement									
RUN:		Validat	ion Site 1										
BARRIER DESIGN:		INPUT	HEIGHTS					Average p	pavement type	e shall be use	ed unless		
								a State hi	ghway agenc	y substantiat	es the us	е	
ATMOSPHERICS:		68 deg	F, 50% RH	ł				of a differ	ent type with	approval of I	HWA.		
Receiver											-	_	
Name	No.	#DUs	Existing	No Barrier					With Barrier	1			
			LAeq1h	LAeq1h		Increase over	r existing	Туре	Calculated	Noise Redu	ction		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcu	lated
							Sub'l Inc					minus	5
												Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
Site 1	1	1 1	66.9	65.4	. 66	6 -1.5	5 15	;	65.4	0.0)	8	-8.0
Site 2	2	2 1	61.6	0.0	66	6 0.0	0 15	inactive	0.0	0.0)	8	0.0
Site 3	3	3 1	62.0	0.0	66	0.0	0 15	inactive	0.0	0.0)	8	0.0
Site 4	4	1 1	58.1	0.0	66	6 0.0	0 15	inactive	0.0	0.0)	8	0.0
Site 5	5	5 1	49.8	0.0	66	δ 0.0	0 15	inactive	0.0	0.0)	8	0.0
Dwelling Units		# DUs	Noise Re	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected		5	0.0	0.0	0.0	D							
All Impacted		0	0.0	0.0	0.0)							
All that meet NR Goal		0	0.0	0.0	0.0)							

RESULTS: SOUND LEVELS	US 701 Bri	JS 701 Bridge Replacement											
Florence & Hutcheson							10 Januar	v 2013					
JWH							TNM 2.5						
							Calculate	d with TNN	1 2.5				
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:		US 701	Bridge Re	placement									
RUN:		Validati	ion Site 2										
BARRIER DESIGN:		INPUT	HEIGHTS					Average p	pavement type	e shall be use	ed unless	1	
								a State hi	ghway agenc	y substantiat	es the us	е	
ATMOSPHERICS:		68 deg	F, 50% RH	ł				of a differ	ent type with	approval of I	FHWA.		
Receiver					-								
Name	No.	#DUs	Existing	No Barrier					With Barrier	1			
			LAeq1h	LAeq1h		Increase over	r existing	Туре	Calculated	Noise Redu	ction		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcu	lated
							Sub'l Inc					minus	5
												Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
Site 1	1	1	66.9	0.0	66	6 0.0	0 15	inactive	0.0	0.0)	8	0.0
Site 2	2	2 1	61.6	59.2	66	õ -2.4	4 15	i	59.2	2 0.0)	8	-8.0
Site 3	3	3 1	62.0	0.0	66	6 0.0	0 15	inactive	0.0	0.0)	8	0.0
Site 4	4	1 1	58.1	0.0	66	6 0.0	0 15	inactive	0.0	0.0)	8	0.0
Site 5	5	5 1	49.8	0.0	66	6 0.0	0 15	inactive	0.0	0.0)	8	0.0
Dwelling Units		# DUs	Noise Re	duction					_				
			Min	Avg	Max								
			dB	dB	dB								
All Selected		5	0.0	0.0	0.0)							
All Impacted		0	0.0	0.0	0.0)							
All that meet NR Goal		0	0.0	0.0	0.0)							

RESULTS: SOUND LEVELS			1	US 701 Br	US 701 Bridge Replacement											
Florence & Hutcheson							10 Januar	y 2013								
							TNM 2 5	y 2010								
3001								d with TNN	125							
RESULTS: SOUND LEVELS							Calculate		12.5							
PROJECT/CONTRACT		US 701	Bridge Re	placement												
RUN:		Validati	ion Site 3													
BARRIER DESIGN:		INPUT	HEIGHTS					Average r	pavement type	e shall be use	ed unless	i i				
								a State hi	cihway agenc	v substantiat	es the us	e				
ATMOSPHERICS:		68 deg	F, 50% RH	1				of a differ	ent type with	approval of I	HWA.	-				
Receiver					-			-								
Name	No.	#DUs	Existing	No Barrier					With Barrier	1						
			LAeq1h	LAeq1h		Increase over	rexisting	Туре	Calculated	Noise Redu	ction					
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcu	lated			
							Sub'l Inc					minus	3			
												Goal				
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB				
Site 1	1	1 1	66.9	0.0	66	6 0.0	0 15	inactive	0.0	0.0)	8	0.0			
Site 2	2	2 1	61.6	0.0	66	6 0.0) 15	inactive	0.0	0.0)	8	0.0			
Site 3	3	3 1	62.0	59.0	66	-3.0) 15	;	59.0	0.0)	8	-8.0			
Site 4	4	1 1	58.1	0.0	66	6 0.0) 15	inactive	0.0	0.0)	8	0.0			
Site 5	5	5 1	49.8	0.0	66	6 0.0) 15	inactive	0.0	0.0)	8	0.0			
Dwelling Units		# DUs	Noise Re	duction												
			Min	Avg	Max											
			dB	dB	dB											
All Selected		5	0.0	0.0	0.0)										
All Impacted		0	0.0	0.0	0.0)										
All that meet NR Goal		0	0.0	0.0	0.0)										
RESULTS: SOUND LEVELS U								US 701 Bridge Replacement								
-------------------------	-----	-------------------	-----------	------------	--------	-----------------------	-----------	---------------------------	--	-----------------	-----------	-------	---------	--	--	--
Florence & Hutcheson							10 Januar	v 2013								
JWH							TNM 2.5									
							Calculate	d with TNN	1 2.5							
RESULTS: SOUND LEVELS																
PROJECT/CONTRACT:		US 701	Bridge Re	placement												
RUN:		Validation Site 4														
BARRIER DESIGN:		INPUT HEIGHTS							Average pavement type shall be used unless							
								a State hi	ghway agenc	y substantiat	es the us	е				
ATMOSPHERICS:		68 deg	F, 50% RH	ł				of a differ	ent type with	approval of I	HWA.					
Receiver											_		<u></u>			
Name	No.	#DUs	Existing	No Barrier					With Barrier	1						
		LAeq1h		LAeq1h		Increase over existir		Туре	Calculated	Noise Reduction						
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcu	lated			
							Sub'l Inc					minu	S			
												Goal				
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB				
Site 1	1	1	66.9	0.0	66	6 0.0	0 15	inactive	0.0) 0.0)	8	0.0			
Site 2	2	2 1	61.6	0.0	66	6 0.0	0 15	inactive	0.0	0.0)	8	0.0			
Site 3	3	3 1	62.0	0.0	66	6 0.0	0 15	inactive	0.0	0.0)	8	0.0			
Site 4	4	1 1	58.1	60.2	66	6 2.1	1 15	;	60.2	2 0.0)	8	-8.0			
Site 5	5	5 1	49.8	0.0	66	6 0.0	0 15	inactive	0.0	0.0)	8	0.0			
Dwelling Units		# DUs	Noise Re	duction												
			Min	Avg	Max											
			dB	dB	dB											
All Selected		5	0.0	0.0	0.0)										
All Impacted		0	0.0	0.0	0.0	D										
All that meet NR Goal		0	0.0	0.0	0.0)										

RESULTS: SOUND LEVELS L								US 701 Bridge Replacement							
Florence & Hutcheson							10 Januar	y 2013							
							TNM 2 5	y 2010							
3001								d with TNN	125						
RESULTS: SOUND LEVELS							Calculate		12.5						
PROJECT/CONTRACT		US 701	Bridge Re	placement											
RUN:		Validation Site 5													
BARRIER DESIGN:		INPUT HEIGHTS						Average pavement type shall be used unless							
								a State hi	cihway agenc	v substantiat	es the us	е			
ATMOSPHERICS:		68 deg	F, 50% RH	1				of a differ	ent type with	approval of I	HWA.	-			
Receiver					-										
Name	No.	#DUs	Existing	No Barrier					With Barrier						
		LAeq1h		LAeq1h		Increase over	existing	Туре	Calculated Noise Reduction		ction	L			
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcu	lated		
							Sub'l Inc					minus	\$		
												Goal			
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB			
Site 1	1	1 1	66.9	0.0	66	0.0) 15	inactive	0.0	0.0)	8	0.0		
Site 2	2	2 1	61.6	0.0	66	0.0) 15	inactive	0.0	0.0)	8	0.0		
Site 3	3	3 1	62.0	0.0	66	0.0) 15	inactive	0.0	0.0)	8	0.0		
Site 4	4	1 1	58.1	0.0	66	0.0) 15	inactive	0.0	0.0)	8	0.0		
Site 5	5	5 1	49.8	48.0	66	-1.8	3 15	;	48.0	0.0)	8	-8.0		
Dwelling Units		# DUs	Noise Re	duction											
			Min	Avg	Max										
			dB	dB	dB										
All Selected		5	0.0	0.0	0.0)									
All Impacted		0	0.0	0.0	0.0)									
All that meet NR Goal		0	0.0	0.0	0.0)									